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Abstract

Based upon quantum entanglement, several paradigms of self-organization (such as inverse diffusion, transmissions

of conditional information, decentralized coordination, cooperative computing, competitive games, topological evo-

lution in active systems) are introduced and discussed. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper was motivated by recent discovery and experimental verification of the most fundamental and still

mysterious phenomenon in quantum mechanics: quantum entanglement. Formally, quantum entanglement as well as

associated with it quantum non-locality follows from the Schr€oodinger equation; however, its physical meaning is still

under extensive discussions.

The most attractive aspect of quantum entanglement, in terms of a new quantum technology, is associated with

instantaneous transmission of messages on remote distances. However, practical applications of this effect are restricted

by the postulate adopted by many authors [5] that these messages cannot deliver any intentional information. That is

why all the entanglement-based communication algorithms must include a classical channel. The main challenge of this

study is to evaluate the degree of usefulness of entanglement-based communication technology without any classical

channels. The first attempt of this kind was presented in our earlier work [4] where it has been demonstrated how a

randomly chosen message can deliver non-intentional, but useful, information under special conditions which include a

preliminary agreement between the sender and the receiver. In this paper we are trying to extend this effort by applying

the entanglement-based correlations to an active system represented by a collection of intelligent agents. The problem of

behavior of intelligent agents correlated by identical random messages in a decentralized way has its own significance: it

simulates evolutionary behavior of biological and social systems correlated only via simultaneous sensoring sequences

of unexpected events. As shown in this paper that under the condition that the agents have certain preliminary

knowledge about each other, the whole system can exhibit emergent phenomena such as topological self-organization,

inverse diffusion; it also can perform transmission of conditional information, decentralized coordination, cooperative

computing, competitive games.

It is always a temptation to simulate any new quantum phenomenon by classical tools. In the case of quantum

entanglement such a possibility was excluded from the very beginning since this is a non-local phenomenon which does

not have any classical equivalents. However, one can argue that actually the active system under consideration becomes

classical as soon as the quantum message is received and interpreted by the agent; therefore, instead of quantum im-

plementation of the correlations between the agents, one can generate a pool of samples of stochastic processes in

advance, make copies and distribute them over the agents, so that any two agents to be correlated would have identical
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records of ‘‘random’’ messages. However, there is a fundamental flaw in such an implementation: the whole scenario of

the active system evolution is fully predetermined, and someone (for instance, those who generated, copied and dis-

tributed the messages) can know this scenario in advance. In principle, each agent also can find out his future messages

since the knowledge about this future has already existed. The difference between the quantum and classical cases is

similar to that between real-time and pre-recorded TV programs: in the first case, future is unpredictable, while in the

second case ‘‘future’’ has already happened, although the viewer may not know about that. In a more practical sense,

the difference between the quantum and classical implementations becomes important when the communications be-

tween the agents are supposed to be confidential: in the classical case, the confidential information, in principle, is

available long before it is needed, and that makes such communications less secure.

2. Active systems

Cooperation behavior of active systems is a fast growing field [1,2] comprising methods of statistical mechanics,

nonlinear dynamics and information processing. By an active system we will understand here a set of interacting agents

capable to process information. In the simplest case, each agent is represented by an inertionless classical point particle

moving in d dimensions under the combined influence of Newtonian and non-Newtonian forces:

_xxðjÞi ¼ f ðjÞi ðfxðjÞgÞ þ gðjÞii CðjÞðtÞ; fxjg ¼ xðjÞ1 ; xðjÞ2 ; . . . ; xjd ; i ¼ 1; 2; . . . ; d; j ¼ 1; 2; . . . ; n; ð1Þ

where xðjÞi is the position vector, f ðfxðiÞgÞ is the Newtonian force, CðjÞðtÞ is the non-Newtonian force generated by the

agent in response to received information, n is the total number of agents in the system, and gðjÞii ¼ gðjÞii ðfxðjÞg; tÞ.
The variety and the complexity of behavior of active systems depend upon the type of interactions between the

agents. So far we have not introduced any interactions on the level of Newtonian forces: in Eq. (1), the force f ðjÞ acting
upon the jth agent does not depend upon the coordinates of other agents. Let us turn now to the non-Newtonian forces

CðtÞ. Assuming that these forces result from uncorrelated information flows between the agents, the total effect can be

presented in the form of the Langevin force, i.e., white noise:

hCðjÞðtÞi ¼ 0; hCðjÞðtÞCðkÞðt0Þi ¼ 2d
jk
dðt 
 t0Þ: ð2Þ

In addition we will also assume that

jgiij � jfij; ð3Þ

i.e., the contribution of the non-Newtonian forces is much smaller than those of the Newtonian ones. Then each agent

can predict its own future motion only probabilistically via the corresponding Fokker–Planck equation [3],

oqðjÞ

ot
¼ DðjÞr2qðjÞ 
 r � ðqðjÞf ðjÞÞ; j ¼ 1; 2; . . . ; n; ð4Þ

where qðjÞddx is the probability of finding the jth agent obeying Eq. (1) within a cubical volume ddx centered at x at time
t, and DðjÞ is the diffusion tensor with the diagonal elements ðgðjÞii Þ

2
and zero non-diagonal elements.

