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Strain fields induced by embedded islands of pyramidal shape are examined by analyzing Ge/Si
systems using the continuum theory of elasticity. We show that, upon increasing spacer thickness,
the decay of the strain field on the spacer surface undergoes a crossover from a non-cubic inverse
power law to a cubic inverse power law. The exponent for the non-cubic inverse power law depends
on island slope with a smaller slope corresponding to a smaller exponent. Additionally, the strain
is nearly proportional to the island volume when the slope is large but to the island area when the
slope is small. This work provides a consistent theoretical context for understanding the diverse
strain properties of these systems previously obtained by large-scale atomistic simulations.

PACS numbers: Valid PACS appear here

Quantum dot arrays have many important technologi-
cal applications. Strain-driven formation of nanoscale co-
herent islands on lattice-mismatched layers in heteroepi-
taxy offers an attractive way for effective fabrication of
quantum dots of large density [1, 2]. Normally, these is-
lands are not well organized in space and show large dis-
persion in size distribution. Recent experiments showed
that the spatial ordering and size uniformity of islands
can be greatly improved by growing multilayers of islands
separated with spacer layers [3-9]. Vertical alignment
of islands was found in semiconductor systems including
InAs/GaAs [3, 4] and Ge/Si [5], and also in magnetic
systems including Co/Au [6]. Taking advantage of the
anisotropic nature of strain fields in some semiconductor
materials, anticorrelation of island positions and a fcc-
like structure of islands was observed in CdZnSe/ZnSe
[7] and in PbSe/PbEuTe [8], respectively.

The self-organization of the stacked islands is believed
to be a result of the strain field on spacer surfaces induced
by embedded islands. This was demonstrated by analyz-
ing the net atomic current to the locations of strain con-
centration due to strain-biased diffusion [3], by analyzing
the strain modulation of nucleation centers [9], and by ki-
netic Monte-Carlo simulations [10, 11]. In these studies
[3, 9-11], an embedded island is modeled as a force dipole
of zero dimension within the continuum theory of elastic-
ity that gives strain and stress fields characterized by a
cubic inverse power-law dependence on spacer thickness
and a linear dependence on island volume. The force
dipole model is questionable because islands have spatial
occupations of finite dimensions and show no cubic or
spherical symmetry. The influence of island dimension
on surface strain must be considered in order to achieve
quantitative description of the growth process [12, 13].

Three different approaches have been used in calculat-
ing strain fields for embedded islands of finite dimensions.
The first one is the Green function method within contin-
uum theory [14, 15], using the solution for a force dipole
as the Green function. The second approach involves

continuum finite element calculations, which was shown
to give the same results as Green function method [15].
An attractive advantage of the Green function method
is that the strain induced by a large number of embed-
ded islands can be simply calculated by superposition
of the contribution from each island. However, it is an
open question whether the Green function method is still
reliable for systems of nanoscale spacer thickness. The
third approach [16, 17] emphasizes the discrete atomic
nature and utilizes atomistic simulation methods such as
molecular dynamics simulations, which can provide accu-
rate results but is very computationally demanding. Two
completely different results from such large scale atom-
istic simulations were reported recently [16, 17] for the
stress fields at Si spacer surfaces induced by Ge islands
of the pyramidal shape suggested by experiments [18].
One claimed that [16] the stress field can be well approx-
imated by the force dipole model. The other found that
[17] the stress field deviates significantly from the descrip-
tion of the force dipole, exhibiting a nearly linear inverse
dependence on spacer thickness and a linear dependence
on island surface area.

In this letter, we provide a clear understanding of these
“apparently inconsistent” predictions from atomistic sim-
ulations. Specifically, we examine the dependence of sur-
face strain on island geometry by analyzing pyramidal Ge
islands embedded in Si using the Green function method.
We show that, upon increasing spacer thickness, the de-
cay of the strain field on the spacer surface exhibits a
crossover behavior from a non-cubic inverse power law to
a cubic inverse power law. The exponents for the non-
cubic inverse power laws depend on island slopes with
smaller slopes corresponding to smaller exponents. The
strain dependence on island size also displays interesting
behaviors when the spacer thickness is small, compared
with island base-width. The strain field has a nearly lin-
ear dependence on island volume when the island slope
is large but has a nearly linear dependence on island sur-
face area if the island slope is small. Our findings are
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FIG. 1: Schematic illustration of the system. A germanium
island of pyramidal shape with a germanium wetting layer
above a silicon substrate is caped by a spacer layer of silicon.

consistent with the results from atomistic simulations,
demonstrating the utility of the continuum theory for
embedded quantum-dot systems. Based on our results,
the“discrepancy” derived from the atomistic simulations,
namely, whether the strain distribution of a pyramidal Ge
island in Si can or cannot be modeled by a force dipole,
can be well understood by noticing the geometry differ-
ence of the islands in those simulations. We believe that
the broad theoretical framework and the clear elucida-
tion of the nature of the surface strain presented in this
work have significant importance in future studies of the
growth process and physical properties of these systems.

