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What Is mass spectrometry?

Mass spectrometry is atechnique used to determine or measure,

® molecular mass
molecular structure
elemental composition
mass specific response
gas-phase ion chemistry
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Where iIs It being Used?

identify/quantify components of complex mixtures

drug detection/forensics

detection of environmental pollutants

neo-natal screening

qguality control

clinical and pharmaceutical analysis — pharmacokinetics,
metabolites

biopolymer sequencing/identification — proteins, oligonucleotides
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Electrospray is Many Things
to Many People
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With apologies to John Fenn



e ES ionization is an

atmospheric pressure
Electrospray technique that uses electrical

lonization Mass energy to assist the transfer
Spectrometry of ions of analytes from liquid

(ES-MS)

solution into the gas-phase

e Gas-phase ions generated are
transferred from atmosphere
to the vacuum region of the
mass spectrometer

e The mass spectrometer
measures the mass-to-charge
ratio of the ions, can probe
the structure of the ions, and
can quantitatively measure
the amount of the analyte
present in the initial solution
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Electrospray lonization
Mass Spectrometry
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1968 Electrospray with lon Mobility

high
voltage

mobility detector

—

atmosphere




1973 Electrohydrodynamic lonization
Mass Spectrometry

Very Low Flow Electrospray at Low Pressure

high
voltage

mass analyzer




1980 lon Evaporation Mass Spectrometry

lonization at atmospheric pressure
with inductive field charging

high voltage
induction electrode

1 mass analyzer

atmosphere

[




1984 Electrospray lonization Mass
Spectrometry

High nano to low microliter per minute flow
lonization at atmospheric pressure

mass analyzer

— —

atmosphere

—




1986 Pneumatically Assisted
Electrospray lonization Mass
Spectrometry

Low to mid microliter per minute flow
high
voltage

mass analyzer
gas
nebulizer

=

atmosphere vacuum

=




1994 NanoElectrospray lonization
Mass Spectrometry

Low nanoliter per minute flow rates




Electrospray lonization of Some Polypeptides and Small
Proteins C. K. Meng, M. Mann and J. B. Fenn, 361" ASMS Conf., 1988
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2002 Nobel Laureate in Chemistry
John B. Fenn

Electrospray Mass
Spectrometry:
Making Elephants Fly
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General Utility of Electrospray
lonization Mass Spectrometry

Analysis of elemental ion as well as compounds with a
mass up to about 100,000 Da is possible

ES Is very “sensitive”; typical sample amounts range from
1.0 fmol to 10 pmol

ES is a very mild ionization technique; Usually only
molecular ionic species are observed, noncovalent
Interactions

The mass accuracy is very good. Errors of 0.002% or
less are common without an internal standard
(50000 + 1) Da

On-line coupling with liquid separation techniques is easy



The First Implementation of
Electrospray for a Biomedical Application (?)

Abbe Nollet experimented with
electrified liquids in the 18th
century.

He observed that when a person
was connected to a high-voltage
generator he/she would not bleed
normally after cutting ...blood
“sprayed” from the wound !

Electrospray as blood-letting
method to replace surgical
leaches!




What is electrochemistry?

Electrochemistry is a technique used to determine or measure,

® thermodynamic quantities (EMF, entropy, enthalpy)
® corrosion of materials (most notably metals)

® trace amounts of metal ions or organic impurities

® efficiency of energy devices (solar cells & batteries)

Where is It being Used?

fuel cells/batteries

bio-analyte detectors (neurotransmiters in-vivo, chipscale protein
diagnostics)

clinical diagnostics (blood lead & glucose sensors)

chemical synthesis (cathodic hydrodimerization “Monsato process”)
lon selective electrodes (pH electrode)

Instrumental detectors (HPLC & capillary electrophoresis)
electroplating, electrorefining, electroseparation



Electrochemistry/Mass Spectrometry

Benefits Electrochemistry:

EC/MS offers the capability to directly monitor reactants,
short-lived intermediates, and the products of electrochemical
reactions as a function of electrode potential/current, with m/z

specificity

Benefits Mass Spectrometry:

EC/MS offers the capability to enhance analyte analysis by
Increasing signal response, preconcentrating and separating
analytes, and eliminating detrimental sample matrices



Electrochemistry/Mass Spectrometry
Electrochemistry of Electrospray

Built-in Capabilities:

e Controlled-current electrochemistry (CCE) inherent
to the operation of an electrospray ion source

Add-on Possibilities:

e Discrete electrochemical cells
coupled on-line via the electrospray ion source

e controlled-potential electrochemistry (CPE)
o intertwined CCE/CPE (floated 3-electrode cell)
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Radical Cations
In ES Mass Spectra

vanadyl
octaethylporphyrin
MW = 599
(circa 1991)

e Conventional Wisdom: ES transfers
existing ions in solution into the
gas-phase

e Observation: Molecular species
observed varied with the solvent
system

e How the heck is M* formed?

