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ORNL Approach

• Background:  Advanced ceramics for microturbine
applications

• Problem:  Corrosion of ceramics in aggressive environments

• Objective: Develop & fabricate low-cost protective coatings

• Approach:  Slurry processing of protective coating materials

Utilize colloidal theory and use of additives to develop 
understanding and design specific properties 
necessary to dip coating protective systems

• Industrial Collaboration:  Apply approach to “real” industrial  
systems
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Factors Influencing Coating Results
• Processing

− Powder (zeta potential, particle size and 
morphology, surface area, agglomeration…)

− Additives (dispersant, binders, modifiers = 
contaminants)

− Slurry (rheology, viscosity) 
• Interface
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Tape casting Gelcasting, slip casting
Dip coating

BaTiO3 capacitors

2-D structures Monoliths and Coatings

RE-silicate coating on  
a Si3N4 rotor blade

Colloidal Assembly of Ceramic Devices and Coatings

Robotic deposition
3D inkjet printing

3-D structures

PZT motor arrays
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Tailoring Interactions Between Colloidal Particles

200 nm

♦ must control interparticle forces to          
tailor structure, rheological properties, 
and drying 

Colloidal particles  -->  basic “building blocks”
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Surface (Zeta) Potential of Ceramic Particles in Aqueous Media

Mullite BSAS
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(Dilute Suspensions, 10-3 vol%)

• The IEP of mullite and BSAS is at pH 3-4
• Above the IEP, the zeta potential is negative.
• -63 mV achieved at pH 7 and 10 for mullite and BSAS, respectively



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

10-2

10-1

100

101

102

10-1 100 101 102 103

5.7
5.9
6.2
6.3
7.3

A
pp

ar
en

t V
is

co
si

ty
 (P

a 
s)

Shear Stress (Pa)

10-2

10-1

100

101

102

10-1 100 101 102 103

10.3
11.3
11.7

A
pp

ar
en

t V
is

co
si

ty
 (P

a 
s)

Shear Stress (Pa)

Mullite BSAS

Charge Stabilization of Ceramic Suspensions
(45 vol%, pH adjusted with 1 M HNO3 and 1 M NH4OH)

pHpH

Model Predictions at
Optimum Conditions
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• Mullite suspensions are stable (Newtonian) just above pH 6.3
• BSAS suspensions cannot be stabilized by bare surface charge modification
• Results agree with model predictions. 

Bergstrom, Adv. Colloid Interface Sci. 70 (1997) pp 125-169
Bergstrom et. al., J. Am. Ceram. Soc. 79 [2] (1996) pp 339-348

Hough & White, Adv. Colloid Interface Sci. 14 (1980) pp 3-41

Prieve & Russel, J. Colloid Interface Sci. 125 [1] (1988) pp 1-13
Benzing & Russel, J. Colloid Interface Sci. 83 [1] (1981) pp 178-190

Hunter, Foundations of Colloid Science, 1&2 (1995) 
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Ceramic
Material DispersantIEP
SiO2 3-4
SiC

BSAS 3-4
Mullite

3-4Si3N4 (E10)

Al2O3

3-4

3-4

8-9
RE-silicates

PEI
PEI

PEI
PEI
PEI

PEI

PAA
3-6

MgO 12-13 PAA
Y2O3 8-9 PAA
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Polyelectrolyte Stabilization of Ceramic Suspensions
(45 vol%, pH 7, 10,000 g/mole PEI)

Mullite BSAS
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• Newtonian and near-Newtonian flow behavior achieved with the addition of 
0.2 mg PEI/m2 mullite and 0.4 mg PEI/m2 BSAS, respectively 

• Results agree with model predictions: 
Bergstrom, Adv. Colloid Interface Sci. 70 (1997) pp 125-169
Bergstrom et. al., J. Am. Ceram. Soc. 79 [2] (1996) pp 339-348

Hough & White, Adv. Colloid Interface Sci. 14 (1980) pp 3-41

Prieve & Russel, J. Colloid Interface Sci. 125 [1] (1988) pp 1-13
Benzing & Russel, J. Colloid Interface Sci. 83 [1] (1981) pp 178-190

Vincent, Colloids Surf., 18 (1986) pp 261-281

Model Predictions
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Resulting Coating Quality Depends Upon Slurry Rheology

Coatings formed by dipping substrates into mullite slurries 
(45 vol%) of varying PEI Concentration, [PEI]/[PEI]crit
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Wetting Behavior Controlled Through Use of Additives

