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Abstract 

Based upon quantum entanglement, several paradigms of self-organization (such as inverse 
diffusion, transmissions of conditional information, decentralized coordination, cooperative 
computing, competitive games, topological evolution in active systems) are introduced and 
discussed. 

 

1. Introduction 

 This paper was motivated by recent discovery and experimental verification of the most 

fundamental and still mysterious phenomenon in quantum mechanics:  quantum entanglement.  

Formally, quantum entanglement as well as associated with it quantum non-locality follow from 

the Schrödinger equation; however, its physical meaning is still under extensive discussions.   

 The most attractive aspect of quantum entanglement, in terms of a new quantum 

technology, is associated with instantaneous transmission of messages on remote distances.  

However, practical applications of this effect are restricted by the postulate adopted by many 

authors [5] that these messages cannot deliver any intentional information.  That is why all the 

entanglement-based communication algorithms must include a classical channel.  The main 

challenge of this study is to evaluate the degree of usefulness of entanglement-based 

communication technology without any classical channels.  The first attempt of this kind was 

presented in our earlier work [4] where it has been demonstrated how a randomly chosen message 

can deliver non-intentional, but useful, information under special conditions which include a 

preliminary agreement between the sender and the receiver.  In this paper we are trying to extend 

this effort by applying the entanglement-based correlations to an active system represented by a 

collection of intelligent agents.  The problem of behavior of intelligent agents correlated by 

identical random messages in a decentralized way has its own significance:  it simulates 

evolutionary behavior of biological and social systems correlated only via simultaneous 
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sensoring sequences of unexpected events.  As shown in this paper that under the condition that 

the agents have certain preliminary knowledge about each other, the whole system can exhibit 

emergent phenomena such as topological self-organization, inverse diffusion; it also can perform 

transmission of conditional information, decentralized coordination, cooperative computing, 

competitive games. 

 It is always a temptation to simulate any new quantum phenomenon by classical tools.  In 

the case of quantum entanglement such a possibility was excluded from the very beginning since 

this is a non-local phenomenon which does not have any classical equivalents.  However, one 

can argue that actually the active system under consideration becomes classical as soon as the 

quantum message is received and interpreted by the agent; therefore, instead of quantum 

implementation of the correlations between the agents, one can generate a pool of samples of 

stochastic processes in advance, make copies and distribute them over the agents, so that any two 

agents to be correlated would have identical records of “random” messages.  However, there is a 

fundamental flaw in such an implementation:  the whole scenario of the active system evolution 

is fully predetermined, and someone (for instance, those who generated, copied and distributed 

the messages) can know this scenario in advance.  In principle, each agent also can find out his 

future messages since the knowledge about this future has already existed.  The difference 

between the quantum and classical cases is similar to that between real-time and pre-recorded 

TV programs: in the first case, future is unpredictable, while in the second case “future” has 

already happened, although the viewer may not know about that.  In a more practical sense, the 

difference between the quantum and classical implementations becomes important when the 

communications between the agents are supposed to be confidential:  in the classical case, the 

confidential information, in principle, is available long before it is needed, and that makes such 

communications less secure. 

2. Active Systems  

 Cooperation behavior of active systems is a fast growing field [1,2]  comprising methods   

of statistical mechanics, nonlinear dynamics and information processing.  By an active system 

we will understand here a set of interacting agents capable to process information.  In the 

simplest case, each agent is represented by an inertionless classical point particle moving in d 

dimensions under the combined influence of Newtonian and non-Newtonian forces: 

  
Ý x i

j( ) = fi
j( ) x j( ){ }( )+ gii

j( )Γ j( ) t( ); x j{ }= x1
j( ), x2

j( ),…xd
j , i =1,2,…d; j =1,2,…n;   (1) 
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Where   is the position vector, xi
j( ) f x i( ){ }( ) is the Newtonian force, Γ  is the non-Newtonian 

force generated by the agent in response to received information  n  is the total number of agents 

in the system, and  g

j( ) t( )

ii
j( ) = gii

j( ) x j( ){( },t). 
 The variety and the complexity of behavior of active systems depend upon the type of 

interactions between the agents.  So far we have not introduced any interactions on the level of 

Newtonian forces: in Eq. (1), the force  acting upon the  agent does not depend upon the 

coordinates of other agents.   Let us turn now to the non-Newtonian forces Γ .  Assuming that 

these forces result from uncorrelated information flows between the agents, the total effect can be 

presented in the form of the Langevin force, i.e. white noise:  

f j( ) jth

t( )

 Γ j( ) t( ) = 0, Γ j( ) t( )Γ k( ) ′ t ( ) = 2δ
jk
δ t − ′ t ( )       (2) 

In addition we will also assume that  

 gii << fi           (3) 

i.e., that the contribution of the non-Newtonian forces is much smaller than those of the 

Newtonian ones.  Then each agent can predict it’s own future motion only probalistically via the 

corresponding Fokker-Planck equation [3] . 

 
  
∂ρ j( )

∂t
= D j( )∇2ρ j( ) − ∇• ρ j( ) f j( )( ), j =1,2,…n      (4) 

where   is the probability of finding the  agent obeying Eq.(1) within a cubical volume      ρ j( )dd x jth

 d    centered at   at time t   and  is the diffusion tensor with the diagonal elements 

) and zero non-diagonal elements. 

dx

gii
j( )(

x , D j( )

)2

 The degree of unpredictability is measured by  the entropy: 

 
  
I j =

i =1

n

∑ og 2 πe gii
j( )( )2

t = I x j( ){ }( )      (5) 

if one starts in Eq.(1) with the sharp value of {x j( )}  at t .  Hence, no matter how small the 

diffusion componentsg , eventually the entrophy, or the information capacity becomes large.  