The degree of unpredictability is measured by the entropy:

Ij ¼
Xn
i¼1

log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pe gðjÞii
� �2

t

r
¼ IðfxðjÞgÞ ð5Þ

if one starts in Eq. (1) with the sharp value of fxðjÞg at t ¼ 0. Hence, no matter how small the diffusion components g2ii,
eventually the entropy or the information capacity becomes large.

Obviously, the information capacity of the system is:

Iðfxgð1Þ; . . . ; fxgnÞ ¼
Xn
j¼1
Ij: ð6Þ

Since all the agents are independent, the conditional entropy

Ikj‘ ¼ I‘; ð7Þ

i.e., the knowledge of his own motion does not help an agent to predict motion of another agent.

In this paper, based upon the model of active systems represented by Eqs. (1) and (4) we are going to introduce a

special correlation between the agents in the following way: each agent simultaneously receives a sequence of random

746 M. Zak / Chaos, Solitons and Fractals 14 (2002) 745–758



but identical binary signals of the type (+) or ()) and it converts each signal into a space step Dx to the right or the left,
respectively, and these steps are performed during the corresponding time interval Dt.

Several properties of the proposed correlation should be emphasized.

First, there is no centralized source or a sender of the signal: each agent receives it by performing certain mea-

surements synchronized with the measurements of the others. Thereby the signal gets uniformly and simultaneously

distributed over the agents in a decentralized way.

Second, the signals transmit no intentional information that would favor one agent over another.

Third, all signals received by different agents are not only statistically equivalent, but also point-by-point identical.

Fourth, it is important to assume that each agent knows that all the other agents simultaneously receive the identical

signals.

Finally, the sequences of the signals must be true random so that no agent could predict the next step with the

probability different from 1/2.

It turns out that under these quite general assumptions, the active system can perform non-trivial tasks which in-

clude transmission of conditional information from one agent to another, simple paradigm of cooperation and self

organization such as inverse diffusion, etc.

In order to justify the usefulness of the proposed correlation paradigm, consider an earthquake which is represented

by some sequence of totally unpredictable jolts. All the ‘‘agents’’ (humans, animals) receive these unexpected signals

simultaneously, and from that moment their activity became correlated and organized: they run to shelter, turn of

pipelines, etc.

The second example is more sophisticated (but less idealized). Consider different social communities (or clubs) which

receive information from the corresponding (but different) newspapers or television programs. The behaviors of the

members of different clubs will be more independent. Now the following question can be asked: under what conditions

would members of one club start migrating to other clubs? When does the balance between mixing (i.e., diffusion) and

unmixing (i.e., inverse diffusion) occur? The answers to these questions can be started with the highly idealized para-

digm of the proposed correlations.

The physical implementation of this paradigm was inspired by the phenomenon of entanglement [5] which is the

most fundamental property of non-local quantum world. As will be shown below, all the five requirements listed above

can be implemented only via quantum entanglement.

3. Quantum entanglement in active systems

Let us assume that agents A1 and A2 possess a set of N particles (say, electrons), which are in a one-to-one

correspondence such that each pair is entangled; and suppose that the agent A1 performs a sequence of measure-

ments: one particle per unit time-step. Each measurement performed by the agent A1 has two equally probable

outcomes. In case of electrons, these outcomes can be spin-up (+) or spin-down ()). If (+) and ()) are converted by

the agent into the movements along an axis to the right or to the left, respectively, the sequence of the agent’s

measurement can be interpreted as a symmetric unrestricted random walk. Hence, by performing these measure-

ments, the agent A1 selected (randomly) one trajectory out of 2N equally probable trajectories of the corresponding

random walk. Due to entanglement, the agent A2 instantaneously receives this trajectory (after performing simul-

taneously the same type of measurements). This paradigm is easily generalizable to n entangled agents if each of them

has a set of N particles entangled pairwise with the similar particles of all the other agents. The usefulness of such

entanglement-based communications has been discussed in [4]. Here we will pay attention to other aspects of this

type of correlations.

Firstly, one can verify that quantum entanglement satisfies all the five conditions formulated in Section 1 concerning

decentralized correlations, namely: there is no single sender of the signals; the signals uniformly and simultaneously

distributed over the agents; there is no intentional information transmitted; the sequences of the signals are true

random. It should be emphasized that any attempt to simulate the same correlations classically would fail. Indeed, let us

assume that a stochastic force CðtÞ in Eq. (1) is generated classically. Then the probability that two different samples of

this force are point-by-point identical is vanishingly small, and therefore, such a classical simulation of the correlations

via quantum entanglement is unrealistic. But if one tries to generate one sample of CðtÞ copy it and distribute these

copies over the agents, then the randomness of the signals is destroyed: each signal becomes fully deterministic. In

addition, the idea of decentralized correlations is lost: those who made the copies of the sample of CðtÞ are in full control
of the evolution of the active system (1).

