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ABSTRACT

Until recently, the most common use of reference year data has been related to energy calculation. Representative weather
data for use in moisture design calculations is as critical as other parameters required for heat, air, moisture (HAM) simulations
e.g., material data or indoor climate data. The objective of ASHRAE’s research project, RP-1325 (2010), was to develop a method
for generating more representative design weather years for use in heat and moisture performance predictions of building enclo-
sure systems. Existing methods for selecting moisture design reference years have been reviewed. A new method was developed
that provides an improved approach for selecting the most critical years in terms of hygrothermal performance. During the devel-
opment of the method, eight U.S. locations were investigated, with 30 years of hourly weather data for each location. Another
four locations were used to validate the accuracy of the method. The new method was applied in selecting the hygrothermal weather
year for European location.

The performance of six different building enclosure components, 4 walls and 2 roofs, was investigated using existing hygro-
thermal simulation models. The effect of weather data on the performance of building enclosure components was evaluated. The
new method allows for selection of weather years that are among the most severe for the simulated structures. The results show
that weather data is an essential component of design criteria.

INTRODUCTION

Advanced hygrothermal simulation models require both
indoor and outdoor environmental conditions to calculate
heat, air, and moisture transport across building enclosure
components. More advanced transient models typically use
hourly climate parameters such as temperature, relative
humidity, solar radiation, wind speed and orientation, cloud
index, and rain. Simplified steady-state models, such as the
Dew-Point method or Glazer method (ASHRAE 2009a), use
averaged winter and summer conditions to predict hygrother-
mal response of a construction and do not provide correct
building enclosure moisture design guidance. This is particu-
larly true in enclosure systems with high thermal performance.
In a moisture design process, the environmental data should
impose a more severe stress than the average climate in order
to provide a level of safety related to moisture performance

and durability. Figure 1 shows differences in predicted mois-
ture contents in exterior sheathing when simulated with 30
years of hourly weather data for the same location. Some years
provide net moisture accumulation from initial conditions,
and some years allow the wall to dry.

Several attempts have been made in the past (Sanders
1996; Hagentoft and Harderup 1993; Geving 1997; Kara-
giozis 2003; Cornick et al. 2003) to select representative mois-
ture design years for different locations. 

The existing available approaches for generating repre-
sentative weather data, such as the IEA-Annex 24 approach,
the Carsten Rode method, the Geving approach, the π-factor
method, the Moisture Index method, and the ANK/ORNL-
method are reviewed below. 

The Annex 24 approach is a construction-dependent
method based on determination of the 10% level of condensation
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(90th percentile) occurring within the construction using one of
three methods: the Glaser method, computer software such as
MATCH, or the π-factor method. The procedure is repeated for
several different wall constructions and orientations. The mean
and standard deviations of the accumulations for each year are
determined. These values are subsequently used in calculating
the 10% level of accumulation for each construction from the
normal distribution function. In this manner, an interstitial
condensation due to a ten-year return period is determined for
each construction. This might or might not be the same. If differ-
ent years lead to this level of accumulation for each wall, the
monthly values are averaged.

The Carsten Rode (1993) method is a construction-
dependent method that requires calculating moisture content
integral for as many years as there are available weather data
for several different wall constructions and orientations and
ranking them in accordance with the severity of moisture
conditions—i.e., the higher the moisture content integral, the
worse moisture conditions are in the construction. 

The Geving approach is based on the method developed by
Carsten Rode (1993) and the development within the frame-
work of the IEA Annex 24 HAMTIE. Geving (1997) examined
the applicability of this approach for different types of climates,
varied construction type, orientation, indoor climate condi-
tions, duration of simulation, and initial moisture content of the
construction. The approach requires carrying out a number of
simulations with every year of available weather data (10 years
minimum). For each preselected construction type, simulations
are performed to generate maximum and average moisture
contents. From the normal distribution function the 10% level

(90th percentile) moisture content is determined for both maxi-
mum and average moisture content criteria, and mean and stan-
dard deviation is calculated.

The π-factor method uses the drying potential of the wall
by relating absolute humidity at the outside wall surface to that
in the external air. With the increase in π-factor, the drying out
potential likewise increases. The π-factor is determined for
each year from the available hourly water vapor concentra-
tions. The 10% percentile of the π-factor corresponds to the
10% year, i.e., the year in which 10% of moisture accumula-
tion would be expected. 