 Obviously, the information capacity of the system is: 

= 0

ii
2

         (6) 
  
I x{ } 1( ),… x{ }n( )= I j

j =1

n

∑
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Since all the agents are independent, the conditional entropy 

   Ik = I           (7) 

i.e., the knowledge of his own motion does not help an agent to predict motion of another agent. 

 In this paper, based upon the model of active systems represented by Eqs.(1),(4) we are 

going to introduce a special correlation between the agents in the following way :  each agent 

simultaneously receives a sequence of random but identical binary signals of the type (+) or (-) 

and it converts each signal into a space step ∆  to the right or the left, respectively, and these 

steps are preformed during the corresponding time interval ∆  . 

x

t

 Several properties of the proposed correlation should be emphasized. 

 First, there is no centralized source, or a sender of the signal: each agent receives it by 

performing certain measurements synchronized with the measurements of the others.  Thereby 

the signal uniformly and simultaneously distributed over the agents in a decentralized way. 

 Second, the signals transmit no intentional information that would favor one agent over 

another.  

 Third, all signals received by different agents are not only statistically equivalent, but 

also point-by-point identical. 

 Fourth, it is important to assume the each agent knows that all the other agents 

simultaneously receive the identical signals. 

 Finally, the sequences of the signals must be true random so that no agent could predict 

the next step with the probability different from 1 2. 

 It turns out that under these quite general assumptions, the active system can perform 

non-trivial tasks which include transmission of conditional information from one agent to 

another, simple paradigm of cooperation and self organization such as inverse diffusion, etc.   

 In order to justify the usefulness of the proposed correlation paradigm, consider an 

earthquake which is represented by some sequence of totally unpredictable jolts.  All the 

“agents” (humans, animals) receive these unexpected signals simultaneously, and from that 

moment their activity became correlated and organized: they run to shelter, turn of pipelines, etc.  

 The second example is more sophisticated (but less idealized).  Consider different social 

communities (or clubs) which receive information from the corresponding (but different) 

newspapers or television programs.  The behaviors of the members of different clubs will be 

more independent.  Now the following question can be asked: under what conditions would 
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members of one club start migrating to other clubs?  When does the balance between mixing (i.e. 

diffusion) and unmixing  (i.e. inverse diffusion) occur?  The answers to these questions can be 

started with the highly idealized paradigm of the proposed correlations.    

 The physical implementation of this paradigm was inspired by the phenomenon of 

entanglement [5]  which is the most fundamental property of non-local quantum world.   As will 

be shown below, all the five requirements listed above can be implemented only via quantum 

entanglement.    

 

3. Quantum Entanglement in Active Systems 

 Let us assume that agents possesses a set of  particles (say, electrons), which 

are in a one-to-one correspondence such that each pair is entangled; and suppose that the agent 

  perform a sequence of measurements: one particle per unit time-step.  Each measurement 

performed by the agent  has two equally probable outcomes.  In case of electrons, these 

outcomes can be spin-up (+) or spin down (-).   If (+) and (-) are converted by the agent into the 

movements along an axis to the right or to the left, respectively, the sequence of the agent’s 

measurement can be interpreted as a symmetric unrestricted random walk.  Hence, by 

performing these measurements, the agent A

A1 and A2 N

A1

2N

A1

1 selected (randomly) one trajectory out of 

equally probable trajectories of the corresponding random walk.  Due to entanglement, the 

agent  instantaneously receives this trajectory (after performing simultaneously the same type 

of measurements).  This paradigm is easily generalizable to n  entangled agents if each of them 

has a set of  particles entangled pairwise with the similar particles of all the other agents.  The 

usefulness of such entanglement– based communications has been discussed in 

A2

N
[4].   Here we will 

pay attention to other aspects of this type of correlations.  

 Firstly, one can verify that quantum entanglement satisfies all the five conditions 

formulated in the section 1 concerning decentralized correlations, namely: there is no single 

sender of the signals; the signals uniformly and simultaneously distributed over the agents; there 

is no intentional information transmitted; the sequences of the signals are true random.  It should 

be emphasized that any attempt to simulate the same correlations classically would fail.  Indeed, 

let us assume that a stochastic force Γ  in Eq.(1) is generated classically.  Then the probability 

that two different samples of this force are point-by-point identical is vanishingly small, and 

therefore, such as classical simulation of the correlations via quantum entanglement is 

t( )
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unrealistic.  But if one tries to generate one sample of  Γ   copy it and distribute these copies 

over the agents, then the randomness of the signals is destroyed: each signal becomes fully 

deterministic.  In addition, the idea of decentralized correlations is lost:  those who made the 

copies of the sample of  Γ   is in full control of the evolution of the active system (1).   

t( )

t( )

1

)

α2 x2

Ý x i
k( ) d, k.

  Secondly, we will discuss the degree of cooperation between the agents due to quantum 

entanglement.  For that purpose we will turn to the system (1).  In order to trivialize the situation, 

we will consider only two one-dimensional agents subjected to linear deterministic forces.  In 

addition to that, for mathematical convenience, we will assume that the space steps   ∆  and the 

time steps  ∆  of the random walk are small, i.e.  

x

t

 
∆x
xo

<< 1, ∆t
Τo

<<          (8) 

where   and Τ are the characteristic lengths and time, respectively, and  xo o

 
∆x( )2

∆t
= 2          (9) 

This will allow one to preserve the continuous form of the Langevin equations in the system (1). 

