
THEORY

Knowledge of the ion distribution function would enable any moment,               
o        , (or related quantity) to be found via integration, viz .: 

However, solving the Boltzmann equation directly for           is generally not 
possible. An alternative method for determining moments involves
transforming the Boltzmann equation into a differential equation that 
describes the desired moments themselves, thus making it possible to find 
the corresponding properties without determining             directly.  

The general moment equation is formed by multiplying the Boltzmann 
equation by a general function,       , of the ion velocity, and then integrating 
over all velocities. The first (momentum-transfer) approximation of the 
moment equation is obtained by assuming that terms involving    and                    
o                   , which appear in the transformed equation, are negligible. The 
action of the adjoint,    , of the Boltzmann collision operator can be thought 
of as producing the average rate of change in     due to collisions.

Rather than using relative kinetic energy in describing gaseous ion 
transport, it is often practical to consider a directly related quantity, the ion 
effective temperature ( Teff ). In the context of mass spectrometry, the 
effective temperature has often been viewed as the temperature 
characterizing a Maxwell-Boltzmann energy distribution of ions that would 
produce a specified rate for a well-characterized, temperature-dependent 
ion process. In contrast, the effective temperature in this work describes the 
state of the system as related to the relative ion-neutral kinetic energy. 

The energy moment for Teff is            , and the corresponding moment 
equation is:

Solution of the moment equation above for the effective temperature 
requires another moment equation describing variations in v, which can be 
obtained using             .

The system of differential equations, coupled through the collision 
frequency for momentum transfer, ξ , can be solved for the four quantities, 
vx, vy, vz and Teff , each as a function of position and time. Note that the 
components of the average ion velocity may not be equated to the time 
derivative of the position du/dt for a single ion.

Goal:
• To improve the conceptual understanding of physicochemical processes in RF 

ion traps by using mathematical/computational methods to develop a 
comprehensive model, and to apply the knowledge gained to enhance their 
capabilities for fundamental and analytical chemical investigations

Methods:
• Starting from the Boltzmann equation, moment methods were used to develop a 

two-temperature moment theory for ion motion in devices where the electric field 
is time- and position-dependent

• Using analytical expressions for the trapping and supplemental electric fields, 
differential equations representing the first-order (momentum-transfer) 
approximation of the theory were written for ideal and non-ideal ion traps

• Mathcad code was developed to solve the differential equations and perform the 
necessary calculations to obtain various quantities of interest

Results:
• The set of coupled differential equations presented here, which do not appear to 

have been given previously, directly provide average velocity and temperature 
(energy) information for an ion ensemble as functions of time and of position in 
the apparatus without trajectory simulations. This is because the Boltzmann 
equation, from which the coupled equations were developed, reflects changes to 
the ion distribution as a whole. 

• New dimensionless parameters for the ring electrode voltages take into account 
nonlinearities and differences in trap configurations. Their use in calculations at 
the design stage for new ion trap configurations might reduce potential chemical 
mass shifts. Similarly, new dimensionless parameters for the voltages applied to 
the endcaps should allow easier comparison between ion trap configurations 
during experiments involving such voltages. 

• Calculation results suggest that ion heating in the resonance excitation process 
is primarily due to increased power absorption from the RF field rather than from 
the dipolar excitation signal as previously thought. The dipolar excitation signal 
mainly serves to move ions into regions of the ion trap where the RF electric 
field, and thus ion RF heating, is greater than near the trap center.
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OVERVIEW

INTRODUCTION

• The differential equations presented here, which do 
not appear to have been given previously, tend to 
complement those presented in previous ion trap 
studies. This is because of the difference in 
viewpoint between the present approach, which 
focuses on average behavior of an ion ensemble, 
and others that concentrate on the individual 
trajectories of single (or multiple) ions. 

• The moment equations developed here can be 
solved directly (ordinarily, by numerical means) for 
the average ion velocity and effective temperature 
as a function of position and time. However, they 
can not reveal any positional or temporal 
information for a single ion (as is produced in the 
standard output from the widely used ion trap 
simulation program ITSIM). Conversely, many 
individual ion trajectories must be simulated and 
the resulting data collected and post-processed 
outside that program to yield similar ensemble 
average and number density information. 

• The moment equations incorporate modified forms 
of commonly used parameterized variables for the 
DC and AC ring voltages, and  new forms that 
account for the voltages applied to the endcaps. 
Besides extending the applicability of the moment 
equations to non-ideal quadrupole ion traps, the 
modified versions of the parameterized variables 
can have additional utility. Calculation of the spatial 
dependence of ion secular oscillation frequencies 
is demonstrated as an example.

