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Abstract: - Coupled evolution of state and topology of dynamical networks is introduced.  Due to well 
organized tensor structure, the governing equations are presented in a canonical form, and required 
attractors as well as their basins can be easily implanted and controlled.  This new class of dynamical 
networks can represent phenomenological models for self-organization of biomolecular sequences or of 
the genome in order to understand enormous complexity in their behavior 
 
 Recent advances in nonlinear dynamics opened up a new direction in information processing 
based upon special properties of solutions to dynamical systems.  In this new role, the dynamical system 
is not derived from the Lagrange or Hamilton principles, but it is rather created to simulate behavior of an 
observed object whose law of motion is not well understood.  For instance, even the simplest living 
systems interact in a “non-Newtonian” way via flows of information which are produced and processed 
by a signaling system whose complexity on a bio-chemical level is enormous.  In order to incorporate this 
kind of a phenomena into the process of self-organization and pattern formations on the physical level of 
description, one has to find a dynamical equivalent which would capture the phenomenology of the 
observed behavior.  Such an equivalent can be associated with the concept of an attractor which is the 
most powerful modelling tool for synthesis of complex patterns of behavior.  Attractor is a stable 
dissipative structure which does not depend (at least, within a certain basin) upon the initial conditions.  
Due to this property, the whole history of evolution prior to attraction becomes irrelevant, and that 
represents a great advantage for information processing, and in particular, for associative memory and 
pattern recognition.  The central problem of the synthesis of dynamical networks for the purpose of 
information processing is to place a prescribed type of attractors (with the corresponding basins) at 
prescribed locations and explicitely control these locations subject to changes of the objective of the 
performance.  Partly this problem is solved by recurrent neural networks which represent the most 
effective analog tool of information processing.  We will start with a brief review of this dynamical model 
in order to outline some of its limitations. 
 The standard form of recurrent neural networks (NN) is[1] 

         (1) Ý x i = −xi + σ wij xj
i

∑ 
  

 
  , wij = Const

where  are state variables, w  are control parameters, or interconnection weights (associated with the 
NN topology), and σ ⋅  is the sigmoid function. 

xi ij

( )
 The system (1) is nonlinear and dissipative (i.e., div Ý x = 0) due to the sigmoid function.  The 
nonlinearity and dissipativity are necessary (but not sufficient) conditions that the system (1) has 
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attractors.  The locations of the attractors and their basins in phase (or configuration) space are prescribed 
by an appropriate choice of the synaptic interconnections w  which can be found by solving an inverse 
problem (followed by the stability analysis), or by learning which is a dynamical relaxation procedure 
based upon iterative adjustments of w  as a result of comparison of the net output with known correct 
answers.  In both cases, w  are constant, and that is the first limitation of recurrent NN.  Indeed, although 
the NN architecture (1) is perfectly suitable for such tasks as optimization, pattern recognition, associative 
memory, i.e., when fixed topology is an advantage, it cannot be exploited for simulation of a complex 
dynamical behavior which is presumably comprised of a chain of self-organizing patterns (like, for 
instance, in genome) since for that kind of tasks, variable topology is essential.  The latest review of NN 
with evolutionary topology as well as a numerical proof of concept can be found in 

ij

ij

ij

[2]  However, there is 
no general analytical approach to the synthesis of such NN.  And now we are coming to the second 
limitation of NN (1):  their architecture does not have a tensor structure.  Indeed, the state variables and 
the interconnections w  cannot be considered as a vector and a tensor, respectively since their invariants 
are not preserved under linear transformations of the state variables.  Obviously, the cause of that is the 
nonlinearity in the form of the sigmoid function.  That is why the dynamical system (1) (even with a fixed 
topology) cannot be decoupled and written in a canonical form; as a result of that, the main mathematical 
tools for NN synthesis are based upon numerical runs. 
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 In this paper we propose a new architecture for dynamical networks which reconciles 
nonlinearities and the tensor structure.  It will be shown that these networks can be written in a decoupled 
form, and that will allow one to implant any number of attractors with prescribed basins whose types and 
locations can be explicitely changed in real time. 
 We will start with the following trivial equation: 
 Ý x = wx ,           (2) 

and assume that the weight coefficient w  is coupled with the state variable  by the simplest linear law: x
          (3) w = a − x, a
Then, combining (2), and (3) one obtains: 
 Ý x = a − x( )x,            (4)  
The solution to Eq. (4) has two equilibrium points: 
 x = 0 and x           (5) 
which represent a repeller and a static attractor, respectively, if a  and a static attractor and a repeller 
if  a  . 