Now the equations of motion for two agents can be written in the following form:  

 Ý x 1 +α1x1 = Γ1 t( )         (10) 

 Ý x 2 + α2 x2 = Γ2 t(          (11) 

One should recall that without quantum entanglement, the Langevin forces, although statistically 

equivalent, are not point-to-point identical, i.e. 

           (12) Γ1 t( ) / ≡ Γ2 t( )

Therefore, one cannot eliminate them from Eqs.(10), (11).  However, in case these agents are 

entangled 

           (13) Γ1 t( ) ≡ Γ2 t( ),

one obtains a fully deterministic relationship between the motions of the agents: 

 Ý x 1 +α1x1 = Ý x 2 +          (14) 

In the general case, the entangled version of Eqs.(1) yields: 

  
Ý x i

j( ) − fi
j( ) x j( ){ }( )[ ]gkk = − fi

k( ) x k( ){ }( )[ ]gjj i = 1,2,… l = 1,2,…n    (15) 

In the next section we will give an interpretation of Eqs.(14), (15) from the viewpoint of agents 

cooperation. 
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4. Transmission of Conditional Information 

 Let us turn to Eq.(14) and assume that the agent  can detect it’s own motion (which has 

been random before it’s detection), i.e. the agent   

A1

A1

2

 detects ).  Then, based upon Eq.(14), 

he can calculate exactly the motion of the agent  

x1
∗ t( )

A  (although it is also random): 

      (16) 
  
x2 t( ) = x2 0( )e−α2t + e−α 2 t − ′ t ( )

0

t

∫ Ý x 1
∗ t( )+ α1x1

∗ t( )[ d ′ t …]
It is implied that the agent   knows the deterministic part of the governing equation of the 

agent  as well as the initial condition .  Analogously, if the agent  can detect his own 

motion, he can calculate exactly the motion of the agent  by the formula similar to Eq.(16).  

The same is true in the general case (15): if each agent can detect it’s own motion, he can 

calculate motions of all other agents.  In terms of information it means that 

A1

A2 x2 0( ) A2

A1

   Ik = 0, k, ,=1,2,…n         (17) 

i.e. given the motion of the agent   , the motions of all other agents   are fully predictable, 

and therefore, the conditional information capacity drops to zero due to entanglement. 

A Ak

 It should be recalled that without the entanglement, the same information capacity, or the 

measure of unpredictability, is expressed by Eq.(5).  However, based upon Eq.(5), one can argue 

that the gain in predictability due to the entanglement is small since the coefficients gii   are small 

(see Eq.(3)). In order to remove this argument, we will give the following counter-example.  Let 

us modify Eqs.(10) and (11) as follows: 

 Ý x 1 + x1 1 + x1( )1 − x1( )= gΓ1 t( )         (18) 

        g > 0

        (19) Ý x 2 + x2 1+ x2( )1 − x2( )= gΓ2 t( )

The deterministic version of Eq. (18) 

          (20) Ý x 1 + x1 1+ x1( )1− x1( )= 0

 has three fixed points: 

          (21) x1
1( ) = 0, x1

2( ) =1 x1
3( ) = −1

 The first point is a repeller, and the others are attractors.  If the motions starts at x , 

with the probability 1/2 it will be trapped at .  The same result will be obtained 

for Eq.(18) since the Langevin force Γ  with equal probability 1/2 can have sign (+) or (-) at  

1 = 0

x1 =1 or x1 = −1

1 t( )
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t = 0

A1

.  Since Eqs. (18) and (19) are identical, similar conclusion can be made about the solution 

to Eq.(19).  In case when the agents  and  are not entangled, the outcome of the solution to 

Eq.(18) does not help to predict the outcome of the solution to Eq.(19).  However, if the agents 

 and  are entangled, and the agent  found himself in the well , then with the 

probability one he can conclude that the agent A

A1

)

)

A2

A1A2

  n =

  
pm =

x1 = 1

2 is in the well   since, as a result of the 

identity (13), 

x2 =1

…n

s

In−s s

′ p =

         (22) Sign Γ1 0( )= SignΓ2 0(

It should be emphasized that this result does not depend upon the value of g in Eqs.(18),(19):  

since the Langevin force triggers the instability, g can be vanishingly small.  At the same time, 

the gain in predictability is significant: from total unpredictability (without the entanglement) to 

complete predictability (with the entanglement). 

 

4. Topological Complexity  

 So far we have only discussed two extreme cases when the active system is totally 

uncorrelated (see Eqs.(1)) and when it is fully entangled (see Eqs.(15)).  However, there is a lot 

of other possibilities when certain groups of agents are entangled with each other, but not with 

the rest of the agents.  Any such associations will form a particular topological structure.  The 

number of the structures is equal to the number of different partitions of a sequence 

         (23) n1 + n2 +…nm m ≤ n(

of objects into m  non-overlapping classes if each class n  consists of indistinguishable  n  α α

objects.  This number is given by the multinomial coefficients: 

 
n!

n1!n2!…nm!
, m = 1,2,        (24) 

and it can be associated with the number of topological complexions.  Another type of partition 

can be based upon the master-slave principle:  one group includes s independent (master) agents, 

and the second group include the rest n  (slave) agents which are entangled with the masters 

such that in order to detect their motions, one has to know motions of all s masters,  