The Moisture Index approach, developed in the MEWS
project (Cornick et al. 2003), consists of a wetting and a drying
function. In this respect, the moisture index can be related to
a moisture balance, and it can be visualized as a storage
container in which the level of water changes depending on
whether wetting or drying takes place. Thus, the wetting and
drying functions describe the source and sink components of
a moisture balance. Using moisture index, each year can be
defined as dry (lowest moisture index), average (mean mois-
ture index), or wet (highest moisture index). In the MEWS
project, the average years were defined as being within one
standard deviation of the mean, and dry and wet years were
defined as remaining years that were more than one standard
deviation from the mean moisture-index value. 

The ANK-ORNL method was developed by Karagiozis
(2003) and is the only method that includes the potential
impact of airflow through the structure. The method includes
the potential for moisture deposition due to infiltration and
exfiltration interactions on an hourly basis. The pressure field
due to the wind speed and orientation is calculated and applied
to the wall structure. As such, the method is best evaluated
when a hygrothermal model that includes the impact of
airflow is deployed. The hygric load includes all the hygric
contributions available for the structure to accumulate mois-
ture. The method assumes the most absorptive wall system
with a very large moisture capacity, maximizing the impact of
the various climatic loads, and minimizing the impact of the
type of wall structures. The higher the hygric load, the greater
potential to cause moisture induced damage. The hygric load
provides the net moisture available due to diffusion, capillary
transport (wind-driven rain [WDR]), and airflow movement in
a particular year. The method has been implemented in the
weather file analyzer provided by ORNL (Karagiozis 2002). 

The methods were evaluated against simulated perfor-
mance of walls, and in the end none of the existing methods
were deemed satisfactory, as consistent predictions were not
achieved, and a new more general method was developed.

Many weather data sets are available in the U.S., such as,
for example, Typical Meteorological Years and Weather Years
for Energy Calculations. However, these sets are derivations of
the same source of measured data and typically only include
one year of weather data per location. Typically, the source
provider of the raw or base weather data is the National
Climatic Data Center.

Figure 1 Moisture content of OSB in a wall predicted in
simulations using 30 different weather years for
Portland, ME. “Worst” and “Best” years have
been selected based on the RHT-index.
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The available weather data sets for the U.S. are NOAA-
NCDC SAMSON data sets (1961–1990) and the NCDC
update (1985–2005). For statistically meaningful hygrother-
mal design years, at least 30 years or more of weather data are
typically needed. 

The NCDC SAMSON data set, composed of 30 years of
hourly weather data for the U.S. from 1961 to 1990, is
adequate for this analysis. The update for the NCDC data set,
which includes weather data from 1990 to 2005, has recently
become available but was not used in this project.

The weather parameters analyzed included outdoor dry
bulb temperature, outdoor relative humidity, solar radiation
(total, normal, and diffuse), sky radiation (represented by
either cloud index or measured long-wave radiation from the
sky), wind speed (velocity and direction), and rain. 

 Generally, two techniques are available for weather year
selection (ranking of weather years): construction dependent
and construction independent methods. Construction depen-
dent methods can be used for detailed studies of particular
climate, while construction independent methods are best
used for large-scale parametric studies combining many
climates (Cornick 2003).

Based on past research findings, none of the existing
methods were found satisfactory, and a new method was
developed to rank the years in terms of hygrothermal loading.
The objective of RP-1325 (ASHRAE 2010) was to develop a
process to select more representative weather year data for
moisture design calculations. The research approach involved
simulating hygrothermal performance of a typical wall assem-
bly using 30 years of measured hourly weather data and using
damage functions or durability criteria to quantify and rank the
response of the wall to weather loads.

The research results show that the developed method
allows the user to select weather years that are more severe in
terms of hygrothermal loading and, therefore, provides a more
representative ranking of the weather data. Even though the
new method was developed using simulation results for an
individual construction, the selected years seem to be common
and most severe years for many types of construction.