> 0,
< 0

 The basins of attractions are a 2   and  x < a 2 , respectively. 
 Hence, by changing the parameter a , one can explicitly control the location of the attractor as 
well as its basin. 
 Let us introduce a set of equations similar to  (2):  
        (6)   Ý x i

o = wii
oxi

o , − ˜ x ii
o, i ,"n

assuming that w    and     are the principal values of co-axial tensors ii
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and  is the state variable vector whose components  are referred to the principal 
directions of the tensors (7).  Here   are new auxiliary variables which later will be linearly related to 
the state variables . 

  X
o = x1

o,…xn
o{

xi
o

} xi
o

˜ x ii
o

 Then Eqs. (6) can be rewritten in an invariant form: 
 Ý X = WX, W = A − ˜ X           (8) 
and projected onto an arbitrary orthogonal system of  coordinates defined by the corresponding 
orthogonal matrix B  with the components b : ij

o      (9) xi = bij xi
o, wij = bikbkjwkk

o , ˜ x ij = bik bkj ˜ x kk , α ij = bikbkjαkk
o

Let us now define the auxiliary variable  such that ˜ x 

            (10) ˜ x ii
o = xi

o

i.e., the principal coordinates of the state variable vector are equal to the eigenvalues of the tensor X. 
 After the coordinate transformation (9), the relationship (10) between  will be more 
sophisticated since the components of the tensor   and of the vector  are changed by different rules 
(see Eq. (9)).  Combining Eqs. (9) and (10) yields: 

˜ x ii and xi

˜ x ii
o xi

o

 

      (11) ˜ x ij = bikbkj ˜ x kk
o = bikbkj xk

o = bikbkjbkq xq , i.e., ˜ x ij = bikbkjbkq xq

Hence, in the new coordinates, the system (6) supplemented by the condition (10) takes the following 

form: 

          (12)   Ý x i = wikxk , i =1,2,…n

         (13)   wij = aij − bikbkjbkq xq ; i, j = 1,2,…n

Eq. (12) forms a fully coupled and fully interconnected dynamical network since each state variable x  
directly connected to each of the rest variables.  Eq. (13) describes the joint evolution of the state  and 
topology.  However, despite the complexity of the system, it has a well organized tensor structure: its 
invariant properties such as dissipasivity, the number and the type of attractors, their basins, the distances 
between them, etc., are preserved under the linear transformations, and therefore, they can be found from 
Eqs. (6) and (10) which represent the same physical object in  special (principal) coordinates.  Since all 
the equations in (6) are decoupled, and each of its equations is identical to Eq. (2) and (3), one can 
conclude that it has a static attractor whose principal coordinates are: 

i

xi

  x i
o =

aii
o if aii

o > 0
0 if aii

o < 0
 
 
 

         (14) 

and the coordinates of the same attractor for the system (12), (13) are found from Eqs. (9): 

  x i = bij ˜ x i
o           (15) 

The coordinates of its boundaries are 

  xi
b = 1

2 bijaii
o           (16) 
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Thus, the dynamical network (12), (13) has a static attractor (15) whose position and basin can be 
explicitly controlled in real time via the corresponding changes of the parameters a . ii

o

 In order to place m equilibrium points, the system (8) should be generalized as follows: 

       (17) 
  
X
⋅

= Wq
q =1

m

∏ X, Wq = Aq − ˜ X , i = 1,2…n; q =1,2…m

 

Then Eqs. (12) and (13) take the form 

       (18)   Ý x i = wik1

1( )wk1k 2

2( ) "wk m j
q( ) x j , wij

q( ) = aij
q( ) − bikbkjbkp xp

The principal coordinates of the equilibrium points 

  

   x i q( )
o = aii q( )

o , i =1,2,…n; q = 1,2,…m        (19) 

and their coordinates in the system (18) 

 x i q( ) = bija jj
o            (20) 

About half of the equilibrium points will be attractors (they will alternate with repellers when q runs over 
1,2,…n). 
 So far the only static attractors were discussed.  In order to place periodic or chaotic attractors, we 
will move from differential to difference equations and replace Eqs. (2) and (3) by the following: 
       (21) x t+1( ) = w t( )x t( ), w t( ) = a 1 − x t( )( ), c = Const

Then instead of Eq. (4) one obtains the logistic map: 

 )          (22) x t+1( ) = a 1 − x t( )( )x t(

which has static attractors for a < 2( ), periodic attractors for 2 < a < 3.6( ) and chaotic attractors 
a > 3.6( )[3]. 