−

 = 0           (25) 

The number of complexions in this case is 

 
n!

s! n − s( !)
          (26) 
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In order to include the topological changes into the active system, one can assume that each 

agent has n  sets of N particles such that an r  set corresponds to possible entanglement with the 

 agent.  Then Eq.(1) can be rewritten as follows 

th

r th

    (27) 
  
Ý x i

j( ) = fi
j( ) x j( ){( )+ ε gjk

k =1

m

∑ Γ k( ), i =1,2,…d, j =1,2,…n; m ≤ n

 ε = Const > 0, ε << f ,         (28) 

As follows from Eqs.(27) and (28), the contribution of Langevin forces Γ is still small in 

comparison to the deterministic forces .  The Langevin force Γ  of the agent   is now a 

linear weighted combination of forces Γ  resulting from possible entanglement with the agents 

. By choosing a weight g ,  the agent  actually choosing a degree of a contribution from 

the agent . 

k( )

f j( )

k( )

j( ) Aj

Ak jk Ak

Aj

 The condition that each topological structure consists of non-overlapping classes of 

agents can be now expressed as follows: 

  g         (29) ik = 0 only if gkj = 0

Indeed, under this condition, the entanglement of any two agents is reciprocal.   

 The type of topological structure is defined by the rank of the determinant of the 

matrix gik . 

 If m = n = , then the active system (27) is totally uncorrelated.   Indeed, in this case one 

cannot eliminate the Langevin forces Γ  in order to correlate the deterministic forces, and 

Eqs.(27) can be reduced to Eqs.(1).   Another extreme is when the system is fully correlated, is 

obtained if r . Then Eq.(27) can be reduced to Eq.(15).  In the case 

r

= 1

k( )

           (30) 1 < r < n

one arrives at the variety of different master-slave topological structures the total number of 

which follows from Eq.(26).  Using the terminology of the statistical mechanics, one can 

introduce the Boltzman Entropy: 

 
  
E = −

s
n

n
s
n

+
n − s

n
n

n − s
n

 
 

 
        (31) 

If the determinant of the matrix gik is representable as a product:  

 det gjk = det gjk
q( )

q =1

m

∏ ,         (32) 

 9 



then the active system is partitioned into m  non-overlapping classes (see Eq.(23)), and the 

number of  the complexions for a fixed m is presented by Eq.(24).  The corresponding Boltzman 

entrophy takes the form: 

 
  
Em = −

ni

ni =1

m

∑ n
ni

n
         (33) 

In the context of the entangled active systems, the entropy  can be associated with the 

information capacity due to the topological complexity. 

Em

 

6. Topological Evolution 

 In this section we will discuss possible ways in which the topology of the active system 

(in terms of the degree of its entanglement) can change due to decentralized random choices 

made by the agents.  So we will assume that each agent , after certain time interval ∆Τ  makes 

random choices for the weights g .  In order to separate the topological evolution from the 

dynamics at a fixed topology, one should choose 

Aj

jk

           (34) ∆Τ >> ∆t

where ∆  is the time-scale of the Langevin forces (see Eqs.(8),(9)). t

 Since the topological changes do not require from the agents any “non-physical” 

properties (such as measurements and their conversion into the corresponding movements), the 

topological evolution will obey the laws of statistical mechanics, namely: the system will 

approach such a topological structure which can be arranged in the largest number of different 

ways, i.e. which is characterized by the maximum number of complexions P.  As follows from, 

Eq.(24), P approaches its maximum at m   i.e., when  = n,

            (35) p = n!

This means that irrespective  to the initial topology, the active system eventually will approach 

the topology of totally uncorrelated active system (1).      

 Let us assume now that after the same time interval ∆Τ , each agent  chooses equal 

contributions from all other agents, i.e. 

Aj

           (36) ajk = ajq

Then the matrix  ajk  will be idempotent , and its rank 

            (37) r = 1
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hence, one arrives at another extreme:  as noticed above, the active system becomes fully 

correlated, and it is described by equation (16). 

           

7. Topological self-organization 

 Let us now assume that the agents have an additional channel of entanglement that 

coordinates their global topology: each agent performs the corresponding measurements and 

receive the binary sequence of  pluses or minuses which can encode  2  different messages.  

One should recall that due to the entanglement, all the agents receive identical sequences.  

Suppose that, according to a preliminary agreement between the agents, each of 2  sequences 

encodes a certain topology in terms of the corresponding choice of the weights a .  In order to 

count all the possible topological structures, we will turn to Eqs.(32):  according to Eq.(24), there 

are   ways in which the matrix  

N N

N

jk

Pm ajk  can be partitioned into the product of m  sub-matrixes, 

when   ;  in addition to that, each sub-matrix can have the rank     where s  

is the number of master agents in the m  sub-matrix.  Hence, the total number of different 

topological structures is: 

m =1,2,…n r = 1,2,…sm m

th

 P =
n!

n1!n2! nm!m =1

n

∑ •
nm!

sm! nm − sm( )!
, nm

m =1

n

∑ = n      (38) 

where  n   is the size of the m  sub-matrix.  This number must be equal to the number of 

different entangled sequences 2 , i.e. the number of entangled particles  

m
th

N N

           (39)   N = og2 P

As soon as an encoded topological structure is selected, it’s actual implementation requires from 

each agent to assign certain values to the weights g  which would satisfy the constraints 

imposed upon the matrix  

ik

ajk  by the selected topology.  Obviously there is an infinite number 

of ways in which these weights can be chosen, and each agent can choose them randomly.  