ES mass spectra obtained by continuous
infusion using four solvent systems:

(a) MC/MeOH/HOACc (60/40/0.2% v/viv)

(b) toluene/MeOH/HOACc (60/40/0.2% v/viv)

(c) MC/MeOH/ TFA (60/40/0.2% v/viv)

(d) toluene/MeOH/TFA (60/40/1.0% v/v/v)



Electrospray lonization

Mass Spectrometry
Driving Energy: High Electrical Potential

S

Mild Heating

— N

Atmospheric Pressure A(?]

Cce & A(9)"
Al?)
A(9)

~MS

— ~ v —
Processes: Aerosol Evaporation Evacuation
Generation lon Desorption
(Cone-Jet)

“Practical implications of some recent studies in electrospray ionization
fundamentals” N. B. Cech and C. G. Enke. Mass Spectrom. Rev. 2001, 20, 362.

“Some Tenents Pertaining to Electrospray lonization Mass Spectrometry” R. B.
Cole; J. Mass Spectrom. 2000, 35, 763.



The Electrochemistry of Electrospray

Charging by Induction

O OC




The Electrochemistry of Electrospray

® lons must be present in the

solution
Current Meter
Metal Capillary ® lons transport charge between
Work ‘ the electrodes by means of the
t High-Voltage e counter  charged droplets
Power Supply [HDD l LT J i
f " \ ® Flectrochemical reactions at

Controlled-Current Source  Front Aperture O S LS B Te Counte-r :
Plate of MS electrodes complete the circuit

® Redox reactions may involve the metal emitter and/or solution species
® Electrochemical behavior that of two electrode controlled-current cell

® The interfacial potential at the ES emitter electrode is a complex function of
the ES current, the effective electrode area, the relative redox potentials and
concentrations of the various electroactive species present, and the
solution flow rate

® The extent to which one or more reactions occur is influenced by the
interfacial potential, ES current, species present, solution flow rate, and
other factors affecting mass transport to the electrode surface



The Electrochemistry of Electrospray
CCE Behavior

Interdependence of the potential at the metal (electrode)/solution
interface, E,, in the ES capillary as a function of the ES current, iz,
and as a function of the solution composition of electroactive
species A, B, and C (i, = faradaic current = i)
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The Electrochemistry of Electrospray

Electrochemical Oxidation Reactions for
Positive lon Production at
Liquid-Metal Interface of Capillary Tip

Cl"~——>Na+

HzO:_'_-_*H*.

1) 2H20(|) = 02(g) + 4H+(aq) + 4de
Electrochemical Reduction Reactions for
)= Clgg) + 2¢ Negative lon Production at
- g

Liquid-Metal Interface of Capillary Tip

2) 2CI,,

3) Fe(s)=Fe2* . +2e

(aq

= + .

+ Do

3) 2H20(aq) + 2e’= Hz(g) + 20H‘(aq}



Electrochemistry of Electrospray
Analytical Issues

Minimize Analyte Involvement

® avoid confusion in the analysis of unknowns - change
In mass or charge

® preserve initial solution state of analyte

® avoid distribution of charge among different ionic
species

Maximize Analyte Involvement

® electrochemical ionization
® create novel ionic species
® study analyte redox chemistry

® perform electrosynthesis
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Flgure1 Theoretical plots of the concentration of the electrolytic products, [EF], added to or remowved from the solution ElEl_-tr'::l-\.-I:lr:l"f"ECl
via the eledml*,tm processes in the ES emitter as a function of solution flow-rate through the emitter. Plots were calzulated using
Eqn (1) assuming that only one electrolytic reaction occurred. Solid circle: jgg 2= 0.6 pA, vy = 20 ul min~', n= 1 and [EP] = 19 uM, which

are the values for these parameters for the experiments in Fig. 3. The asterisks mark both [EF] = 0.082 pm and 6.2 mm for the ESMS
conditions described in the text.