 Repeating the same line of argumentation as those described by Eqs. (6) – (13), one arrives at the 
following: 

         (23) xo i

t+1( )
= wo ii

t( )
xo i

t( )
, wo

ii

t( )
= ao ii 1 − xo

t( ) 
  

 
  

 

 )        (24) X t +1( ) = W t( ) X t( ), W t( ) = A − A ˜ X t(

 

 )       (25) xi
t +1( ) = wik

t( )xk
t( ), wij

t( ) = aij − bikbkjbkq xq
t(

The last two equations present the dynamical network in the tensor and the coordinate forms, 
respectively. 
 Let us start with placing a static attractor.  As follows from Eq. (22), the condition for that is 
           (26) xt = a 1− xt( )xt , i.e.,
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 xt =1 − 1
a            (27) 

while the other equilibrium point  is a repeller. xt = 0
 Then the principal and the transformed coordinates of the static attractor for Eqs. (23) are, 
respectively: 
 x i

o =1 − 1
aii

, x i = bij 1− 1
ajj( )         (28) 

If a periodic (  or a chaotic (  attractors of the logistic map (22) in the principal 
coordinates are approximated by functions 

2 < a < 3.6) )

)

)

a > 3.6

            (29) ˆ x j
o = fi t,aii(

then the assymptotic behavior of the solution to the dynamical network (25) in the basin of attraction is 
expressed as follows: 
           (30) ˆ x i = bij fj t,ajj(
 Let us now summarize the basic characteristics of the proposed architecture of dynamical 
networks (12), (13) and (25).  Firstly, the nonlinearity and dissipativity of the network is created by joint 
evolution of state and topology variable rather than by a sigmoid function.  Secondly, both the state 
variables and the interconnection weights are represented by the components of a vector and a second 
rank tensor, respectively, so that the invariant properties of the network can be exposed in a special 
(principal) system of coordinates.  In these coordinates, the network is reduced to a system of simple 
uncoupled equations which are suitable for an explicit and systematic synthesis of networks exhibiting 
complex behaviors, by placing and real-time control attractors with prescribed basins.  The main area of 
applications of such networks is inverse problems in dynamics: given solution-find the model.  For 
instance, there is a broad class of behaviors of enormous complexity performed by living systems [4] and 
in particular, by the human genome.  On the level of dynamical description, they can be presented as a 
chain of different self-organizing patterns whose changes are triggered by external conditions.  Since 
there is no accurate physical model for such systems, one of the most effective ways to study them is a 
black-box approach when the input-output relationships provided by observation data exploited to 
develop a phenomenological model.  The proposed dynamical network is structured to provide such a 
model.  The black-box capacity of this model is defined by the number of free controllable parameters.  
These parameters can be divided in two groups.  The first group consists of the weights 

  aii
q( ) i = 1,2,…n; q =1,2,…m( ).  They control invariant properties of the dynamics:  the number and types 

of attractors, their basins and relative positions.  It should be noticed that smooth changes of these 
parameters may cause abrupt qualitative changes in the solutions behavior (for instance, when a  
changes its sign, the attractors and repellers exchange their positions).  The  number of qualitatively 
different invariant features of the synthesized motion is, loosely speaking, of the order of n  if n  is the 
dimensionality of the network. 

ii
q( )

!

 The second group of the parameters consists of the components b  of the coordinate 
transformation.  These parameters are responsible for geometrical representation of the dynamical 
characteristics in the frame of reference to which the observation data are referred.  All the parameters 

 are supposed to be found by the best fit of the simulated motions into observation data. 

ij

aii
q( ) and bij

 Thus the proposed dynamical network can be viewed as a simple and effective tool for 
reconstruction of models for complex dynamical behaviors based upon observation data. 
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