Hence, although the additional channel of entanglement uniquely defines the topological 

structure of the active system, it leaves the agent free to choose an actual implementation.  In 

order to specify such an implementation the agents must have an additional preliminary 

agreement, for instance: all the coefficients a  can have only binary values 0 or 1. Then there is 

only 

jk
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  P =
n2( )!

n2

2
! 

  
 
  

2          (40) 

different matrixes  ajk  and each of them can be encoded by the entangled sequences generated 

by    pairs of particles where   ˜ N 

    
˜ N = og2

˜ P  

)

         (41) 

In this case, the structure of the active system, in terms of Eqs.(27), is defined uniquely.  

 Thus one arrives at topological self-organization triggered by quantum entanglement in a 

random and decentralized way. 

 One should recall that transmission of conditional information via encoding of random 

messages delivered by quantum entanglement and exploited above, has been discussed earlier in 
[4]. 

7. Entanglement-Based Cooperative Computations 

 In this section we will return from the topological evolution to the dynamics with a fixed 

topology.  Suppose that the agents have another preliminary agreement:  to minimize a certain 

functional: 

    (42)   ϕ = ϕ x t( ){ }1, x t( ){ }2 ,… x t( ){ } n( )[ ]; x{ } j( ) = x1
j( ) ,… xα

j( )

where {  is the motion of the agent  . x t( )}α
Aj

For that purpose, each agent has to be equipped with a control parameter  which changes it’s 

deterministic force: 

           (43) fj = fj x j ,λ j(
Then, as follows from Eqs.(1), the motion of an agent   Aj j = 1,2,…n( ) will be a function of  

and a functional of the Langevin force Γ   while each agent will have it’s own version of it.  

λ j

j( )

       (44)   ϕ = ˜ ϕ j λ1,…λnΓ
1( ) t( ),…Γ n( ) t( )[ ], j =1,2,…n

Its minimum as a function of  can be found by each agent  from the system of the following 

equations: 

λ j Aj

 
  

∂ ˜ ϕ j

∂λk

= 0, j, k = 1, 2,…n         (45) 

However, in the case (1) when the agents are not entangled, the explicit form of Eqs.(45) 
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   λ j = ˜ λ j Γ 1( ) t( );…Γ n( ) t( )[ ]        (46) 

defines   as a stochastic process driven by the Langevin forces.  This means that the control 

parameters are not known exactly, but they can be only predicted with some probability.  As 

demonstrated in the example presented by Eq.(18),(19), such a prediction can be totally useless 

even if the variance of the Langevin force is vanishingly small.  Thus, the cooperation of non-

entangled agents, in principle, is ineffective.  

λ j

 Let us turn now to the fully entangled case described by Eqs.(15).  As follows from these 

equations, due to the entanglement, the Langevin forces can be eliminated from the functional 

(44).  Indeed, if the agent   Aj j = 1, 2,…n( ) knows his own motion  { ,  and assuming again 

that it knows the deterministic parts of the models of all other agents as well as the 

corresponding initial conditions he can calculate exactly (using Eqs.(15)) the motions of the rest 

of the agents.  As a result of that, each agent will have the same functional in the form of the 

function of the control parameters . 

x t( )}j

λ1

          (47)     ϕ j = ˜ ϕ o λ1,…λn( )
And the same equations 

 
  

∂ ˜ ϕ o
∂λk

= 0, λk = λk
o , k =1,2,…n        (48) 

Hence, the entangled agents minimize the functional (42) in a fully cooperative and the most 

effective way.  In many cases, the function (47) has several local minina , and therefore, Eqs.(48) 

have the corresponding number of roots.  Then a dynamical approach to finding the global 

minimum is more effective.  For that purpose, Eqs.(48) are replaced by the dynamical equations: 

  Ý λ k = −
∂ ˜ ϕ o
∂λk

         (49  

whose solution converge to the roots of Eqs.(48).  (This convergence is guaranteed by the fact 

that Eqs.(49) form a gradient system with ˜ ϕ  playing the role of a Lyapanov function).  

Depending upon the initial conditions, this system will converge to one of the local minima.   In 

order to continue the search for the global minimum, the following strategy is applied: Eqs.(49) 

are solved many times with different initial conditions. 

o

           (50)  λk
o = λk t = 0( )
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which are selected at random; then for each solution the value of the function  ˜ ϕ o in (47) is 

computed, and the lowest value is accepted as the solution to the problem.  However, if the 

agents are acting independently, the randomly chosen initial conditions (50) are different for 

each agent, and the cooperation is lost:  eventually each agent will arrive at it’s own “version” of 

the global minimum subject to his probabilistic evaluations of the motions and the decisions of 

other agents. 

 However, if the agents are entangled, they can have an additional channel that encodes 

the initial conditions (50) such that each agent receives the same randomly chosen values .  

Indeed, suppose that there is a set of possible s  values for  : 

λk
o

λk
o

           (51)   λk1

o , λk2

o ,…λks

o

 Then this sequence can be encoded via a special channel of entanglement with N   

entangled particles.  
S

           (52)   NS = og2s

in the same way as described in the section (6) (see Eq.(41)), so that each agent will receive the 

same value  after decoding the sequence of random entangled signals, and therefore all the 

agents will arrive at the same global minimum in a fully cooperative way.   