Secondly, we will discuss the degree of cooperation between the agents due to quantum entanglement. For that

purpose we will turn to the system (1). In order to trivialize the situation, we will consider only two one-dimensional
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agents subjected to linear deterministic forces. In addition to that, for mathematical convenience, we will assume that

the space steps Dx and the time-steps Dt of the random walk are small, i.e.,

Dx
x0

� 1;
Dt
T0

� 1; ð8Þ

where x0 and T0 are the characteristic lengths and time, respectively, and

ðDxÞ2

Dt
¼ 2: ð9Þ

This will allow one to preserve the continuous form of the Langevin equations in the system (1).

Now the equations of motion for two agents can be written in the following form:

_xx1 þ a1x1 ¼ C1ðtÞ; ð10Þ

_xx2 þ a2x2 ¼ C2ðtÞ: ð11Þ

One should recall that without quantum entanglement, the Langevin forces, although statistically equivalent, are not

point-to-point identical, i.e.,

C1ðtÞ 6�C2ðtÞ: ð12Þ

Therefore, one cannot eliminate them from Eqs. (10) and (11). However, in case these agents are entangled

C1ðtÞ � C2ðtÞ; ð13Þ

one obtains a fully deterministic relationship between the motions of the agents:

_xx1 þ a1x1 ¼ _xx2 þ a2x2: ð14Þ

In the general case, the entangled version of Eq. (1) yields:

_xxðjÞi
h


 f ðjÞi ðfxðjÞgÞ
i
gkk ¼ _xxðkÞi

h

 f ðkÞi ðfxðkÞgÞ

i
gjj; i ¼ 1; 2; . . . ; d; k; l ¼ 1; 2; . . . ; n: ð15Þ

In the following section we will give an interpretation of Eqs. (14) and (15) from the viewpoint of agents’ cooperation.

4. Transmission of conditional information

Let us turn to Eq. (14) and assume that the agent A1 can detect its own motion (which has been random before its

detection), i.e., the agent A1 detects x�1ðtÞ. Then, based upon Eq. (14), he can calculate exactly the motion of the agent A2
(although it is also random):

x2ðtÞ ¼ x2ð0Þe
a2 t þ
Z t

0

e
a2ðt
t0Þ _xx�1ðtÞ
h

þ a1x�1ðtÞ
i
dt0 . . . ð16Þ

It is implied that the agent A1 knows the deterministic part of the governing equation of the agent A2 as well as the initial
condition x2ð0Þ. Analogously, if the agent A2 can detect his own motion, he can calculate exactly the motion of the agent
A1 by the formula similar to Eq. (16). The same is true in the general case (15): if each agent can detect his own motion,
he can calculate motions of all other agents. In terms of information it means that

Ikj‘ ¼ 0; k; ‘;¼ 1; 2; . . . ; n; ð17Þ

i.e., given the motion of the agent A‘, the motions of all other agents Ak are fully predictable, and therefore, the

conditional information capacity drops to zero due to entanglement.

It should be recalled that without the entanglement, the same information capacity, or the measure of unpredict-

ability, is expressed by Eq. (5). However, based upon Eq. (5), one can argue that the gain in predictability due to the

entanglement is small since the coefficients gii are small (see Eq. (3)). In order to remove this argument, we will give the
following counter-example. Let us modify Eqs. (10) and (11) as follows:

_xx1 þ x1ð1þ x1Þð1
 x1Þ ¼ gC1ðtÞ; g > 0; ð18Þ

_xx2 þ x2ð1þ x2Þð1
 x2Þ ¼ gC2ðtÞ; g > 0: ð19Þ
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The deterministic version of Eq. (18)

_xx1 þ x1ð1þ x1Þð1
 x1Þ ¼ 0 ð20Þ

has three fixed points:

xð1Þ1 ¼ 0; xð2Þ1 ¼ 1; xð3Þ1 ¼ 
1: ð21Þ

The first point is a repeller, and the others are attractors. If the motions starts at x1 ¼ 0, with the probability 1/2 it will

be trapped at x1 ¼ 1 or x1 ¼ 
1. The same result will be obtained for Eq. (18) since the Langevin force C1ðtÞ with equal
probability 1/2 can have sign (+) or ()) at t ¼ 0. Since Eqs. (18) and (19) are identical, similar conclusion can be made

about the solution to Eq. (19). In case when agents A1 and A2 are not entangled, the outcome of the solution to Eq. (18)
does not help to predict the outcome of the solution to Eq. (19). However, if the agents A1 and A2 are entangled, and the
agent A1 found himself in the well x1 ¼ 1, then with the probability one he can conclude that the agent A2 is in the well

x2 ¼ 1 since, as a result of the identity (13),

SignC1ð0Þ ¼ SignC2ð0Þ: ð22Þ

It should be emphasized that this result does not depend upon the value of g in Eqs. (18) and (19): since the Langevin

force triggers the instability, g can be vanishingly small. At the same time, the gain in predictability is significant: from

total unpredictability (without the entanglement) to complete predictability (with the entanglement).