Electrochemical Processes in a Wire-in-a-Capillary
Bulk-Loaded, Nano-Electrospray Emitter

1.4 pH 3.2
|
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platinum
e +

10 mM NH,OAc

|
pH at Wire Tip
u
(]

platinum wire

95 min platinum
4 T ,—/ 1_ >
~ E 0 20 40 60 80 100 120

Time (min)

® oxidation of water at electrode tip may change pH by several pH
units over the time of a typical experiment

® products of electrochemical reactions can ‘buildup” in the capillary

® magnitude of change may be mitigated by nature of electrode
material and solution composition



Electrochemical Processes in a Wire-in-a-Capillary Bulk-
Loaded, Nano-Electrospray Emitter
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® corrosion of metal wire electrode adds metal ions to solution
® corrosion may occur a substantial distance upstream
® corrosion might be a source of metal ions for metal-ligand studies



Commerical Automated Nanospray

Microchip

Sample/Fluid
Delivery Pipette Tip




Naospray Chip Configuration

AGLURE |

Disposable _ _

) Cross-section of a portion of an ES
Pipette Tip M""A Chip. A disposable pipette tip, con-
taining sample, presses and seals
against the inlet zide of the chip
Sample Manoelectrospray ic initiated by
applying a head pressure and volt-
age to the sampla in the pipatte tip.
A ccanning electron micrograph
leoking down on a single nozle is
shown in the inset. The ES| Chip has

a |0 = [0array of nozdes.

Nanoelectrospray

e ‘_,f"' Plume
ﬂx e HV applied at

conductive pipette

e Large electrode
surface area, slow
flow rate

e Analyte electrolysis
efficiency high

MS Orifice




Relative Abundance

Relative Abundance

Relative Abundance

Analyte Oxidation using NanoMate™
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A Good Thing

Electrochemical
modification of analyte can
enhance electrospray
response

Oxidation of ferrocene
lonizes neutral molecule
otherwise undetectable by
ES-MS
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ca. 200 nL/min



Relative Abundance

Relative Abundance

Relative Abundance

Effect of Pipette Tip (Electrode)
Material on Analyte Oxidation
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Analyte Oxidation in a Tubular Emitter Electrode

Minimize Analyte Oxidation Maximize Analyte Oxidation
Why? Why?
® avoid confusion in the analysis of ® electrochemical ionization

unknowns - change in mass or charge

® create novel ionic species
® preserve initial solution state of analyte

® study analyte redox chemistry
® avoid distribution of charge among

different ionic species ® perform electrosynthesis
How? How?
® sacrificial electrode/redox buffer ® inert electrode (platinum)
® high solution flow rate (>30 LL/min) ® low solution flow rate (<2.5 L/min)
® short electrode (<<1 mm) ® long electrode (>several mm)
® low solution conductivity (10*S/m) ® high solution conductivity (>>10%+S/m)

® low electrospray voltage drop (<4kV) ® high electrospray voltage drop (>4 kV)



Thin-Channel Electrode Electrospray Emitter
Floated 3-Electrode Cell

=

counter —=s -

Three electrode system
(working, counter,

Pt . o reference) with a
pseudo- a| |- suitably configured
reference O O potentiostat, adds

e v = S another discrete
= face ;| <> | electrochemical cell into
?"‘\ W © O the circuit, floating at
\ 0 o the electrospray high
— & - working . ® voltage
| - N

® Determine the fundamental and analytical implications (for ES and the
EC) of interweaving the CCE process of ES and the CPE process of the
discrete electrochemical cell (i.e., control the EC of ES)

® Carry out electrochemical experiments with a very fast response time
(<1.0s), low-dead volume electrochemical cell system - investigation
of short-lived intermediates, highly efficient preconcentration, novel
post-cell capillary HPLC
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Floated 3-Electrode Cell

Control Oxidation at Low and High Flow Rate

20 uM Reserpine, 1/1 (v/v) H,O/CH,CN, 5 mM NH,OAc, 0.75% HOAc
30 pL/min
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The Electrochemistry of Electrospray:

® General electrochemical principles of operation established

® Analytical effects and reaction control most studied in tubular
electrode systems

® The electrochemistry ongoing in an ES ion source can be a major
influence on the nature and abundance of the ions observed in an ES
mass spectrum - compound and analysis conditions dependent
(substances introduced into, depleted from, or altered in, the initial
solution)

® Several areas associated with ES electrochemistry lack investigation:
® electrode material (various metals, carbons, conductive polymers)

® electrode geometry and area of contact with solution (mass
transport, current density)

® intertwining of CCE and CPE cells (floated 3-electrode cell) —
controlling the inherent EC of ES