λki

 The entanglement–based cooperation is even more important in case when the objective 

function (44) results from a combinatorial problem, for instance, a traveling salesman TSP 

problem.  The main characteristic of such problem is that there is no analytical formulation for a 

gradient, and therefore, Eqs.(45),(49) cannot be written down explicitly.  One of the most 

reliable approaches to the solution of these problems is Monte Carlo method combined with the 

simulated annealing optimization technique.  The algorithm starts with some initial configuration 

(for instance, initial tour in case of TSP) of the system and then changes are made to the system 

(for instance, the swap pairs of cities).  These changes generate a numerical version of the 

gradient 

  
  

∂ ˜ ϕ o

∂λk
≅

∆ ˜ ϕ o

∆λk
, ,=1,2,…n        (53)  

 

Changes that decrease  are accepted unconditionally, while those that increase it are also 

accepted, but with a conditional probability 

˜ ϕ o
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  w ∆g( ) = e− ∆g Τ          (54) 

where  is the amount of increase in the objective function, and Τ  (“temperature”) is a 

parameter that is subject to control.  The condition (54) is supposed to prevent the process from 

being trapped in a local minimum since by occasionally accepting increases in the function , 

the process can climb out of local minimum.  The problem with this approach is in developing 

adequate annealing schedule, i.e. the prescription for the number of iterations required at each 

temperature  Τ  as this temperature is gradually lowered. 

∆g

˜ ϕ α

 Thus, if the agents perform the cooperative  computing, they must coordinate the changes  

, the number of iterations S required for each temperature Τ ,   the sequence of temperatures 

, and the samples from the conditional probability (54). 

∆λk

Ti

 The coordination of the first three sequences is similar to those considered in 

Eqs.(52),(53) if one starts with the sets of acceptable values of ∆ , encodes them 

via the random entangled sequences and then decodes them after performing the appropriate 

measurements of the entangled particles: after this procedure, each agent will receive exactly the 

same (but randomly chosen) values of  . 

λk, S and Τi

∆λk, S and Τi

 The coordination of the samples out of the conditional probability (54), i.e. the 

coordination of the decisions about acceptance or rejection of the increases in the objective 

function    ̃ ϕ  require several additional procedures.  Suppose that each agent generates a Wiener 

process by establishing the following Langevin equation: 

  Ý j = Γ j t( )y          (55) 

where  is an additional variable possessed by the agent , and  Γ  is the Langevin force for 

the same type as those considered in Eqs.(1).   

yi Aj j t( )

 The solution of Eq.(55) describes a Wiener process whose probability obeys the simplest 

version of the Fokker-Planck equation: 

 
∂Rj

∂t
=

∂ 2Rj

∂y2           (56) 

Subject to the boundary conditions 

 
∂Rj

∂y
= 0 at y = 0 and y =1        (57) 
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The solution to Eq.(57) eventually approaches the equal probability distribution: 

           (58) Rj
o = Const

i.e. the values of   will be uniformly distributed over the interval (0,1). yi

 Then the variable 

   Zj = − n 1− y j( )         (59) 

will be exponentially distributed: 

           (60) W Zj( )= e−z j

Since the agent  receives the value of T  and he can calculate the increase of the objective 

function ∆ , by making the substitution in Eq.(60) 

Aj

g

j = Τ

gj = ∆

 Zj =
∆g
Τ

          (61) 

he can find the probability of acceptance of the increase ∆  g

 W − e− ∆g Τ           (62) 

and simulate the corresponding stochastic process by using Eqs.(59),(61). 

 As soon as the Langevin forces Γ  are entangled, they become point – to – point 

identical: 

j t( )

  Γ          (63) j t( ) ≡ Γk t( )

The same property is automatically transmitted to the stochastic process  i.e., yi and Zj ,

  y        (64) j t( ) ≡ yk t( ), Zj t( )≡ Zk t( )

Hence all the agents will make identical decisions about the acceptance or the rejection of the 

increase ∆ , and therefore their full cooperation in minimization of the function  g ˜ ϕ  is preserved. 

 One should recall that most of the computational problems can be reduced to the 

minimization of a function or a functional of the type (44), and all of these problems, in 

principle, can be solved by entangled agents in a fully cooperative way. 

 

9. Team Games 

 In this section we will turn from the entanglement – based cooperation to the 

entanglement –based competition. 

 Suppose that the agents are divided into two entangled groups: 
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        (65)   A1,…An, and B1,…Bn2
, n1 + n2 = n

under the condition that the agents from group A are not entangled with the agents from group B, 

and assume that the task of the agents A is to minimize the functional (42) using the control 

parameters   (see Eq.44), while the task of the agents B is to maximize the minimum of this 

functional using similar control parameters . 

′ λ j

′ ′ λ j

 One should recall that each agent   can exactly calculate the motion x  of the agent 

 given that he can detect his own motion   (see Eq.(15)), but he can calculate the motion 

of the agent  only probabilistically using Eq.(4).  For instance, he can find the expected 

motion of the agent : 

Aj ′ k t( )

Ak ′ x j t( )

Bg

Bg

          (66) ˜ ′ ′ x q t( ) = ξ
−∞

∞

∫ ρ ξ,t( )dξ

where   is defined by the corresponding Fokker-Planck equation (4) which, according to 

the preliminary agreement between the agents, is known in advance to both entangled and non-

entangled agents. 