5. Topological complexity

So far we have only discussed two extreme cases when the active system is totally uncorrelated (see Eq. (1)) and when

it is fully entangled (see Eq. (15)). However, there are a lot of other possibilities when certain groups of agents are

entangled with each other, but not with the rest of the agents. Any such associations will form a particular topological

structure. The number of structures is equal to the number of different partitions of a sequence

n ¼ n1 þ n2 þ � � � þ nm ðm6 nÞ ð23Þ

of objects into m non-overlapping classes if each class na consists of indistinguishable na objects. This number is given

by the multinomial coefficients:

pm ¼ n!
n1!n2! � � � nm!

; m ¼ 1; 2; . . . ; n ð24Þ

and it can be associated with the number of topological complexions. Another type of partition can be based upon the

master–slave principle: one group includes s independent (master) agents, and the second group includes the rest n
 s
(slave) agents which are entangled with the masters such that in order to detect their motions, one has to know motions

of all s masters,

In
sjs ¼ 0: ð25Þ

The number of complexions in this case is

p0 ¼ n!
s!ðn
 sÞ! : ð26Þ

In order to include the topological changes into the active system, one can assume that each agent has n sets of N

particles such that an rth set corresponds to possible entanglement with the rth agent. Then Eq. (1) can be rewritten as

follows:

_xxðjÞi ¼ f ðjÞi ðfxðjÞgÞ þ e
Xm
k¼1

gjkCðkÞ; i ¼ 1; 2; . . . ; d; j ¼ 1; 2; . . . ; n; m6 n; ð27Þ

e ¼ Const: > 0; jej � jf j: ð28Þ

As it follows from Eqs. (27) and (28), the contribution of Langevin forces CðkÞ is still small in comparison to the de-

terministic forces f ðjÞ. The Langevin force CðjÞ of the agent Aj is now a linear weighted combination of forces CðkÞ

resulting from possible entanglement with the agent Ak . By choosing a weight gjk, the agent Ak is actually chooses a

degree of a contribution from the agent Aj.
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The condition that each topological structure consists of non-overlapping classes of agents can be now expressed as

follows:

gik ¼ 0 only if gkj ¼ 0: ð29Þ

Indeed, under this condition, the entanglement of any two agents is reciprocal.

The type of topological structure is defined by the rank of the determinant of the matrix kgikk.
If m ¼ n ¼ r, then the active system (27) is totally uncorrelated. Indeed, in this case one cannot eliminate the

Langevin forces CðkÞ in order to correlate the deterministic forces, and Eq. (27) can be reduced to Eq. (1). Another

extreme is when the system is fully correlated, and is obtained if r ¼ 1. Then Eq. (27) can be reduced to Eq. (15). In the

case

1 < r < n; ð30Þ

one arrives at the variety of different master–slave topological structures, the total number of which follows from Eq.

(26). Using the terminology of the statistical mechanics, one can introduce the Boltzmann entropy:

E ¼ 
 s
n
ln
s
n

�
þ n
 s

n
ln
n
 s
n

�
: ð31Þ

If the determinant of the matrix kgikk is representable as a product:

det gjk
		 		 ¼

Ym
q¼1

det gðqÞjk
			 			; ð32Þ

then the active system is partitioned into m non-overlapping classes (see Eq. (23)), and the number of complexions for a

fixed m is presented by Eq. (24). The corresponding Boltzmann entropy takes the form:

Em ¼ 

Xm
i¼1

ni
n
ln
ni
n
: ð33Þ

In the context of the entangled active systems, the entropy Em can be associated with the information capacity due to the
topological complexity.

6. Topological evolution

In this section we will discuss possible ways in which the topology of the active system (in terms of the degree of its

entanglement) can change due to decentralized random choices made by the agents. So we will assume that each agent

Aj, after certain time interval DT makes random choices for the weights gjk. In order to separate the topological

evolution from the dynamics at a fixed topology, one should choose

DT � Dt; ð34Þ

where Dt is the timescale of the Langevin forces (see Eqs. (8) and (9)).

Since the topological changes do not require from the agents any ‘‘non-physical’’ properties (such as measurements

and their conversion into the corresponding movements), the topological evolution will obey the laws of statistical

mechanics, namely: the system will approach such a topological structure which can be arranged in the largest number

of different ways, i.e., which is characterized by the maximum number of complexions P. As it follows from Eq. (24), P

approaches its maximum at m ¼ n, i.e., when

p ¼ n! ð35Þ

This means that irrespective of the initial topology, the active system eventually will approach the topology of totally

uncorrelated active system (1).

Let us assume now that after the same time interval DT , each agent Aj chooses equal contributions from all other

agents, i.e.,

ajk ¼ ajq: ð36Þ

Then the matrix kajkk will be idempotent, and its rank

r ¼ 1; ð37Þ
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hence, one arrives at another extreme: as noticed above, the active system becomes fully correlated, and it is described

by Eq. (16).

