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Introduction

• Oxidation behavior of non-oxide ceramics highly depends on the properties of the 
oxidation product.

• NSWC Ceramics discovered a correlation between oxidation resistance of transition 
metal borides and the presence and extent of phase separation (immiscibility) in the 
surface protective glass formed during exposure to oxidizing atmosphere.

• Oxidation resistance of ZrB2, TiB2, TaB2, NbB2, and CrB2 ceramics was significantly 
improved by their modification with SiC and in succession with each other as a result of 
the formation of phase-separated borosilicate glass containing transition metal oxides.

• Borate and silicate glasses containing Group IV-VI transition metal oxides show strong 
tendency to immiscibility. The  systems  exhibiting immiscibility have steeply rising
liquidus temperatures and increased viscosity in the two-liquid composition range.

• The tendency to immiscibility is proportional to cation field strength, z/r2, where 
z=valence of element and r=ionic radius

• The concept of using surface glass immiscibility to improve oxidation resistance was 
applied to Si3N4, ZrB2/Si3N4, and Ti3SiC2 ceramics.
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Typical Patterns of Glass Immiscibility

(SEM Images)
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Phase Diagram of the System  Nb2O5 – B2O3
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TGA Oxidation of Modified ZrB2/SiC Ceramics at 1300oC
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ZrB2/SiC

ZrB2/SiC + 10% CrB2

ZrB2/SiC + 10% TiB2

ZrB2/SiC + 10% NbB2

ZrB2/SiC + 10% VB2

ZrB2/SiC + 10% TaB2



ZrB2/SiC/TaB2

ZrB2/SiC/CrB2

ZrB2/SiC/NbB2

ZrB2/SiC/VB2

SEM Micrograph of the Surface of Oxidized ZrB2/SiC Ceramics Modified 
with TaB2, CrB2, NbB2, and VB2
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Improve the oxidation resistance of Si3N4 ceramics 
by modification of the bulk composition and, 
consequently, the composition of the in-situ formed 
protecting surface oxide (glass) layer, applying the 
immiscibility-based control of oxidation behavior.
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Experimental Procedure

• Sample Composition:

- Baseline material - Si3N4 + 2% Al2O3 + 5% Y2O3 (wt.%) 

- Baseline Si3N4 ceramics were modified with 10 mole % CrB2, ZrB2, TaB2,

5 to 10 mole % Cr2O3, ZrO2, and Ta2O5,  and 20 mole % BN.

• Samples were hot-pressed at 1825oC and 20MPa in He for 1 hour
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• Oxidation Conditions:

- Furnace heating in air at 1200 - 1600EC for 2 hours

• Characterization:

- Phase composition of the bulk and oxidized ceramics (XRD)
- SEM of the bulk and oxidized surface of the ceramics
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SEM of the Surface of the Modified Si3N4/Y2O3+Al2O3 Ceramics after Oxidation at 1500oC for 2 Hours

Baseline CrB2 Cr2O3

TaB2 ZrB2 BN
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Phase Diagram of the System Y2O3 – SiO2  - Al2O3
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SEM and EDX Images of the Surface of the Si3N4/Y2O3+Al2O3 (Baseline) Ceramics after 
Oxidation at 1500oC for 2 Hours Showing Phase Separation in the Glass 
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SEM Micrographs of the Crystallized Surface of Si3N4/Y2O3+Al2O3 Ceramics Modified with 
10 mole % CrB2 after Oxidation at 1500oC for 2 Hours
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SEM and EDX of the Surface of Si3N4/Y2O3+Al2O3 Ceramics Modified with 10 mole% CrB2 after Oxidation at 
1500oC for 2 Hours Showing Phase Separation in the Glass 
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SEM and EDX of the Surface of Si3N4/Y2O3+Al2O3 Ceramics Modified with 5 mole % Cr2O3
after Oxidation at 1500oC for 2 Hours
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Phase Diagram of the System Cr2O3 – SiO2
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Relationship between Crystallization Parameters of Melt and Surface Tension
Rate of Nucleation, I

Critical Size of Nuclei, r*
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Arun K. Varshneya, “Fundamentals of   
inorganic Glasses”, Academic Press, Inc.,  
1994, 45-48



B – O- Si droplet phase

Si – Y – Al – Cr – B – O  matrix phase

Step 1: Phase separation in the surface melt

Step 2: Homogeneous nucleation and 
formation of Cr2O3 crystallization centers 
in the matrix phase.

Step 3: Catalytic crystallization 
(epitaxial growth) of Y2O3·2SiO2 on 
Cr2O3 centers

The Role of Cr2O3 in the Formation of the Surface Structure of CrB2 -
and Cr2O3 - Modified Si3N4/Y2O3+Al2O3 Ceramics
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Thickness of the  Oxidized Layer of the Modified Si3N4/Y2O3+Al2O3 Ceramics
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Effect of CrB2 Content 

2, 3.5, 5, and 10 volume %
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SEM Micrographs of the Si3N4/Y2O3+Al2O3 Ceramics Modified with 2 - 10 vol. % CrB2

2 % 3.5 %

10 %5 %
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Baseline 2 %

5% 10%

SEM Micrographs of the Surface of Si3N4 Ceramics

Containing  0 – 10 vol.% CrB2 After Oxidation at 1400oC for 2 hours
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Baseline 3.5%

SEM Micrographs of the Surface of Si3N4 Ceramics

Containing  0 – 10 vol.% CrB2 After Oxidation at 1400oC for 10 hours
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SEM Micrographs of the Surface of Si3N4 Ceramics 

Containing 0 –5vol.% CrB2 After Oxidation at 1550oC for 2 hours

Baseline 2 %

5 %
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SEM Micrographs of the Oxidized Surface of 

the Baseline Si3N4 Ceramics 

1400oC, 2 h

1550oC, 2 h

1400oC, 10 h



SEM Micrographs of the Oxidized Surface of Si3N4 Ceramics 

Containing 5 vol.% CrB2
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EDX of the Bulk and Oxidized Surface of Si3N4 Ceramics Containing 5 vol.% CrB2 

Bulk Surface
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Summary

• The oxidation resistance of Si3N4 /2 wt.%Al2O3+5 wt.%Y2O3 modified with Cr, 
Ta, and Zr diborides and oxides and BN was studied  as a function of the 
composition and structure of the oxidized surface layer.

• Baseline ceramics exhibited phase separation in the surface melt with the 
formation of yttria-rich matrix phase and silica-rich droplets.

• Only the introduction of CrB2 or Cr2O3 led to an increase in the oxidation 
resistance of Si3N4 ceramics in air up to 1550oC.

• A change in the CrB2 content affected significantly the structure the protective 
layer.  The highest oxidation resistance was shown by the ceramics containing 
below 5 vol. % CrB2.

• The presence of Cr2O3 in the surface melt induced its extensive immiscibility 
and catalyzed in-situ crystallization of Y2O3·2SiO2 with melting (decomposition) 
temperature of 1775ºC, which provided effective oxidation protection.
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