ρ ′ ′ x q,t( )

 Thus, each agent can reduce the original functional to the following functions to be 

optimized: 

       (67) 
  
ϕ j

A =ϕ A ′ λ 1,… ′ λ n1,
˜ ′ ′ λ 1,… ˜ ′ ′ λ n2( ), j =1,2,…n1

 
  
ϕ j

B = ϕ B ′ ′ λ 1,… ′ ′ λ n2,
˜ ′ λ 1,… ˜ ′ λ n1( ), j = 1,2,…n2       (68) 

The agent  can find exact dependence of the function  upon the control parameters 

  which belong to the agents of the same group, as he could do in the case (47).  

But  the dependence of the function upon the control parameters    which 

belong to agents of the different group is approximate since these parameters enters Eq (67) via 

probabilistic relationships such as expectations (66).  That is why, in general 

Aj

…n1

ϕ A

  ′ λ k k =1,2,( )

′

ϕ A ′ ′ λ k k =1,2,…n2( )

            (69) ′ ′ λ q ≠ ′ ′˜ λ q

where  results from the substitution in Eq.(42) the expectations x  (see Eq.(66)) instead of 

the exact function .  The same is true for the function  where, in general, 

′ ′ ˜ λ q ′ ′ ˜ q t( )

′ ′ ˜ x q t( ) ϕ j
B

 ′ λ q ≠  ˜ λ q           (70) 
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 Now each agent  has to minimize the function (68) subject to the control parameters 

 by solving the system of equations of the type (50) 

Aj

  ′ λ k k =1,2,…n1( )

 
  

′ Ý λ k = −
∂ϕ A

∂ ′ λ k
, k = 1, 2,…n1         (71)

 However, in contradistinction to Eqs.(50), the system (71) is not closed since the function 

(67) contains the additional control parameters  (or, to be more precise, their approximations  

)  which are operated by the adversary agents B.  

′ ′ λ k

′ ′ ˜ λ k

 The simplest choice for the agent  is not to vary  at all: Aj ′ ′ ˜ λ 

   ′ ′ ˜ Ý 
λ k = 0, k =1,2,…n2          (72) 

However, the more effective choice would be to assume that 

 
  

′ ′ ˜ Ý 
λ k =

∂ϕ A

∂ ′ ′ ˜ λ k
, k =1,2,…n2         (73) 

since that simulates the attempt of the agents B to maximize the minima of the function  by 

moving its value against the corresponding gradient-decsent. 

ϕ A

 The same is true for the agents B:  

 
  

′ ′ Ý λ k = −
∂ϕ B

∂ ′ ′ λ k
, k =1,2,…n2         (74) 

 
  

′ ˜ Ý 
λ k =

∂ϕ B

∂ ′ ˜ Ý 
λ k

, k =1,2,…n1        (75) 

Strictly speaking, Eqs.(71)-(75) should be solved simultaneously with the equations of motions 

(1) or (15).  However, practically the time scale of Eqs.(71)-(75) is supposed to be much smaller 

than those of Eqs.(1) and (15), i.e. the latter can be considered as “frozen” in time.  Under those 

conditions, Eqs.(71),(73) and Eqs. (74),(75) are decoupled.  Each of them does not represent a 

gradient system anymore because it simulated conflicting objectives of the agents A and B.  

Therefore, the solutions to these systems (which, in general, will be different) may approach 

stationary, periodic, or chaotic attractors, and that, eventually will effect the motions of the 

agents as well as the values of the functionals to be optimized. 

 

10. Maxwell’s Demon and Inverse Diffusion 
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 An appearance of the Maxwell’s demon effects in the system under consideration could 

be predicted from the very  beginning since the agents are represented by physical particles with 

intelligence.  Although this intelligence is restricted to receiving and interpretation only totally 

random messages, it is sufficient to demonstrate phenomena that are in apparent “violation” of 

the second law of  thermodynamics .  For that purpose we will turn to the governing equations of 

the active system in the form (27), and assume that the weights  g  depend upon the agents 

velocities as follows:  

ij

     (76) gjj = 1, gjk =
1 if υ j

2 < υo
2

0 if υ j
2 >υ o

2

 
 
 

  
, υ o = Const, υ j

2 = Ý x i
j( )( )2

i =1

d

∑

where  is the velocity of the  agent, and  is the velocity chosen to separate slow and fast 

agents. 

υ j jth υo

 The rule (76) for g  can be implemented in a dynamical way.  Indeed, suppose that each 

 is governed by the following dynamical equation: 

jk

g jk

      (77)   Ý g jk = gjk gjk −1( )υ j
2 −υ o

2( ), k =1,2,…n −1; k ≠ υo

This equation has two equilibrium points: 

          (78) gjk = 0 and gjk =1

When , the first point in Eq. (78) is a repeller, and the second one is an attractor, i.e., 

.  Conversely, when ,  the first point is an attractor, and the second one is a 

repeller, i.e., g .  Therefore, the rule (76) is implemented regardless of  the initial values 

.  It is implied that the dynamics in Eq. (77) must have much smaller scale than those in 

Eq. (27) so that the agents velocities  can be treated as frozen during the transient dynamics in 

(77). 