DESIGN WEATHER YEAR—SELECTION PROCESS

The process of generating a design weather year involves
several steps, given that many years of weather data are avail-
able for a location under consideration. A series of year-long
simulations are carried out with each of the years of available
weather data. Performance data must be analyzed using vari-
ous methods to provide a ranking of the weather years in terms
of severity. This ranking is determined by calculating values
for different damage functions that use the simulated perfor-
mance data as input. These damage functions indicate the
severity of the weather for the durability and service life of the
structure. The damage functions provide a way to quantify
change in aspect of moisture performance for the building
enclosure. Examples of damage functions are, for example,
time of wetness (relates to corrosion) and mold index (indi-

cates conditions favorable for mold growth). The principle of
the method is conceptualized in Figure 2. 

Rankings Based on Damage Functions

Over the years different damage functions have been
developed to estimate the deterioration or damage in materials
and structures in a way that allows for predicting the durability
or service life.

The simulation results were analyzed using damage
functions to create the ranking of weather years based on each
function. A range of physio-chemical and mechanical
processes lead to deterioration of building enclosures. The
ability of construction materials to transfer loads depends on
the magnitude of the applied stresses, moisture contents, and
temperatures. Moisture retained in the building enclosure is a
function of both the ambient environmental conditions as
well as the microstructure of the materials. Damage functions
are used to estimate the hygrothermal damage for materials in
building enclosure assemblies. Different damage mecha-
nisms affect different materials: wood grows mold at high
moisture content and relative humidity, ice is a typical cause
of damage in masonry, steel corrodes in wet environments,
and paints and coatings can crack due to various reasons.
Damage can be either structural or aesthetic without the
expectance of failure or reduced service life. Damage modes

Figure 2 Principle of selecting weather years: Use
prediction methods to match the ranking based on
“real-life” performance data generated by
simulation models. The methods to select the
weather years (prediction methods) can produce
either (a) predicted damage function values,
which can be used to rank the weather years, or
(b) they can directly produce the prediction for
ranking without intermediate damage function
values.
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can vary depending on the climate. In cold climates, freeze-
thaw cycles and winter condensation can cause severe prob-
lems; whereas in hot climates, UV-radiation can weaken the
structures, allowing for crack formation and subsequent
water ingress exacerbated by WDR. In both climates, exces-
sive moisture and temperature fluctuations contribute to
undesirable deformations.

In this study, the damage functions used provide criteria
for ranking the years in terms of the stresses induced in mate-
rials or assemblies. A high damage function value based on the
simulated response of the structure indicates a severe year with
respect to hygrothermal performance.

For each location under consideration, the damage func-
tions are ranked in decreasing order (i.e., from most to least
severe). The critical moisture design year is selected on the
basis of this ranking. The damage functions selected for the
purpose of this study were Time of Wetness (TOW), RHT-
Index, Mold Growth Index, and Maximum Moisture Content.
The first three damage functions are of integral type. In many
cases, the hygrothermal loading—for example, wetting and
drying cycles—lead to permanent changes in the material,
allowing additional damage to occur during the subsequent
cycles. 

The TOW, RHT-Index, Mold Growth Index, and Maxi-
mum Moisture Content values were calculated for the critical
layer within the wall assembly at any hour of the year. In wall
constructions selected for this study, the critical layers are the
exterior sheathing (oriented strand board [OSB]) in the stucco-
clad wood-frame wall and the outer wythe of the concrete
masonry unit (CMU) block in the masonry wall.

Time of Wetness. This is calculated as time in hours
when both the temperature and the relative humidity are above
prescribed critical levels. Commonly used reference values
are 0°C for temperature and 80% for relative humidity. For a
full year, the value for TOW can range between 0 and 8760
hours. Alternatively, the TOW can be expressed as a percent-
age of the potential time of wetness, 50% being wet 50% of the
time.

RHT-Index. This is similar to TOW. Instead of only
counting the hours when the conditions are met, the actual
value of the following integral is calculated (if T > TL and RH
> RHL) as in Equation 1:

(1)

The limiting values are typically chosen to be the same as
those for the time of wetness: TL = 32°F (0°C) and RHL = 80%.
The limiting value for the relative humidity was, however,
later reduced to 70% for practical reasons. In some climates,
the interstitial conditions in the walls were so dry that the
resulting damage function value was zero for most of the
years, which did not allow for proper ranking of performance.
The method has been extensively used by, for example,
Mukhopadhyaya et al. (2006).

Mold Growth Index. Presence of mold fungi indicates
increased humidity and moisture levels in buildings. Mold

fungi are able to grow on any building material with organic
content, including wood. The most severe damage includes
odor and poor indoor-air quality that could impact the health
and well being of the occupants.