The unit cell of our system is schematically shown in
Fig. 1. A pyramidal Ge island with an initially formed
wetting layer of thickness d on a Si(001) substrate is
caped by a Si spacer layer of thickness H. The base of
the pyramid is a square of width 2w, oriented in [100] and
[010] directions. Island height is given by h = w X tga,
where « is the slope angle. The wetting layer is always
very thin (about 3 monolayers for Ge/Si) and its contri-
bution to the strain field at the spacer surface is only a
small constant. We neglect it by choosing d = 0. The
periodicity of the system is L, and L — oo gives a system
which consists of only one embedded island.

We start our analysis for a single Ge island of volume
V embedded in Si. In continuum theory, an embedded
island can be modeled as an inclusion and can be fur-
ther treated as a collection of individual force dipoles
of infinitesimal size dV' comprising the volume V. The
strain field outside of the island is then given by the su-
perposition of the contribution from each force dipole.
In other words, the strain field for a force dipole is the
Green function for the strain field of the island. Sup-
pose a force dipole with dV = dz'dy’'dz’ is located at
position (z',y',z') in an isotropic material such as Si,
one can show that [19] the trace of the strain tensor,

FIG. 2: Stress o at y = z = 0 as a function of x for embedded
islands with w = 20as;, h = 17ML, and L = 60as;. Symbols
are results from the reference [17] obtained by atomistic simu-
lations. Circles, squares, and diamonds correspond to spacer
thickness H = 21ML, 49ML, and 81ML, respectively. Lines
are results of calculations using Green function method.

G = Guw + Gyy + G2, at the spacer surface is given by

1+v)(1—2v)dV 32"

e
¢=- r(1—v) >

)R, (1)

where R = \/(z —2')2 + (y — y')2 + 2/2, v is Poisson’s
ratio of the spacer material, and €y the lattice misfit
with €9 = (a; — as)/a;. Here, a; and a, are the lat-
tice constants for the inclusion and spacer materials, re-
spectively. The strain field e for the embedded island
is then given by the integration of the Green function in
Eq. (1) over the volume of the island [14, 15, 19], namely,
€= fv G(z',y', 2" )dx'dy’dz'. The trace of the stress ten-

sor reads o = %e, where F is the Young’s modulus.
The strain and stress fields for arrays of embedded islands
can be obtained further by superposition of the contribu-
tion from each island. In our calculations for Ge/Si sys-
tems, we have a; = age = 5.656A and as = ag; = 5.431A.
We choose v = 0.218 as used in the reference [16].

In Fig. 2, we compare our calculations for the stress
fields for a periodic lattice of embedded Ge islands with
L = 60ag; to the results from atomistic simulations. The
Ge islands have pyramidal shape of {105} facets with
w = 20ag; and h = 17TML. Symbols in Fig. 2 are from
the atomistic simulations [17] after removal of the contri-
bution coming from the spacer surface reconstruction by
subtraction of a constant term pg [17]. Lines are our re-
sults using E = 8.404 x 10°J/Qgm?, 10.152 x 10°J/Qom3,
and 10.152 x 10°J/Qgm? for H = 21ML, 49ML, and
81 ML, respectively, which gives an excellent fit to the
results of atomistic simulations. Here, Qy = Q/a; is
the dimensionless average atomic volume [17]. The con-
stant term p, is the stress associated with the surface
dimerization. The fit shown in Fig. 2 leads to pg; =
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FIG. 3: Strain € at z = y = 0 as a function of spacer thickness.
Circles, squares, and triangles correspond to islands with
(w,h) = (20asi, 17TML), (15asi, 13ML), and (10as;, 9ML), re-
spectively. Thick lines are corresponding fitting results that
give € = ao + a1/2"*° with (ao,a1) = (—1.26 x 1073,1.29),
(—9.20 x 107*,2.06), and (—1.04 x 10~2,3.30). Insect shows
the crossover behavior upon increasing the spacer thickness
from small separation regime to large separation regime.

0.754(10°J/Qem?), which is very close to the approxi-
mate value 0.747(10°J/Qom?) obtained in atomistic sim-
ulations [17]. We notice that the Young’s modulus takes
a different value when the Si spacer layer is thin such
as 21ML. This may be attributed to the slight change
of the mechanical properties of the Si material when the
spacer surface is so close to the island. We also performed
calculations for a single embedded Ge island (L — o0)
and found that the local surface stress fields at the loca-
tion directly above the island in these two systems with
L = 60as; and L — oo differ by a small amount, indicat-
ing that the strain and stress fields decay sufficiently fast
that the nearest-neighbor sites are negligible. In the fol-
lowing, we focus on analyzing the surface strain induced
by single embedded Ge islands.