• The contact angle decreases with 
use of latex additives

• The contact angle (θ) depends on 
the surface tension/charge of the 
substrate and coating material

Mullite-Latex
φ mullite = 0.25, pH 10

φ latex SiC Si3N4

θ θ
0 55.0 71.5

0.034 49.5 50.5
0.076 40.0 40.5
0.201 45.5 47.5

BSAS-Latex
φ BSAS = 0.25, pH 10

φ latex SiC Si3N4

θ θ
0 53.0 85.5

0.034 48.0 49.0
0.076 44.5 41.5
0.201 * *

θ
γAC γAB

γBC

SiC or Si3N4 Substrate

Ambient or controlled Atmosphere

Slurry
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Formation of Thin, Uniform Mullite Coatings

100 µm

Sintered in air, 1400 oC

Coating applied from 25 vol% mullite suspension w/ 5 vol% latex

20 µm

SiC

Mullite

Si-Al-O

Mullite

SN282

20 µm

100 µm
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Formation of Thin, Uniform BSAS Coatings

100 µm

Sintered in air, 1300 oC

Green coating, from 25 vol% BSAS
suspension w/ latex

2 µm
20 µm

BSAS

SiC

SiO2-rich
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Exposure of Mullite Coated SiC and SN282 Test Bars 

SiC, before

(500h Steam Exposure at 1200°C, 100% RH, 1 atm)

SiC, after

SN282, before SN282, after

Diffraction Pattern
After Exposure
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As-Coated Strength Governed by Intrinsic 
Processing Flaws in SA SiC Substrate 

SA SiC

Mullite
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Minor Reaction Occurred Between Mullite and 
SASiC Substrate During the Sintering  

SA SiC

Mullite

Si-Al-O

Interaction at the interface promotes adhesion
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SA SiC

Mullite

Silica Formation Occurs Due to Conduction of 
O2 Through the Porous Mullite Layer

SiO2
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What Happens to Coating Integrity with Introduction 
of Second Layer?

SiC

Mullite

BSAS BSAS

Mullite

SiC

Coated SASiC with mullite and BSAS before testing
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Adhesion at Interface Promoted by Alumino-silicate 
Formation

Coated SASiC with mullite and BSAS before testing

SiC SiC

Mullite

Mullite
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Formation of Alumino-Silicate Phase at Interface of Mullite
and SASiC After 500 Hour Exposure at 1200°C in Steam
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Formation of Defects at Interface of Mullite and BSAS 
Layers After 500 Hour Exposure at 1200°C in Steam
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Formation of Defects at Interface of Mullite and BSAS 
Layers After 500 Hour Exposure at 1200°C in Steam
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Formation of Interface of Mullite and SASiC After 500 
Hour Exposure at 1200°C in Steam

x

55.9 Si-6.2 Al-37.9 O

x

35.8 Si-28 Al-36.2 O

12.1 Si-29.7 Al-58.2 O

x

x

14.2 Si-36.5 Al-(0.6 Ba)-48.8 O
(point next to BSAS)

Strong interface
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Cause of Defects at Interface of Mullite and BSAS 
Layers After 500 Hour Exposure at 1200°C in Steam?

x

4.3 Ba-3 Sr-18.7 Al-18 Si-56 O
(next to mullite)

x
30 Ba-6.7 Sr-20.8 Al-37.1 Si-5.1 O

(next to mullite)
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Sintered Mullite-BSAS Coatings on CMC’s

- Note that the each layer was sintered independently

BSAS

Mullite
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Mullite-BSAS Layers on Si-Coated CMC’s

100 µm 10 µm

The BSAS-Mullite Interface

- The knit line is not obvious at higher magnification

- Can density of layers affect resulting test successes?

?

BSAS

Mullite

CMC

Si
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Mullite-BSAS Layers on Si-Coated CMC’s
After 500 hour Exposure at 2400 F (1315 C)

1: High SiO2 aluminosilicate, 2: SiO2, 3: High Al2O3 mullite, 8,9: BSAS 

Silica layer results typical of APS coated equivalent system
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Summary

• The understanding of colloids are a useful 
tool to promote the success of slurry 
applied barrier coatings through control of
− Coating thickness (solids loadings and 

rheology)
− Coating structure, i.e, flatness, density, defects 

(additives)
− Coating adhesion (wetting)
− Coating composition

• Strength limiting flaws are in the substrate  
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Questions?