During the past decade, different mold-growth models
based on laboratory experiments (Sedlbauer 2002; Hukka and
Viitanen 1999). Sedlbauer developed a biohygrothermal
procedure to predict mold fungus formation. Hukka and
Viitanen developed a mathematical model that takes into
account the delay in mold growth rate due to unfavorable
conditions.

Maximum Moisture Content. Hourly moisture content
of the material layers in the simulated wall assemblies are
considered. In ASHRAE RP-1325, the above listed damage
functions were evaluated, and the results showed that all
damage functions provided similar rankings for the weather
years. The RH index was used as the criterion in the final
method development.

WALL SYSTEMS SELECTED FOR ANALYSIS

Two wall systems were selected for comprehensive anal-
ysis:

1. Stucco-clad light-weight wall (LWW) consisting of the
following layers listed from outside to inside:

• conventional stucco with an acrylic finish
• 60 min asphalt impregnated paper based water-

resistive barrier
• OSB
• 2×4 fiberglass insulation
• kraft paper vapor retarder and drywall (gypsum

board) with primer and latex paint

2. Heavy-weight wall (HWW) consisting of:
• 3 5/8 in. brick cladding
• 1 in. air cavity (nonvented)
• 8 in. CMU block
• R-13 fiberglass insulation with metal frame
• kraft paper
• drywall
• one coat of latex primer
• one coat paint layer

The simulation results for the stucco-clad wood-frame
wall and the CMU block wall and the resulting weather year
rankings were compared. These results showed similar trends,
and further analysis was carried out with only stucco-clad
wood-framed walls. This hypothesis was tested afterward by
simulating additional wall and roof systems and using addi-
tional climate locations to validate the proposed method.

SIMULATION RESULTS

The stucco-clad wood-framed wall was simulated with 30
years of weather data for eight U.S. locations. Since solar radi-
ation and WDR depend heavily on orientation, it was neces-

RHT T TL–( )∑ RH RHL–( )⋅=
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sary to investigate whether orientation is a critical factor in the
selection process.

Analysis of the Orientation Effects

The effects of weather on the performance of building
enclosure components can vary depending on the orientation.
Orientation affects the hygrothermal loading imposed on the
building enclosure components as solar radiation, rain, and
wind loads on the north, east, south, and west elevations are
different. The influence of orientation on moisture perfor-
mance of walls is a well-known factor. Solar radiation and
WDR provide different loads for north- and south-facing
walls. It was necessary to investigate whether a single orien-
tation could be used as a design orientation or whether all
orientations always need to be analyzed. The equations used
to calculate solar radiations and WDR are contained in
ASHRAE Standard 160 (ASHRAE 2009b). A series of simu-
lations were carried out to evaluate orientation effects. The
stucco-clad wood-framed wall was simulated facing eight (8)

orientations at 45° intervals: north, northeast, east, southeast,
south, southwest, west, and northwest. The performance of the
wall was then analyzed using damage functions to rank the
years in order of worst performance. Figure 3 shows three
years of simulated data for each of the four damage functions
for New Orleans, LA. It is apparent that for this location, irre-
spective of the year or damage function selected, that north
represents the most severe orientation. In this location, the
bulk of the driving rain comes from northeast–southeast
(Year 1), south–southeast (Year 2), and northeast–southeast
(Year 3) orientations.

The most desirable outcome of the simulations is that a
single orientation proves to be most severe. Figure 4 shows the
normalized damage function for the stucco-clad wood-framed
wall facing eight different orientations. The RHT-index
damage function was generated using the most severe year
selected on the basis of performance ranking. The data was
normalized, with 0% assigned to a lowest value and 100%
assigned to the highest value. Overall, damage functions

Figure 3 Damage function values of time of wetness (TOW), RHT-index (DT*DRH), and average and maximum mold index
in a location as a function of orientation. Three different weather years were used to produce the data.
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TOW, RHT-Index, and Mold Index all showed similar trends
in terms of orientation (Figure 4) and indicate that the north
orientation was subject to highest severity. 

The simulation results were used to calculate the RHT-
Index in the OSB of the wood-frame wall. These results were
then considered to represent the real performance of the wall.
The rankings of the weather years served as reference for all
other weather selection methods.