• Calculations suggest that increases in ion effective 
temperature during resonance excitation are due 
primarily to power absorption from the main RF 
trapping field rather than from the dipolar excitation 
signal. The dipolar excitation signal apparently 
serves mainly to move ions into regions of the ion 
trap where the RF electric field, and thus ion RF 
heating, is greater than near the trap center. 

• In future papers we expect to extend this work to 
include molecular ions and linear traps, but the 
equations developed here are applicable to other 
RF multipole devices as well. We also intend to 
consider  space charge effects by including 
Poisson’s equation. 
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Development of a comprehensive model for the physicochemical processes in RF ion 
trap mass spectrometers is a non-trivial undertaking. The fast RF ion motion 
modulates lower frequency secular oscillations. Because typical operation involves 
the use of buffer gas at 0.1-1 Torr, ion-neutral collisions also can change the phase of 
these oscillations, resulting in RF energy gain or loss and a change in amplitude. 
Additionally, energy transfer and reactions that occur between colliding ion-neutral 
pairs are crucial to the analytical applications of the devices. Furthermore, knowledge 
of ion temperatures (energies) and distributions is key to fundamental studies. Thus, 
formulation of a comprehensive model requires integration of theoretical aspects for 
time- and position-dependent, nonlinear electric fields, ion transport in gases, 
collisional energy transfer, ion-molecule reactions, and unimolecular dissociation 
theory. 

Due to the complex nature of the ion trap operating environment described above, 
simple phenomenological equations are inadequate for treating ion processes 
accurately and completely in the devices. Thus, our comprehensive model is 
developed around the Boltzmann equation, which describes the effects of applied 
electric fields and collisions on the ion distribution function,       . Because the 
Boltzmann equation reflects changes to the ion distribution as a whole, subsequent 
transformation into moment equations enables the ensemble average value for any 
property that is a function of the ion velocity to be determined as a function of time 
and position from the corresponding moment. The moment equations also are subject 
to limitations of the Boltzmann equation from which they are derived; the significance 
to this work is that applicable systems are comprised of trace concentrations of 
atomic ions moving through a dilute buffer gas of unreactive atomic neutrals.
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m ≡ ion mass     M ≡ neutral mass     µ ≡ ion-neutral reduced mass = mM
m + M

q ≡ ion charge    T ≡ neutral temperature     N ≡ neutral number density

UR ≡ amplitude of DC potential on ring electrode
VR ≡ amplitude of ring electrode AC potential,  with angular frequency Ω
UD ≡ amplitude of DC potential on endcap electrodes
VD ≡ amplitude of endcap electrode AC potential,  with angular frequency ω 
r0 ≡ radius of ring electrode              2z0 ≡ shortest distance between endcaps

Dependence of Ion Secular Frequencies
On Trap Configuration and Spatial Location

Can Be Calculated a priori

Calculations Indicate That the Stability Region is a Function of
the Dipolar Signal Amplitude During Resonance Excitation
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Overall trapped ion motion is superposition of:
1. Large-scale motion (secular and micromotion) 

within the ion trap is due to the position- and time-
dependent trapping electric field

2. Spatial gradients of the ion number density are 
much smaller than spatial variations of the electric 
field, so the electric field within the ion cloud is 
position-independent and small-scale motion is 
accurately described by the Boltzmann equation
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4a and 4b show segments of the calculated time-dependent Teff data from which the data points at [qz = 0.2, 0.4; dz = 0.000, 0.001] in Figure 3 were derived.
When dz = 0.000 the time-dependent Teff values vary at twice the main RF frequency, since power is absorbed during both positive and negative phases of the 
main RF. Application of the dipolar excitation signal at dz = 0.001 results in the Teff oscillations being modulated at twice the dipolar excitation frequency. 
Although the depth of modulation is greater for qz = 0.2 than for qz = 0.4 (because VR (qz = 0.2) < VR (qz = 0.4)), in each case it is considerably less than the 
amplitude of oscillations at twice the RF frequency. These results suggest that ion heating in the resonance excitation process is primarily due to increased 
power absorption from the RF field rather than from the dipolar excitation signal. The dipolar excitation signal mainly serves to move ions into regions of the ion 
trap where the RF electric field, and thus ion RF heating, is greater than near the trap center.