7. Topological self-organization

Let us now assume that the agents have an additional channel of entanglement that coordinates their global to-

pology: each agent performs the corresponding measurements and receives the binary sequence of N pluses or minuses

which can encode 2N different messages. One should recall that due to the entanglement, all the agents receive identical

sequences. Suppose that, according to a preliminary agreement between the agents, each of 2N sequences encodes a

certain topology in terms of the corresponding choice of the weights ajk. In order to count all the possible topological

structures, we will turn to Eq. (32): according to Eq. (24), there are Pm ways in which the matrix kajkk can be partitioned
into the product of m sub-matrixes, when m ¼ 1; 2; . . . ; n; in addition to that, each sub-matrix can have the rank

r ¼ 1; 2; . . . ; sm where sm is the number of master agents in the mth sub-matrix. Hence, the total number of different

topological structures is:

P ¼
Xn
m¼1

n!
n1!n2!nm!

nm!
sm! nm 
 smð Þ! ;

Xn
m¼1

nm ¼ n; ð38Þ

where nm is the size of the mth sub-matrix. This number must be equal to the number of different entangled sequences

2N , i.e., the number of entangled particles N,

N ¼ log2 P : ð39Þ

As soon as an encoded topological structure is selected, its actual implementation requires from each agent to assign

certain values to the weights gik which would satisfy the constraints imposed upon the matrix kajkk by the selected

topology. Obviously there are an infinite number of ways in which these weights can be chosen, and each agent can

choose them randomly. Hence, although the additional channel of entanglement uniquely defines the topological

structure of the active system, it leaves the agent free to choose an actual implementation. In order to specify such an

implementation the agents must have an additional preliminary agreement, for instance: all the coefficients ajk can have
only binary values 0 or 1. Then there is only

P ¼ n2ð Þ!
ðn2=2Þ!ð Þ2

ð40Þ

different matrixes kajkk and each of them can be encoded by the entangled sequences generated by ~NN pairs of particles

where

~NN ¼ log2 ~PP : ð41Þ

In this case, the structure of the active system, in terms of Eq. (27), is defined uniquely.

Thus one arrives at topological self-organization triggered by quantum entanglement in a random and decentralized

way.

One should recall that transmission of conditional information via encoding of random messages delivered by

quantum entanglement and exploited above has been discussed earlier in [4].

8. Entanglement-based cooperative computations

In this section we will return from the topological evolution to the dynamics with a fixed topology. Suppose that the

agents have another preliminary agreement: to minimize a certain functional:

u ¼ u fxðtÞg1; fxðtÞg2; . . . ; fxðtÞgðnÞ
h i

; fxgðjÞ ¼ xðjÞ1 ; . . . ; xðjÞa ; ð42Þ

where fxðtÞga
is the motion of the agent Aj.

For that purpose, each agent has to be equipped with a control parameter which changes its deterministic

force:

fj ¼ fjðxj; kjÞ: ð43Þ
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Then, as it follows from Eq. (1), the motion of an agent Aj ðj ¼ 1; 2; . . . ; nÞ will be a function of kj and a functional of

the Langevin force CðjÞ while each agent will have its own version of it,

u ¼ ~uuj k1; . . . ; knC
ð1ÞðtÞ; . . . ;CðnÞðtÞ

� �
; j ¼ 1; 2; . . . ; n: ð44Þ

Its minimum as a function of kj can be found by each agent Aj from the system of the following equations:

o~uuj

okk
¼ 0; j; k ¼ 1; 2; . . . ; n: ð45Þ

However, in the case (1) when the agents are not entangled, the explicit form of Eq. (45),

kj ¼ ~kkj Cð1ÞðtÞ; . . . ;CðnÞðtÞ
� �

ð46Þ

defines kj as a stochastic process driven by the Langevin forces. This means that the control parameters are not known

exactly, but they can be only predicted with some probability. As demonstrated in the example presented by Eqs. (18)

and (19), such a prediction can be totally useless even if the variance of the Langevin force is vanishingly small. Thus,

the cooperation of non-entangled agents, in principle, is ineffective.

Let us turn now to the fully entangled case described by Eq. (15). As it follows from these equations, due to the

entanglement, the Langevin forces can be eliminated from the functional (44). Indeed, if the agent Aj ðj ¼ 1; 2; . . . ; nÞ
knows his own motion fxðtÞgj, and assuming again that he knows the deterministic parts of the models of all other

agents as well as the corresponding initial conditions he can calculate exactly (using Eq. (15)) the motions of the rest of

the agents. As a result of that, each agent will have the same functional in the form of the function of the control

parameters k1,

uj ¼ ~uu0ðk1; . . . ; knÞ ð47Þ

and the same equations

o~uu0

okk
¼ 0; kk ¼ k0k ; k ¼ 1; 2; . . . ; n: ð48Þ

Hence, the entangled agents minimize the functional (42) in a fully cooperative and the most effective way. In many

cases, the function (47) has several local minima, and therefore, Eq. (48) has the corresponding number of roots. Then a

dynamical approach to find the global minimum is more effective. For that purpose, Eq. (48) is replaced by the dy-

namical equation:

_kkk ¼ 
 o~uu0

okk
; ð49Þ

whose solution converges to the roots of Eq. (48). (This convergence is guaranteed by the fact that Eq. (49) forms a

gradient system with ~uu0 playing the role of a Lyapanov function). Depending upon the initial conditions, this system

will converge to one of the local minima. In order to continue the search for the global minimum, the following strategy

is applied: Eq. (49) is solved many times with different initial conditions,

k0k ¼ kkðt ¼ 0Þ; ð50Þ

which are selected at random; then for each solution the value of the function ~uu0 in (47) is computed, and the lowest

value is accepted as the solution to the problem. However, if the agents are acting independently, the randomly chosen

initial conditions (50) are different for each agent, and the cooperation is lost: eventually each agent will arrive at its

own ‘‘version’’ of the global minimum subject to its probabilistic evaluations of the motions and the decisions of other

agents.