SIMULATED PERFORMANCE AND
CORRELATION WITH WEATHER DATA—
NEW METHOD DEVELOPMENT

A new method was developed to improve the weather
selection capabilities and better match simulated performance.
Statistical analyses were carried out to investigate the possibil-
ity of selecting the hygrothermal design weather year based
exclusively on the weather data. Damage functions were used
as key indicators of weather severity. Simulated results for the
stucco-clad wood-frame wall were converted to damage func-
tion values by integrating the temperature and relative humid-
ity in the exterior sheathing panel (T – 0)*(RH – 70%) over
time. We refer to this as RHT-index.

A regression analysis was used to fit the yearly average
weather data parameters under consideration. A second-order
polynomial equation was used to calculate the predicted value
of the damage function for each year. The function combines

each weather parameter (temperature, vapor pressure, solar
radiation, precipitation, etc.) weighted by coefficients (param-
eter). For the selected function, the damage function value is
predicted for each year by minimizing the error between the
damage function values resulting from simulations and calcu-
lations. The damage function is predicted using the following
equation:

(2)

where

Ypredicted = predicted damage function value

ci = coefficient for an individual weather parameter

and the weather parameters are year average values:

T = ambient air temperature, °C

RH = relative humidity, %

Rad = solar radiation on the wall surface, W/m2

Cloud = cloud index, nondimensional

Rain = WDR on the wall, mm

Figure 4 Distribution of normalized damage function (RHT-index) scaled from 0% to 100% is shown for different orientations.
North/northeast orientation has the highest damage function values for all 8 locations.

Ypredicted c0 c1 T c2 RH c3 Rad c4 Cloud c5+⋅+⋅+⋅+⋅+=

 Rain c6 Pv c7 WindSpeed c8 WindOr⋅+⋅+⋅+⋅

 c9 T2 c10 RH2 c11 Rad2 c12 Cloud2 c13+⋅+⋅+⋅+⋅+

 Rain2 c14 Pv2 c15 WindSpeed2 c16 WindOr2⋅+⋅+⋅+⋅
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Pv = ambient air vapor pressure, Pa (calculated from 
T and RH)

WindSpeed = wind speed, m/s

WindOr = wind orientation, degrees

Simulated Versus Predicted RHT-Index

Statistical analysis was applied to evaluate Equation 2 and
generate coefficients to determine an overall best fit for the
damage function values for each year in eight U.S. locations.
The fitting of the coefficients was carried out against the
damage function values for the OSB layer in the stucco-clad
wood-framed wall. As an example, Figure 5 shows the
predicted and simulated damage function value for Seattle,
WA. Figure 6 shows predicted and simulated damage function
values for 12 locations (8 locations used in parameter fitting
and 4 others to validate the fit). Four other locations were used
to verify that the model would work even with locations that
were not part of the parameter fitting. The results showed that
the model provided good predictions, not only for the original
cities but also for the additional locations of Fairbanks, AK;
Memphis, TN; Miami, FL; and Winnipeg, MB, Canada.

GOODNESS-OF-FIT OF THE
WEATHER SELECTION METHODS

It is important to gauge a relative comparison between the
different weather selection methods. A method was created to
numerically compare the goodness-of-fit of picking the years
with the highest damage function values. The method has the
following steps and is demonstrated in Table 1:

1. Rank the weather years in decreasing order of the damage
function.

2. Normalize the damage function values to have a range
0%–100%.

3. Take the top three years as selected by a weather selection
method, and find the corresponding normalized damage
function values as given by the simulation results.

4. Calculate the average of the normalized damage function
values of the three years.

5. Compare the average normalized damage function values
of the years picked by the methods. Find out which
method picks three years with the highest damage func-
tion values. 

The previously used approach to compare the goodness-
of-fit of different existing weather year selection methods was
also used with the newly developed equation-based method. In
addition, all methods were also compared on the basis of how
many of the three most severe years (based on the simulations)
the methods picked.

The normalized damage function values were calculated
for the new equation-based method as well as for the existing
weather year selection methods. The average of the normal-
ized damage function value of the three most severe years (top

10% years) was used for comparison. For the new method, the
normalized damage function values were on average 85% for
the eight locations investigated ranging from 69% to 94%. The
average values for the existing methods varied between 49%
and 63%, with a range of 13% to 85% for individual locations.
Normalized damage function values of 50% would indicate
more-or-less-average years and not severe years. Only the
equation-based method produced consistent performance for
all locations, with average damage function values over 50%
in any location (Table 2).

