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Outline

Background: Advanced ceramics for microturbines
Problem: Rapid recession of silica-formersin water
vapor

Objective: Develop & fabricate low-cost protective
coatings

Slurry processing of protective coating materials

- Approaches
- Results
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Problem: Degradation of Protective Silica Scales

* SI;N, Is a candidate high temperature structural material for hot section
components within high-efficiency microturbines.

* Protective SO, scales are the basis for the corrosion resistance of
SIsN,.
» Silica scales can be rapidly degraded in combustion environments
—Hot corrosion by molten alkali species (Strangman)
—H,0O vapor & impurities accelerate SIO, growth (Deal, Opila, Moreet a.)
—SI0, Isvolatile in H,O (Venable, Opila)
—Oxidation/volatilization increase w/ gas pressure & Velocity (Robinson)

combustion gas :
@54
! SiO, scalg
fSi gas
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CoatmgAre Needed to Enhance Perfor mance

" 500-h. 1200°C. 10 atm15% HO

- Protective coatings will be necessary in order to provide adeguate
ceramic component lifetimes.

- Coatings must be adherent, imper meable, stable and/or protective in
high temperature water vapor and/or O,, thermal expansion matched
with Si;N,, relatively easy to manufacture, and cost effective.
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Candidate M aterials

Have Varied Properties

and performance
history

Mullite BSAS RE,S,0,
Est. Silica Activity 1.0 <0.2 <0.2
CTE 5.3 5.0t05.2 5.0t08.2*
(PPM/C)
Est. Temp Limit >2400 >2400 >2400
(°F)
Advantages Good CTE/matchto | Good CTE, low silica | Potentially good CTE,
SC, well activity low silica activity
characterized
| ssues High silica activity Limited experimental | Limited experimental

and performance
history

(Eaton, H.E., and Linsey, G.D, “Accelerated Oxidation of SIC CMC' s by Water Vapor and Protection via
Environmental Barrier Coating Approach” EuroConference, Seville, Spain, Oct, 2001)
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Slurry-Based Coating Processes

Vacuum Infiltration

Can coat internal or weave type

Viscosity of durry/depth of durry

structures penetration
Spin Coating Thin coating Difficult to coat 3D structures
Screen Printing* Controlled coating thicknesses Difficult to coat 3D structures
and densities. Scaleable
Pad Rolling Controlled coating thicknesses Difficult to coat 3D structures
and densities. Scaleable
Spray Coating* Inexpensive. Conducive to 3D Thickness/flatness variation. Line

structures

of sight.

Dip Coating (glazing)*

Inexpensive. Conducive to 3D
structures

Thickness variation as afunction of
dip direction

Dip Coating
(solgel/polymerization)

Conducive to 3D structures

Thickness of coating with one coat.
May require multiple passes.
Shrinkage may be high.

Dip Coating (precursor/
conversion)

Conducive to 3D structures

Shrinkage may be high. May
require multiple passes
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Slurry Processing | ssues

Rheology of the Slurry

- Particle size (Needsto be submicron to assist
densification, but decreasing size leadsto increasing
viscosity and lower solids |loadings)

- Viscosity (Optimum level needed. Too thin, not
enough coverage. Too high, too high surfacetension

and too thick resulting coat)

- Shear Thinning (Maintain uniform coating
thickness and level across height and width)

- Stability (Little or No settling or flocculation with
time = Charge Balance)
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Material Versus Process

What Affectsthe Success of the Coating?

Density
Microstructure
Macrostructure (Thickness, M or phology)

Chemical Interaction at I nterface (Substrate
Contributions)

M echanical Interaction at I nterface (Surface
Roughness)

Chemistry of Coating Material

- Material Properties: CTE, O, permeability,
oxidation/corrosion...

Environment (Ismorethan one layer necessary?)
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Density and Thickness of Coating Resulted from
Process Changes

SC

Mullitedeposited by screen Mullitedeposited by
printing. Sintered at spraying. Sintered at
1600°C in air for 2 hours. 1600°C in air for 2 hours.
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Screen Pattern Visible After Exposure
Polished Cross Section of Mullite Coating on SASIC After
500h Exposure at 1204°C, 100% H,O
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Effect of Substrate Interaction
BSAS Coatings on Substrate Additions

bt |

Enriched with “L a”
0.4

Sintered in argon (1400°C /2 hours) and in air (1000°C/2 hours)
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Dip Coated Mullite Layer Adherent on SASIC
Substrate after Heat Treatment

Sintered at 1600°C/2hrs
in N,

1.0 wt% binder

33 vol% mullite

Subsequent heat
treatment in ambient
air at 1300C/0.5 hr
resulted iIn
delamination

High temperature X-ray
In process
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Dip Coated BSASon NT154

Sintered at 1400°C/2hrs
in N,

1.0 wt% binder

26 vol% BSAS

Subsequent heat
treatment in ambient
air at 1300C/0.5 hr
resulted In
delamination

High temperature X-ray
INn process
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Yttrium Slicate Coatings by Reactive
Processing

1:1 molar ratio
Yttrium nitrate/colloidal silica

Dipped or painted on to
AS800 or NT164

Sintered in N, at 1550°C for 6
hours

Subsequent heat treatment in
ambient air planned after
high temperature x-ray run
completed
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Conclusions

Processing will affect success of coating
material

Preliminary results show dip coating and
reactive processing isaviablerouteto
protective coating systems
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Phase Diagram of Mullite
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Phase Diagram of Barium Strontium
Alumino-Silicate (BSAS)

Si0z
(1713%
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Phase Diagram of RE,SI,0O,

1:1 = 1 mole RE, O, to 1 moles SiO, = RE,SiO,
| 1:2 =1 mole RE,0; to 2 moles SiO, = RE,Si,0,
| 2:3 =2 mole RE,O, to 3 moles SiO, = RE Si,0,,
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