However, if the agents are entangled, they can have an additional channel that encodes the initial condition (50) such

that each agent receives the same randomly chosen values k0k . Indeed, suppose that there is a set of possible s values for
k0k :

k0k1 ; k
0
k2
; . . . ; k0ks : ð51Þ

Then this sequence can be encoded via a special channel of entanglement with NS entangled particles.

NS ¼ log2 s ð52Þ
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in the same way as described in Section 6 (see Eq. (41)), so that each agent will receive the same value kki after decoding
the sequence of random entangled signals, and therefore all the agents will arrive at the same global minimum in a fully

cooperative way.

The entanglement-based cooperation is even more important in case when the objective function (44) results from a

combinatorial problem, for instance, a traveling salesman TSP problem. The main characteristic of such problem is that

there is no analytical formulation for a gradient, and therefore, Eqs. (45) and (49) cannot be written down explicitly.

One of the most reliable approaches to the solution of these problems is Monte Carlo method combined with the

simulated annealing optimization technique. The algorithm starts with some initial configuration (for instance, initial

tour in case of TSP) of the system and then changes are made to the system (for instance, the swap pairs of cities). These

changes generate a numerical version of the gradient,

o~uu0

okk
ffi D~uu0

Dkk
; k ¼ 1; 2; . . . ; n: ð53Þ

Changes that decrease ~uu0 are accepted unconditionally, while those that increase it are also accepted, but with a

conditional probability,

wðDgÞ ¼ e
Dgjt; ð54Þ

where Dg is the amount of increase in the objective function, and T (‘‘temperature’’) is a parameter that is subject to

control. Condition (54) is supposed to prevent the process from being trapped in a local minimum since by occasionally

accepting increases in the function ~uua, the process can climb out of local minimum. The problem with this approach is

in developing adequate annealing schedule, i.e., the prescription for the number of iterations required at each tem-

perature T as this temperature is gradually lowered.

Thus, if the agents perform the cooperative computing, they must coordinate the changes Dkk , the number of it-
erations S required for each temperature T, the sequence of temperatures Ti, and the samples from the conditional

probability (54).

The coordination of the first three sequences is similar to those considered in Eqs. (52) and (53) if one starts with the

sets of acceptable values of Dkk , S and Ti, encodes them via the random entangled sequences and then decodes them

after performing the appropriate measurements of the entangled particles: after this procedure, each agent will receive

exactly the same (but randomly chosen) values of Dkk , S and Ti.
The coordination of the samples out of the conditional probability (54), i.e., the coordination of the decisions about

acceptance or rejection of the increases in the objective function ~uu0 requires several additional procedures. Suppose that

each agent generates a Wiener process by establishing the following Langevin equation:

_yyj ¼ CjðtÞ; ð55Þ

where yi is an additional variable possessed by the agent Aj, and CjðtÞ is the Langevin force for the same type as those

considered in Eq. (1).

The solution of Eq. (55) describes a Wiener process whose probability obeys the simplest version of the Fokker–

Planck equation:

oRj
ot

¼ o2Rj
oy2

ð56Þ

subject to the boundary conditions

oRj
oy

¼ 0 at y ¼ 0 and y ¼ 1: ð57Þ

The solution to Eq. (57) eventually approaches the equal probability distribution:

R0j ¼ Const:; ð58Þ

i.e., the values of yi will be uniformly distributed over the interval ð0; 1Þ.
Then the variable

Zj ¼ 
 lnð1
 yjÞ ð59Þ

will be exponentially distributed:

W ðZjÞ ¼ e
zj : ð60Þ
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Since the agent Aj receives the value of Tj ¼ T and he can calculate the increase of the objective function Dgj ¼ Dg, by
making the substitution in Eq. (60),

Zj ¼
Dg
T

; ð61Þ

he can find the probability of acceptance of the increase Dg

W 
 e
DgjT ð62Þ

and simulate the corresponding stochastic process by using Eqs. (59) and (61).

As soon as the Langevin forces CjðtÞ are entangled, they become point-to-point identical:

CjðtÞ � CkðtÞ: ð63Þ

The same property is automatically transmitted to the stochastic process yi and Zj, i.e.,

yjðtÞ � ykðtÞ; ZjðtÞ � ZkðtÞ: ð64Þ

Hence all the agents will make identical decisions about the acceptance or the rejection of the increase Dg, and therefore
their full cooperation in minimization of the function ~uu is preserved.