® homogenous solution reactions (coulometric titrations)
® computational simulations

® electrochemistry in negative ion mode



ES-MS: “Rules of the Road”

Good Response

® analyte charged

®fixed charge site

® acid/base ionizable

® electrochemically ionizable

®ionizable in gas-phase
(strong gas-phase acid/base)

® “robust” ion
® surface active
® weakly solvated

® weak ion-pairer

Poor Response

® analyte neutral

® neutral

® nonpolar

® non-electroactive

® weak gas-phase acid/base

® very “fragile” ion
® non-surface active
® strongly solvated

® strong ion-pairer



Surface Sampling with ES/MS

e Mass spectrometer interfaces available for
surface analysis: FAB, SIMS, MALDI

— Problems:
e sample/surface compatibility with vacuum system
e sample preparation difficult/non-robustness

e Electrospray based surface sampler

— Advantages:
e NO post separation sample preparation

e compatible with a broad range of organic
compounds

e atmospheric pressure ionization technique, no
sample/surface limitations

e NO sensitivity drop with increase in analyte mass



Surface Sampling ES/MS Provides

e TLC-ES/MS

— Step or scanning analysis of surface

— Full scan mass spectrum from separated bands
on plate

e Surface Spotted Protein
— Surface sampling of deposited proteins
— Low limit of detection

o Affinity Captured Protein
— Proof-of-principle
— Sampling of surface captured protein



TLC plate

manual-
controlled

computer-
controlled
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Sampling Probe in Action

« FCF fast green
TLC band (140

ng)
e methanol/water

(60:40 v/v) 10
uL/min

e ca. 100 um/s scan
rate




TLC/ES-MS using Sampling Probe

full scan

stepping sampling
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“TLC and ES-MS Coupled using a Surface Sampling
Probe”; Van Berkel, G.J., et al.; Anal. Chem., 2002, 74, 6216
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TLC/ES-MS using Sampling Probe

el A 200 ng each AB CD

dye spotted .
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sampling
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A: FCF fast green
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B: naphthol blue black
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C: fluorescein
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General Array
e Enable parallel, high Technologies

throughput analyses of
thousands of reagents

e Can array DNA, proteins, small
molecules

DNA
, Microarray
Protein Arrays
e Projected 51% annual growth in
market to $490 million/yr in
2006 sl JXTNFoc
e Protein expression profiling | .
and protein interaction profiling _
(protein-protein interactions, _ T T evatlas
drug discovery) Protein [ ETARY
— Labeling and detection Microarray | L Ll LI L1
schemes? Sl L ) -

— Mass spectrometry read out



Build Protein
Choose appropriate surface Capture Array Choose appropriate capture agents

chemistry to attach protein of interest to detect protein of interest
Surface Chemistr . Capture Agents
E0ated slides: y Antibodies: not very specific but several large
o libraries are available
e.g. polylysine, aldehyde : : : .
Y Y Aptamers: nucleic acids that bind to proteins

Proprietary surface chemistries

Fibronectins: used to generate antibody
mimics
Apply Sample
\ and Wash
“x%

Fluorescence: sensitive but requires labeling of
the protein

Surface plasmon resonance: low throughput but
no labeling required

Mass spectrometry: currently low
throughput but no labeling required
(MALDI-MS)

Detection Methods
Read Out
Array
Detection methods need to
be accurate, sensitive and, if

Chemiluminscence: sensitive but requires
possible, avoid the need

enzymatic reaction
for labeling proteins




Protein Array Read Out Using ES-MS

ES-MS Advantages over MALDI-MS

Majority of material can be collected and analyzed
No drop off in detection level as MW increases

Time consuming enzymatic digestions avoided by use of gas-
phase chemistries for protein identification (multiple charging of
protein in ES-MS)

Array analysis may take place in liquid environment or in the dry
State

ES-MS Challenges

Convert liquid sampling technique into surface sampling
technique

Achieve concentration of eluted protein sufficient for ES-MS
detection and molecular mass determination

Generate a “sequence tag” from a transient signal of whole
protein eluted from array via tandem mass spectrometry (top-
down protein identification)



Array Read Out Set-Up

e

 Probe mounted on a  Modified Finnigan
Finnigan LCQ Deca XP nanospray source
Plus mass spectrometer

 Orientation of probe
e Platform illumination relative to ion inlet
Improves liquid junction
observation



Array Sampling Detail

« Sampling probe lowered
towards capture site for
sampling event

« Formation of 20 um liquid
junction

from the reverse side of
the sample slide




Summed lon Current (x 10’ cps)