Figures 3 and 4a, b are revealing in regard to the underlying means by which the increases in 
Teff occur. Figure 3 shows      curves at 0.5 mm calculated for situations in which a dipolar 
excitation signal is applied to the endcaps of an ideal trap (in addition to application of the 
main trapping voltage to the ring). For each qz curve, the frequency of the applied signal 
corresponds to the axial secular frequency, that is, the dipolar signal is resonant with the ion 
secular oscillations. The plotted   values represent the time average of Teff over ten cycles 
of the appropriate excitation frequency. Each of the four curves covers a dz range from 0.000-
0.001, which represents a peak-peak amplitude range of 0-1023 mV. Note, however, that when 
dz = 0.000 the situation corresponds to an ion trapping scenario, so any increase in Teff above 
thermal is due to ion RF heating only. Over the indicated dz range in Figure 3, the      increase       
due to dipolar excitation is small for any individual curve (e.g., only 1.3 K and 0.3 K for dz = 
0.001 at qz = 0.2 and 0.4, respectively). In contrast, additional RF heating due to changes in  qz
( ∝VR ) results in significantly larger      increases (e.g., 7.9 K and 31.7 K for dz = 0.001 at qz = 
0.2 and 0.4, respectively). These effects also can be seen in the time-dependent Teff plots in 
Figures 4a and 4b below.
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In an ideal trap the secular ion frequencies, f0
ideal, are position-independent. 

However, for a non-ideal trap, fu,0 varies with the amplitude of ion oscillation due to 
the nonlinear electric fields. This variation can be calculated a priori if the 
parameterized variables are written in a modified form,     and     , based on a 
multipole expansion, Φ, for the total electric potential in the trap:
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The coefficient β(au, qu) is given by a continued fraction expansion in terms of the 
standard parameterized variables for the ion trap.
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The dimensionless parameters,    and    , now include terms for distance from the 
trap center and expansion coefficients to take into account nonlinear variations with 
position and differences in configuration. Thus, the position- and configuration-
dependent secular frequencies can be calculated from the same continued fractions 
expression as before, but with     and     substituted for a and q . 

φR and φD are the ring and endcap potentials, respectively. The dimensionless 
expansion coefficients, A, for the Legendre polynomials, P, are dependent on the 
specific physical configuration. The modified parameterized variables are then:

Calculations Indicate That Increases in Teff During Resonance Excitation
Are Primarily the Result of Power Absorption from the RF Trapping Field
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Figure 1 shows values of (normalized by Ω /2π) at qz = 0.3, calculated as a 
function of axial distance from the trap center for the ITMS, ideal, and LCQ 
configurations. Because az and qz do not vary with axial position in the ideal trap, 
is invariant over the indicated z range. Over the same axial distance, the relative 
variation in the normalized value of  is slightly larger for the LCQ than for the 
ITMS. Such calculations might potentially by used at the design stage for new ion 
trap configurations to reduce potential chemical mass shifts.

We note that it is also possible to parameterize the voltages applied to the 
endcaps, as proposed below using b (DC voltages) and d (AC voltages), in a 
manner similar to that done with the ring electrode. This would allow easier 
comparison between ion trap configurations during experiments involving such 
voltages. We have also developed equations for modified versions of the endcap
parameters,    and    , using the expansion coefficients above.˜ b ˜ d 
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Figure 2 indicates the dependence of the effective temperature upon qz when 
dz > 0 and the trap is at resonance, i.e. the frequency of the dipolar excitation 
signal applied to the endcaps is equal to the secular frequency of ion 
oscillation. The plotted    curves represent the time average of the effective 
temperature over ten cycles of the dipolar signal applied to the endcaps with 
dz = 0.0001 (102.3 mVp-p , solid lines) and 0.01 (10.23 Vp-p , dotted lines). In 
decreasing order, the solid and dashed pairs correspond to the ITMS, ideal, 
and LCQ traps, respectively. In addition, m/z = 100, the He pressure is 1 
mTorr, x = y = 0 and z = 1 mm. For qz values above 0.27, the average effective 
temperature increases with qz for both values of dz . However, the dz = 0.0001 
values decrease toward 300 K as qz decreases towards zero, while for dz = 0.01 
the average effective temperatures reach a minimum and then begin to rapidly 
increase again with further decreases in qz . This is attributed to the fact that 
the region of stability has a lower limit of qz = 0 when az = bz = dz = 0, but as dz
increases the qz value characterizing the lower limit of the stability region 
increases as well (i.e., ion ejection occurs). 
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