Figure 5 Seattle, WA, simulated and predicted damage
function data (RHT-index) for 30 years for the
light-weight wood-frame wall.

Figure 6 Simulated damage function (RHT-index) versus
the predicted (pred) damage function using the
equation method. All 30 years of weather data
and 12 locations are included. Fairbanks,
Memphis, Miami, and Winnipeg were not part of
the optimization process to find the coefficients
for Equation 2.
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Table 2 lists the match between the three most severe
years in the simulations and the years selected by the methods
for the best two performing existing methods (matching years
are in parentheses after the percentage). The order of the rank-
ing within the top three was not considered i.e., if a year was
the most severe year in the simulations and the third year in the
ranking by MI-method it was considered a match. With the
new equation based method the authors were able to select at
least two years out of three possible in all eight locations.

Reduction of Coefficients—Statistical Analysis

A widely used statistic to gauge the goodness-of-fit of a
model is the coefficient of determination (R2). A value for R2

equivalent to 1 indicates a perfect correlation between actual
data and the regression equation; a value for R2 equivalent to
0 indicates no correlation. As a rule of thumb, the value of R2

should never be less than 0.75.
For more than one independent variable in the regression,

R2 is not sufficient to determine the goodness-of-fit. The stan-
dard error (SE) of the estimate of the coefficients becomes
more important. The smaller the SE compared to the coeffi-
cient’s magnitude, the more reliable the coefficient estimate.
T-statistics (or t-values) are used to identify the significance of

individual coefficients. The t-statistics are the ratio of the coef-
ficient estimate divided by the standard error of the estimate.

The coefficient of each variable included in the regression
has a t-statistic. For a coefficient to be statistically meaningful,
the absolute value of its t-statistic should be at least 2.0. In
other words, a variable should not be included in a regression
if the standard error of its coefficient estimate is greater than
half the magnitude of the coefficient (even when including a
variable that increases the R2). Including more variables in a
regression results in a higher R2, but the significance of most
individual coefficients is likely to decrease.

The coefficients of the equation to estimate the damage
function values were fitted using commercially available
statistical software (Minitab 2007). First the regression equa-
tion used eight weather parameters (temperature, solar radia-
tion on the wall, cloud index, relative humidity, wind speed
and orientation, and rain on the wall, plus vapor pressure,
which was calculated from temperature and relative humidity.
Vapor pressure has a strong correlation with temperature, and
it is the potential for vapor diffusion; therefore, it was chosen
to be included in the analysis as an additional parameter.

Stepwise regressions methods were used to select the best
subsets and statistically meaningful parameters and to elimi-

Table 1.  Method to Numerically Compare the Goodness-of-Fit of Picking the Years with
the Highest Damage Function Values

Rank by Method Year Rank by Simulations Year
Damage Function 

Value
Normalized 

Damage Function

1 1983 1 1985 2501 100%

2 1986 2 1977 1998 78%

3 1961 3 1983 1765 68%

.. .. .. .. .. ..

30 1973 30 1972 230 0%
Note: Ranking from the weather selection method is in the left, and the ranking of the weather years resulting from the simulated performance is on the right. The first year
selected by this method is the third year based on the simulation results, and this year is at 68 percentile in the normalized range of the damage function.

Table 2.  Normalized Damage Function Values Based on the Simulated Results of the Top Three Years 
for the New Equation Method and the Three Other Existing Methods 

(ANK/ORNL, π-Factor, and Moisture Index MI) (Salonvaara 2010)

Equation Method ANK/ORNL π Yearly π Winter π Summer MI

Atlanta 82% (2) 53% (0) 68% 26% 63% 42% (0)

Baltimore 84% (2) 45% (2) 63% 21% 60% 37% (1)

Chicago 82% (2) 73% (2) 35% 62% 49% 69% (1)

Minneapolis 69% (2) 65% (1) 42% 37% 38% 53% (1)

New Orleans 89% (2) 13% (0) 66% 45% 55% 68% (1)

Portland ME 94% (3) 53% (1) 29% 67% 26% 74% (0)

San Francisco 85% (2) 53% (1) 85% 69% 61% 80% (2)

Seattle 91% (3) 76% (1) 31% 72% 31% 83% (2)

Average 85% 54% 52% 50% 49% 63%

Note: Number of matching years (predicted) out of top three (simulated) are in parentheses.
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nate the coefficients that may not explain or improve the preci-
sion of the regression. Table 3 shows the best parameters to use
when any number from 1–8 is used in the equation. For exam-
ple, if the equation includes only one weather parameter, the
best predictor is relative humidity. Parameters such as
Mallows’ Cp (Minitab 2007) can be used to estimate the qual-
ity of the regression parameters.