Fig. 3 illustrates the strain at x = y = 0 as a function
of spacer thickness. Symbols are our results from Green
function method for single pyramidal Ge islands with
{105} facets of three different sizes. Inset of Fig. 3 is the
log-log plot of the strain versus spacer thickness from the
small separation regime to the large separation regime.
Circles, squares, and triangles correspond to islands de-
scribed by (w,h) = (20as;, 17ML), (15as;, 13ML), and
(10asi, ML), respectively. Thick lines are the fitting
results in the small separation regime that give ¢ =
ap + a1 /27 with v = 1.50 and corresponding parame-
ters (ap,a1) = (—1.26 x 1072, 1.29), (—9.20 x 10~%,2.06),
and (—1.04 x 1073,3.30). Another exponent v =~ 1 was
found for the same islands in atomistic simulations [17],
where less data points were used for fitting. Our results
based on large number of data points show that the best
fit gives v = 1.50. Moreover, the Green function method
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FIG. 4: Strain ¢ at £ = y = 0 as a function of spacer

layer thickness. Circles, squares, diamonds, and triangles
correspond to systems with slope angles o = 6°, 12°, 27°,
and 58°, respectively. Lines show fitting results that give
€ = ao + a1/2" with (ao,a1,a) = (—2.48 x 107*,0.25, 0.86),
(—9.20 x 107*,2.06,1.50), (—1.10 x 107*,33.02,2.47), and
(2.78 x 107°,116.78, 3.36), respectively.

allows us to deal with the large separation regime where
the application of atomistic simulations is not possible so
far. The inset of Fig. 3 shows that, upon increasing the
spacer thickness, the decay of the strain field exhibits a
crossover behavior from v = 1.5 to v = 3.

We find that the exponent v is a function of island
slope with a larger slope corresponding to a larger ex-
ponent. We show in Fig. 4 the decay behavior of
the strain fields for four pyramidal islands of differ-
ent, slopes, where circles, squares, diamonds, and trian-
gles are results for islands with (w,h) = (30as;, 13ML),
(15asi, 13ML), (6.5as;, 13ML), and (2as;, 13ML), respec-
tively, corresponding to slope angles a = 6°, 12°
27°, and 58°. The decay can be well fitted to € =
ap + a1 /27 with (ap,a1,a) = (—2.48 x 1073,0.25,0.86),
(—9.20x107%,2.06, 1.50), (—1.10x 107%,33.02,2.47), and
(2.78 x 107%,116.78, 3.36), respectively. Atomistic simu-
lations found that [16] the strain for an pyramidal island
with w = 5.6nm and h = 2.8nm (a = 27°) can be ap-
proximated by the force dipole model with v = 3. Our
calculations give vy = 2.47 close to v = 3.

The strain dependence on island size also displays in-
teresting behaviors for islands of different slopes. Fig. 5
illustrates the strain fields at position x =y = 2z = 0
as a function of island width for pyramidal islands of
different slopes embedded at H = 81ML. The strain is
normalized by the island surface area s = 4w x h/ sin(«).
It is clear that when the island width is small compared
to the spacer thickness, the normalized strain is always
proportional to the island width, showing a linear depen-
dence of the strain on island volume consistent with the
force dipole model. However, for islands of large sizes
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FIG. 5: Normalized strain €/s at £ = y = z = 0 as a function
of island width for islands of different slopes with H = 81ML.

compared with the spacer thickness, the strain depen-
dence on island size critically depends on island slope.
For islands with small slope angles a < 20°, the normal-
ized strain changes very slowly with the island width,
indicating that the strain is nearly proportional to the
island surface area. Differently, for 20° < a < 45°, the
normalized strain is proportional to the width, giving a
volume dependence similar to the case for small islands.
For islands with a > 45°, a super linear dependence of
strain on island volume exists. In a recent publication
[17], molecular dynamics simulation was used to analyze
the strain fields induced by pyramidal Ge islands of three
different sizes (w, h) = (20ag;, 17ML), (15as;, 13ML), and
(10asi, 9ML), all have a slope angle a = 12°. For these
islands, Fig. 5 predicts that the strain is nearly propor-

tional to the island surface area, consistent with the ob-
servation in atomistic simulations [17]. In another publi-
cation [16], a Ge island of a = 27° with size w = 5.6nm
and h = 2.8nm was investigated. In this case, the predic-
tion from Fig. 5 of a nearly linear strain dependence on
island volume is again in consistent with the atomistic
simulations.

In summary, we have examined the strain fields on
spacer layer surfaces induced by embedded islands of
pyramidal shape by analyzing Ge/Si systems in the
framework of continuum theory. We found that the di-
verse properties of the strain fields for these systems ob-
tained previously by atomistic simulations can be well
described by the continuum theory after integrating the
influence of the island geometry using the Green func-
tion method. Our results clearly show that in the regime
of small spacer thickness, the strain fields depend criti-
cally on island geometry, with smaller island slopes cor-
responding to larger deviations from the description of
the force dipole model. We emphasize that, in the large
separation regime, the force dipole approximation is con-
sistent with our results, as one would expect when the
island size is negligible compared to the spacer thickness.
However, it is the small separation regime that is inter-
esting and important for applications, and it is within
this regime that the effects of finite dimensions and is-
land geometry must be considered.
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