υ j
2 <υ o

2

0)

gjk = 1

gjk t =(

υ j
2 <υ o

2

jk = 0

υ j

 One should notice that in order to implement the rule (76), the  agent does not need to 

know the weights of the other agents, i.e., he acts autonomously. 

jth

 After the rule (76) is implemented, the matrix of the weights attains the following form: 
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gjk =

1 1 1

1 1 1
0 010 0
0 010

0 01

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

        (79) 

Its determinant can be factored as: 

 

 

  

det gjk = det

1 1

1 1

 

 

 
 
 
 

 

 

 
 
 
 

det

1 0 0
0 1 0

0 1

 

 

 
 
 
 

 

 

 
 
 
 

     (80) 

 

The first sub-matix is idempotent, and its rank 

            (81) r1 =1

Hence, according to the results presented in the Section 4, the corresponding sub-group of slow 

agents  becomes fully entangled regardless of the initial values of the corresponding weights 

. 

A1

1,2  gjk j = ,…n1; k =1,2,…n( )
 The second sub-matrix in Eq. (81) is the identity matrix, and its rank is equal to its 

dimensionality: 

            (82) r2 = n2

This means that the subgroup  of fast agents becomes totally uncorrelated. A2

 Let us now turn to the statistical interpretation of the situation.  Suppose, for simplicity, 

that the initial state of the agents was characterized by the weights: 

          (83) gjk = δ jk =
1 if k = j
0 if k ≠ j

 
 
 

Then as follows from Eq. (27), the rank of the weight matrix 

 rank gik = n at t = 0         (84) 
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This means that initially all the agents were independent,  and the corresponding active system 

performed Brownian motion.  Its temperature as a macroscopic characteristic could be found 

from the average  kinetic  energy for d = 3( ) : 

 Τ =
ε
κ

< Ý x i
j( )( )

j=1

n

∑
i =1

3

∑
2

>         (85) 

After the topological self-organization (77), the slow agents will have the temperature lower than 

(85), while the fast agents will raise their temperature so that 

           (86) T1 < T < T2

But in addition to that, the groups of agents  will depart from each other in space.  In 

order to show that, start with the group of fast agents  who will still perform a Brownian 

motion (see Eq. (82)).  If n  is sufficiently large ( , it is fair to say that the center of mass 

of this group 0  will not change its position in space. 

A1 and A2

n2 >>

A2

)2 1

2

 Let us turn now to the group A .  In order to trivialize the situation, we will assume that 

in Eq. (27): 
1

          (87) fi
j( ) x j( ){ }( )≡ 0

Then one arrives at the following (simplified) version of Eq. (27): 

         (88) Ý x j
j( ) = ε Γ k( )

k=1

n1

∑ , i = 1,2,3;

As follows from Eq. (86), 

 )          (89) Ý x i
j( ) = Ý x i

q(

i.e., all the agents of the group  will move along equidistant trajectories, and therefore, the 

whole group will perform a rigid translationary motion.  At the same time, each particular 

trajectory can be found form the Langevin equation (88) in the form of a realization of the 

Wiener stochastic process (see Eq. (4)): 

A1

 
  

∂ρi
j( )

∂t
= εn1

∂ 2 ρn
j( )

∂xi
2 , j = 1,2,…n1; i = 1,2,3     (90) 

whence 

 ρi
j( ) =

1
4πεn1t

exp −
xi

2

4εn1t
 

 
 

 

 
 , i = 1, 2,3      (91) 
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Thus, the rigid translationary motion of the agents  can be characterized by only one 

trajectory, for instance, the trajectory of the center of mass 0  of these agents. 

A1

1

 Now let us try to evaluate the distance 0  between the centers of mass of the groups of 

agents .  Since at t , the total system performed a Brownian motion, both the agents 

 were indistinguishable forming a homogenious mixture.  Consequently, their centers 

of mass coincided: 

102

A1 and A2

A2

= 0

A1 and

          (92) 0102 = 0  at t = 0

After the topological self-organization (77), the center 0  has not changed its position (as was 

noticed earlier), but the center 0  started its random motion according to Eq. (91).  (Here we 

have chosen the case when the motions along each of three space coordinates  are 

identical). 

2

1

x1,x2, and x3

 The expected distance between the centers of mass: 

 0102 = σ = 2πεn1t4 → ∞ as t → ∞        (93) 

where  is the variance of the stochastic process (91).  Thus, eventually  the agents A  

will be separated in space, and one arrives at apparent violations of the second law of 

thermodynamics.  Indeed, the entropy of the total system  decreases (since the agents  become 

organized), heat flows from a cold place Τ  to a hot place T ,  the difference of the temperatures 

 can generate work, the initially homogeneous mixture of agents  turns into two 

separated groups, and that can be characterized as an inverse diffusion, etc. The resolution 

is that the active system under consideration is not isolated:  it receives information (via the 

quantum entanglement) from the external world, and this information is shared and processed by 

the agents.  However, according to the Landauer’s principle, any erasure of information is 

necessarily a dissipative process.  But any information processing performed by the agents must 

include these erasures.  Similar energy dissipation can be associated with other components of 

the information processing such as measurement, recording, etc. 

σ 1 and A2

A1

2

T2 −T1 A1 and A2

 

11. Conclusions 

 The main purpose of this study was to better understand the degree of usefulness of 

entanglement-based communications without classical channels.  Obviously that imposed certain 

limitations upon the correlations between the agents; in particular, it forced us to create some 
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special abstract assumptions which, at the first sight, are far from practical applications.  

Nevertheless it has been demonstrated that even under a severe constraint imposed by the 

absence of a classical channel, and on the contrary to a well established belief that entanglement-

based messages are useless, the active system can perform a number of emerging phenomena 

which lead to cooperation, competition, self-organization, etc. 
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