Mallows’ Cp is a statistic used as an aid in choosing
between competing multiple regression models. Mallows’ Cp
compares the precision and bias of the full model to models
with the best subsets of predictors. A model with too many
predictors can be relatively imprecise, while one with too few
can produce biased estimates. A Mallows’ Cp value that is
close to the number of predictors (plus the constant) indicates
that the model is relatively precise and unbiased in estimating
the true regression coefficients and predicting future
responses. The analysis shown in Table 3 indicates that the

Mallows’ Cp becomes close to the number of predictors
already with only 8 predictors. The two eight predictor sets are
equally good, the last one suggests using solar radiation, cloud
index, relative humidity, rain, vapor pressure, tempera-
ture*temperature, relative humidity*relative humidity, and
vapor pressure*vapor pressure as predictors.

The regression equation with these parameters becomes

RHT = 108307 – 241 Rad – 1391 Cloud – 312326 RH + 
183308 Rain + 15.2 Pv + 27.3 T · T + 261079 RH · RH –

0.00972 Pv · Pv (3)

Now all the predictors  have absolute t-statistics higher
than 2 (Table 4) indicating them to be proper predictors in the
equation. The R-squared with eight predictors 87.2% is still
about the same as the 87.3% with 12 predictors. Figure 7
combines all the simulated damage function values (RHT-
integral) and the predicted values based on Equation 3 into one

Table 3.  Stepwise Regression Analysis of the Parameters for the Equation to Predict Damage Function Values 
as Performed by the Statistical Software

C

l

o W W R

u S D a

R d P I i

a * D R n

C d C R * * * P

l W W R * l H W W R v

R o S D a R o T * S D a *

a u R P I i P a u * R P I i P

Vars R-Sq R-Sq (adj) Mallows Cp S d d T H D R n v d d T H D R n v

1 11.5 11.3 2108.7 2861.2 ×

1 11.5 11.2 2110.2 2862.0 ×

2 45.1 44.8 1176.1 2257.5 × ×

2 42.3 42.0 1253.7 2314.0 × ×

3 66.5 66.2 581.7 1766.0 × × ×

3 65.7 65.4 604.5 1787.4 × × ×

4 74.8 74.5 351.9 1533.3 × × × ×

4 73.9 73.6 377.4 1560.9 × × × ×

5 79.0 78.7 238.4 1403.5 × × × × ×

5 78.5 78.2 249.9 1417.1 × × × × ×

6 84.0 83.8 99.1 1224.5 × × × × × ×

6 82.7 82.4 136.0 1274.2 × × × × × ×

7 84.8 84.5 79.6 1196.2 × × × × × × ×

7 84.8 84.4 80.8 1198.0 × × × × × × ×

8 × × × × × × × ×

8 × × × × × × × ×

Note: Crosses show the selected parameters that produce the best fit. 
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chart. If an ideal fit were found, the data would collapse into
a straight line. 

CONTOUR MAP SELECTED DAMAGE FUNCTIONS

The developed method was used to generate the design
weather years for 100 U.S. locations and 7 Canadian locations.
The 10th percentile weather year was selected for each location
out of 30 years of weather data. The selection was based on the
order of years—i.e., the selected year was the year having the
third highest damage function value for the location. The
damage function data (RHT-values) were used to create a
contour plot of the values on the North American map, similar
to IECC climate zone classification. The contour map is shown
in Figure 7. The map shows similarity to the IECC classifica-
tion in the way that the midwestern U.S. shows low damage
function values, which is the result of drier climate. The eastern
part of the U.S. shows higher damage function values, as
climates in these locations tend to experience more moisture
corresponding to the “moist” area of IECC. The east and west
coasts in the northern part of U.S. show the highest damage
function values. In the IECC classification, for example, the
northwestern coast is classified as a “marine” climate zone.

