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Different Length-Scale Approaches to Enhance the
Mechanical Performance of Ceramics (e.g., Si;N,)

Enhanced toughness: Self-reinforced Si;N,-based ceramics
« Micro-scale composite: large elongated grains-- well documented

- Seeding concept (Hirao et al.)
« a—~SiAIONs: I-Wei Chen et al.

 Atomic-scale: Microstructure & interface characteristics

- Adsorption versus preferential segregation of additives
- Interfacial debonding & role of Intergranular films (IGF)
« B-SiAION: Influence of Al:Y ratios in additives

« B-Si;N,: Influence of rare earths

USE PROCESSING TO DEVELOP AND CONTROL THE FORMATION
OF A TOUGH/STRONG MICROCOMPOSITE MICROSTRUCTURE



A COMBINATION OF MECHANISMS AT ALL LENGTH
SCALES INVOLVED IN TOUGHENING CERAMICS
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Elongated Grains Act as Reinforcements, Which Toughen
the Ceramics When They Debond and Bridge the Crack

Toughness Increased
By Formation Of:

Strong Elastic Bridges
0Thin Single Crystals

[Btrengths

Frictional Bridges and
Pull-Out

OFriction Effectively
dDissipates Applied
[Btrain Energy

Grains are surrounded by a
continuous amorphous
intergranular film (IGF) as a
result of liquid phase sintering



Large Elongated Grains in Fine Grained Silicon Nitride Matrix:
Strong R-Curve, K, > 10 MPavm, o;> 1 GPa & m > 30

Fracture Resistance, MPaV/m
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f—particles are nuclei for the formation of large reinforcing grains.
Rice-like B—seeds used to control microstructure.



Size and Shape of Reinforcing Grains Altered by
Sintering Additives
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- c-axis growth is fast diffusion controlled

45Si30Lu25Al
30N700

* diametrical growth is slow interface
MMdeaction controlled on smooth

[Iprism planes

- Same behavior: RE + Me oxide
[kdditives where Me = Al or Mg

« So what’s behind the effects of RE e

IIM¢lements?




RE Segregation to Si;N, Prism Surface Is a Critical Factor in
the Anisotropy of Grain Growth
-- Formation of Elongated Reinforcements
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Now can predict effects
rather than trial and error.

Painter, Becher and Shelton, 2003

Why?

- Diametrical growth is controlled
by reaction rate at prism surface.
Theoretical calculations show:

* RE form strong bonds with N on
[Eerminal surfaces & most do.

* RE with strongest attraction vs. Si
[or prism surface limit diametrical
[Browth most effectively.

Thus, Lu predicted to avoid prism
surfaces and have little effect on
grain growth.

La should prefer Si;N, surface and
limit diametrical growth.



La Not Only Present Within IGF But Prefers Si;N, Terminal Surface
As Predicted by Theory
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HAADF STEM Image B - SizN, (7.0 wt%La,0; + 2.0 wt%MgO)

La (arrows note La locations) prefer Si;N, terminal surface.
Representative line scan across IGF illustrating maximum

IlLa content at each interface and minimum within IGF.
Shibata & Pennycook, 2003




More Than a Reinforced Microstructure Is Required -
The Reinforcing Grains Must Also Debond from the Matrix

1 to 2 nanometer thick
intergranular film (IGF)
surrounds Si;N,
grains.

IGF plays a critical
role in the debonding
of the interfaces and
in grain growth.

Arrows highlight the end of debonded interfaces
of a bridging grain in the crack-tip wake.



IGF Composition Dominates Interface Debonding & Toughness
(e.g., Y50; + Al,O, Additive System)
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Many RE Have High Binding Energies at Si,N, Prism Plane;
Stronger Tendency to Segregate % Weaker Interface

Aspect Ratio
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Rare Earths Predicted to Alter Interfacial Debonding Behavior
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RE to N bonding at Si;N, surface weakens interface, especially
effective with increasing RE segregation to the interface.



Tailored Si;N, Surfaces to Improved EBC Performance

Si;N, 2.9 - 3.1 350
RE,Si, 0, 3.8-9.5 130 - 155
SiREMe Oxynitride
IGF Glass 3.5- 7 120 - 165 850 - 1050



Surface Region of Si3N4 Ceramic with High RE Silicate Content
Has Greater Thermal Expansion Coefficient

As-sinter-forged Si;N, with B-Si;N, grains (dark) in a matrix
8 wt.% Lu,0; + 2 wt.% SiO,with consisting of possibly two phases.
~ Two shades of gray indicate two Lu
200 ym surface layer. levels (e.g., Lu,SiO; vs. Lu,Si,0,?) as

confirmed by EDS.

Linear Thermal Expansion Coefficient, ppm/°C
Si;N, 29-3.1 RE Silicates 3.8-7+ Surface region ~4



Reducing Residual Stress Fields in EBC-Si;N, System by Surface Modification
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Summary

- Can tailor the microstructure and mechanical properties of
[IBilicon nitride ceramics by selection of additives.

- Seeding used to control self-reinforced microstructure

- Additives influence grain growth and fracture properties
- Sig ,AlLO,N; , formation with Al,O, additions increase interface
[iBtrength and reduce toughness as z increases.

- Increasing RE segregation to Si,N, surface sites: Lu® La
- Limits diametrical grain growth, which combined with
- High E_, leads to decrease in interface strength &
- Increased toughness.

- Tailoring the composition of surface region of Si;N, component
[linay offer approach to improving EBC performance.