Sampling of Surface Spotted Protein
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Spot No.
3 e SRS a0 T s |

5 fmol

- Piezo-electric spotted

Lysozyme

- Teflon masked well
sampled for 30 secs

- Summed ion current
for +8 to +14 charge
states of Lysozyme

Time (mins)

Spot |[Lysozyme] |[Lysozyme]
ng fmol

0 0 0

1 0.01 1.0

2 0.07 5.0

3 0.14 10.0

4 0.28 20.0

5 0.70 50

6 1.40 100




Relative Abundance

Sampling of Surface Spotted Protein

100 -

80 -

1432
60 -

150 400 650 900 1150 1400

m/z

 Deconvoluted spectrum

1591

1650 1900

100

80 -

40

Relative Abundance

20

0

60 -

Mass spectrum taken
from a 5 fmol surface
spotted lysozyme

+8 to + 11 charge states
of lysozyme are labeled
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Sampling of Surface Captured Protein
» Surface Capture Chemistry

H-N"H 0 0 o
CWNH3 HWH VN:MH
N 0 0 5mins 0
H—(/M\/\/NH; HWH & \/N:MH
|\||_|—| O 0o O]
Hi}O_/\/VNHf HWH \/N:MH
glass

e Glass slides were treated with poly-L-lysine (PLL)
and incubated with glutaraldehyde to produce a
Schiff’s base



Sampling of Surface Captured Protein
» Surface Capture Chemistry

=TRSO

2 hr

oy BNl B ol T

NS

= XyIFN

o Schiff’'s base loaded chip soaked in anti Gamma
interferron (XylFN), formation of a further Schiff’s
base immobilizes the antibody on the glass
substrate



Sampling of Surface Captured Protein
» Surface Capture Chemistry

\/N\/\/N‘4' AN e
3 hr e

\/N:\/\/:N %\/ \/\/

Vwﬁ*' SIS S

’ = yIFN

« Agqueous antigen pipetted onto capture array slide
surface

N

e After 3 hr period capture array washed with water
and analyzed



Sampling of Surface Captured Protein

Spot No.

200,1|2|3|4|5|6|7|8
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Summed lon current ( x 10° cps)
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10

Time (mins)

o Capture experiments were carried
out in duplicate

o Capture efficiency determination via
parallel radio-labeled capture assay

e Different

concentrations of
surface captured yIFN

e Summed ion current

for the +12 to +18
charge states of yIFN

Spot |Mass yIFN |Amount

(nQ) vIEN
Inc. |[capt. |capt.
fmol

200 |20 1319
200 |20 1319
Inc. = incubated
capt. = captured

1 3.1 |0.31 |20
2 3.1 ]10.31 |20
3 12.511.25 |82
4 12.511.25 |82
S 50 |5 329
6 50 |5 329
>

8




Relative Abundance

Sampling of Surface Captured Protein
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e +11 to + 16 charge
states of yIFN are
labeled
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Sampling of Surface Captured Protein

Spot No.
SN o F TR N e ) 0 A ) « Mass chromatogram from

the analysis of a yIFN array
treated control array

The array is treated in the
same way as the previous
experiment but with a
normal rat IgG capture
agent

» Chromatogram shows
\WW summed ion current for the
+12 to +18 charge states of

yIFN
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Surface Sampling Summary

e Surface sampling electrospray probe developed to
read-out TLC plates, surface deposited proteins and
affinity interaction captured material

 Experimental set-up optimized to accommodate 10 x
10 cm glass backed TLC plates and 2.5 x 7.5 cm glass
slides

« Sampling operations enhanced through introduction
of remote control sample platform

« Complete testing of the current probe design with
respect to applications and operating conditions



Research Motivation

Research In

Research is inspired by: Analytical Chemistry
(Graham Cooks)

Considerations of Use?

No Yes
o e Use—lns.plred
Research Basic
Yes Research
Quest for {200 GESEND)
Fundamental

Understanding? Pure Applied

NO Research

(Edison)

From: “Pasteur’s Quadrant — Basic Science and Technology Innovation”
by Donald E. Stokes, Brookings Institution Press, Washington, DC, 1997



Research Approach

e Turn over stones
— Get in the lab and do something

e Follow up on unexpected observations

— Much is learned by explaining unexpected
results

Two roads diverged in awood, and I-
| took the one less traveled by,
-~ And that has made all the difference.
= From: “The Road Not taken”
Robert Frost, 1916

-




Surface
Sampling
with ES/MS
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