One of the project outcomes included a development of
software that allows the user to create files with the design
weather data that meets the format requirement of various
hygrothermal modeling software. The basis of this software
(WeatherFile Analyzer) was developed by Karagiozis at
ORNL (2002).

PERFORMANCE OF THE NEW METHOD WITH 
DIFFERENT STRUCTURES

The new method and its predictions were tested by
running simulations for two other structures in the eight orig-

inal locations, and the weather years were ranked in the order
of severity based on RHT-index. The two new structures were
(1) the vinyl-clad wood-framed wall, stucco replaced with
vinyl siding and (2) an attic roof structure.

The rankings based on simulations (Table 5) matched 1–3
of the three most severe years as predicted by the equation
method in all but one location, Portland, ME (for the roof).

Figure 7 Damage function (RHT-index) is shown here as a
contour map in the U.S. and Canada. Crosses
show the locations of the cities with data. Areas
without crosses (data points) have been
extrapolated by the graphics software and should
not be trusted.

Table 4.  Regression Coefficients and Statistic Variables with Eight Predictors Plus Constant for
Calculating the Damage Function

Predictor Coefficient SE Coefficient T P

Constant 108307 11653 9.30 0.000

Rad –241.30 27.80 –8.68 0.000

Cloud –1390.6 170.5 –8.16 0.000

RH –312326 35156 –8.88 0.000

Rain 183308 9748 18.80 0.000

Pv 15.193 1.079 14.08 0.000

T · T 27.340 2.775 9.85 0.000

RH · RH 261079 25556 10.22 0.000

Pv · Pv –0.0097163 0.0002887 –33.66 0.000

S = 1099.91 R-Sq = 87.2% R-sq(adj) = 86.9%

PRESS = 451996042 R-Sq(pred) = 86.36%
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Results indicate that the selected weather years appear to
be severe for different walls included in this analysis and not
only for the wall used as the basis of the development of the
equation-based weather selection method.

TESTING OF THE METHOD WITH 
EUROPEAN WEATHER

The newly developed method and its performance was
tested with weather data for Holzkirchen, Germany. Most of
the average yearly weather data in Holzkirchen falls between
the upper and lower boundaries of the U.S. weather data for the
eight locations used in the method development. The average
solar radiation is lower and much of relative humidity data in
Holzkirchen is higher than that used in the parameter optimi-
zation of the U.S. fit. However, the equation based on U.S. data
(“U.S. fit” in Figure 8) worked quite well with Holzkirchen
weather data. The equation extrapolated the predicted perfor-
mance successfully. Figure 8 shows the rankings for a stucco-
clad wood-framed wall (American-style stucco wall) for a
masonry wall and for a metal-clad roof (ventilated under the
cladding). The results for Holzkirchen, Germany, show that
year 1997 is one of the three most severe years predicted with
the equation method for the simulations.

CONCLUSIONS 

The object of the project was to review a number of exist-
ing methods used in weather year selection for hygrothermal
design analysis and develop a new method (approach) having
better correlation. The choice of the weather year is critical for
proper hygrothermal design analysis. Weather years applied in
energy calculations were found to not be acceptable, espe-
cially as the key durability-influencing parameters are not
based on the exterior temperature.

A number of critical parameters were assessed, and the
orientation of the building envelope was shown to affect the
wall performance the most.  Indeed, the north orientation was
found to be the worst factor with the highest damage function
values and accumulated moisture contents. A number of previ-
ously proposed weather selection methods were tested based
on simulated wall performance. The analysis included 30
years of hourly weather data for 12 locations in the U.S. and
Canada. From the extensive analysis, none of the existing
methods was found satisfactory, and a new method was devel-
oped to rank the years in terms of hygrothermal loads. 

A simple approximate method was developed. An equa-
tion-based method (Equation 2) predicted the best perfor-
mance of all the analyzed methods. This load-based approach
was chosen as the final method for selecting the weather years
for hygrothermal designs. The method was proven to be the
most consistent and accurate of all analyzed methods in select-
ing the most severe years in terms of hygrothermal perfor-
mance in all locations.

The method uses average weather parameters for a north-
facing wall and calculates an estimate for the damage function
RHT-index in the OSB layer (exterior sheathing) of the light-

weight wood-frame wall. The year with the third highest RHT-
index value is proposed as the year to be selected for hygro-
thermal designs. 

A CD was created with the selected weather data for 100
U.S. location and 7 Canadian locations.
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