One should recall that most of the computational problems can be reduced to the minimization of a function or a

functional of the type (44), and all of these problems, in principle, can be solved by entangled agents in a fully co-

operative way.

9. Team games

In this section we will turn from the entanglement-based cooperation to the entanglement-based competition.

Suppose that the agents are divided into two entangled groups:

A1; . . . ;An and B1; . . . ;Bn2 ; n1 þ n2 ¼ n ð65Þ

under the condition that the agents from group A are not entangled with the agents from group B, and assume that the

task of the agents A is to minimize the functional (42) using the control parameters k0
j (see Eq. (44)), while the task of the

agents B is to maximize the minimum of this functional using similar control parameters k00
j .

One should recall that each agent Aj can exactly calculate the motion x0kðtÞ of the agent Ak given that he can detect his
own motion x0jðtÞ (see Eq. (15)), but he can calculate the motion of the agent Bg only probabilistically using Eq. (4). For
instance, he can find the expected motion of the agent Bg:

~xx00qðtÞ ¼
Z 1


1
nqðn; tÞdn; ð66Þ

where qðx00q ; tÞ is defined by the corresponding Fokker–Planck equation (4) which, according to the preliminary

agreement between the agents, is known in advance to both entangled and non-entangled agents.

Thus, each agent can reduce the original functional to the following functions to be optimized:

uA
j ¼ uA k0

1; . . . ; k
0
n1
; ~kk00

1; . . . ;
~kk00
n2

� �
; j ¼ 1; 2; . . . ; n1; ð67Þ

uB
j ¼ uB k00

1; . . . ; k
00
n2
; ~kk0

1; . . . ;
~kk0
n1

� �
; j ¼ 1; 2; . . . ; n2: ð68Þ

The agent Aj can find exact dependence of the function uA upon the control parameters k0
k ðk ¼ 1; 2; . . . ; n1Þ which

belong to the agents of the same group, as he could do in the case (47). But the dependence of the function uA upon the

control parameters k00
k ðk ¼ 1; 2; . . . ; n2Þ which belong to agents of the different group is approximate since these pa-

rameters enter Eq. (67) via probabilistic relationships such as expectations (66). That is why, in general

k00
q 6¼ ~kk00

q; ð69Þ

where ~kk00
q results from the substitution in Eq. (42) the expectations ~xx00qðtÞ (see Eq. (66)) instead of the exact function ~xx00qðtÞ.

The same is true for the function uB
j where, in general,

k0
q 6¼ ~kk0

q: ð70Þ
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Now each agent Aj has to minimize the function (68) subject to the control parameters k0
k ðk ¼ 1; 2; . . . ; n1Þ by

solving the system of equations of the type (50),

_kk0
k ¼ 
 ouA

ok0
k

; k ¼ 1; 2; . . . ; n1: ð71Þ

However, in contradistinction to Eq. (50), the system (71) is not closed since the function (67) contains the additional

control parameters k00
k (or, to be more precise, their approximations ~kk00

k ) which are operated by the adversary agent B.

The simplest choice for the agent Aj is not to vary ~kk00 at all:

_~kk~kk
00
k ¼ 0; k ¼ 1; 2; . . . ; n2: ð72Þ

However, the more effective choice would be to assume that

_~kk~kk
00
k ¼

ouA

o~kk00
k

; k ¼ 1; 2; . . . ; n2; ð73Þ

since that simulates the attempt of the agents B to maximize the minima of the function uA by moving its value against

the corresponding gradient-descent.

The same is true for the agents B:

_kk00
k ¼ 
 ouB

ok00
k

; k ¼ 1; 2; . . . ; n2; ð74Þ

_~kk~kk
0
k ¼

ouB

o
_~kk~kk
0
k

; k ¼ 1; 2; . . . ; n1: ð75Þ

Strictly speaking, Eqs. (71)–(75) should be solved simultaneously with the equations of motions (1) or (15). However,

practically the timescale of Eqs. (71)–(75) is supposed to be much smaller than those of Eqs. (1) and (15), i.e., the latter

can be considered as ‘‘frozen’’ in time. Under those conditions, Eqs. (71), (73) and Eqs. (74), (75) are decoupled. Each of

them does not represent a gradient system anymore because it simulated conflicting objectives of the agents A and B.

Therefore, the solutions to these systems (which, in general, will be different) may approach stationary, periodic, or

chaotic attractors, and that, eventually will effect the motions of the agents as well as the values of the functionals to be

optimized.

10. Maxwell’s demon and inverse diffusion

An appearance of Maxwell’s demon effects in the system under consideration could be predicted from the very

beginning since the agents are represented by physical particles with intelligence. Although this intelligence is restricted

to receiving and interpretation only totally random messages, it is sufficient to demonstrate phenomena that are in

apparent ‘‘violation’’ of the second law of thermodynamics. For that purpose we will turn to the governing equations of

the active system in the form (27), and assume that the weights gij depend upon the agents’ velocities as follows:

gjj ¼ 1; gjk ¼
1 if t2j < t20
0 if t2j > t20


; t0 ¼ Const:; t2j ¼

Xd
i¼1

_xxðjÞi
� �2

; ð76Þ

where tj is the velocity of the jth agent, and t0 is the velocity chosen to separate slow and fast agents.

The rule (76) for gjk can be implemented in a dynamical way. Indeed, suppose that each gjk is governed by the

following dynamical equation:

_ggjk ¼ gjk gjk
�


 1
�

t2j
�


 t20
�
; k ¼ 1; 2; . . . ; n
 1; k 6¼ t0: ð77Þ

This equation has two equilibrium points:

gjk ¼ 0 and gjk ¼ 1: ð78Þ

When t2j < t20, the first point in Eq. (78) is a repeller, and the second one is an attractor, i.e., gjk ¼ 1. Conversely, when

t2j < t20, the first point is an attractor, and the second one is a repeller, i.e., gjk ¼ 0. Therefore, the rule (76) is imple-

mented regardless of the initial values gjkðt ¼ 0Þ. It is implied that the dynamics in Eq. (77) must have much smaller

scale than those in Eq. (27) so that the agent’ velocities tj can be treated as frozen during the transient dynamics in (77).
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One should notice that in order to implement the rule (76), the jth agent does not need to know the weights of the

other agents, i.e., he acts autonomously.

After the rule (76) is implemented, the matrix of the weights attains the following form:

gjk
		 		 ¼

1 1 � � � � � � 1
..
.

1 1 � � � � � � 1
0 � � � 010 � � � 0
0 � � � � � � 010 � � �
0 � � � � � � � � � 01

0
BBBBBB@

1
CCCCCCA
: ð79Þ

Its determinant can be factored as

det gjk
		 		 ¼ det

1 � � � 1
� � � � � � � � �
� � � � � � � � �
1 � � � 1

0
BBBB@

1
CCCCA det

1 0 � � � 0
0 1 � � � 0
� � � � � � � � � � � �
0 � � � � � � 1

0
BB@

1
CCA: ð80Þ

The first sub-matix is idempotent, and its rank

r1 ¼ 1: ð81Þ

Hence, according to the results presented in Section 4, the corresponding sub-group of slow agent A1 becomes fully
entangled regardless of the initial values of the corresponding weights gjk ðj ¼ 1; 2; . . . ; n1; k ¼ 1; 2; . . . ; nÞ.

The second sub-matrix in Eq. (80) is the identity matrix, and its rank is equal to its dimensionality:

r2 ¼ n2: ð82Þ

This means that the subgroup A2 of fast agents becomes totally uncorrelated.

Let us now turn to the statistical interpretation of the situation. Suppose, for simplicity, that the initial state of the

agents was characterized by the weights:

gjk ¼ djk ¼
1 if k ¼ j;
0 if k 6¼ j:


ð83Þ

Then as it follows from Eq. (27), the rank of the weight matrix

rank kgikk ¼ n at t ¼ 0: ð84Þ

This means that initially all the agents were independent, and the corresponding active system performed Brown-

ian motion. Its temperature as a macroscopic characteristic could be found from the average kinetic energy (for

d ¼ 3):

T ¼ e
j

X3
i¼1

Xn
j¼1

_xxðjÞi
� �2

� �
: ð85Þ

After the topological self-organization (77), the slow agents will have the temperature lower than (85), while the fast

agents will raise their temperature so that

T1 < T < T2: ð86Þ

But in addition to that, the groups of agents A1 and A2 will depart from each other in space. In order to show that, start

with the group of fast agent A2 who will still perform a Brownian motion (see Eq. (82)). If n2 is sufficiently large

ðn2 � 1Þ, it is fair to say that the center of mass of this group O2 will not change its position in space.

Let us turn now to the group A1. In order to trivialize the situation, we will assume that in Eq. (27):

f ðjÞi xðjÞ
� �� �

� 0: ð87Þ

Then one arrives at the following (simplified) version of Eq. (27):

_xxðjÞj ¼ e
Xn1
k¼1

CðkÞ; i ¼ 1; 2; 3: ð88Þ
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As it follows from Eq. (86),

_xxðjÞi ¼ _xxðqÞi ; ð89Þ

i.e., all the agents of group A1 will move along equidistant trajectories, and therefore, the whole group will perform a

rigid translationary motion. At the same time, each particular trajectory can be found from the Langevin equation (88)

in the form of a realization of the Wiener stochastic process (see Eq. (4)):

oqðjÞ
i

ot
¼ en1

o2qðjÞ
n

ox2i
; j ¼ 1; 2; . . . ; n1; i ¼ 1; 2; 3; ð90Þ

whence

qðjÞ
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pen1t
p exp

�

 x2i
4en1t

�
; i ¼ 1; 2; 3: ð91Þ

Thus, the rigid translationary motion of agent A1 can be characterized by only one trajectory, for instance, the tra-

jectory of the center of mass O1 of these agents.

Now let us try to evaluate the distance O1O2 between the centers of mass of the groups of agents A1 and A2. Since at
t ¼ 0, the total system performed a Brownian motion, both the agents A1 and A2 were indistinguishable forming a

homogeneous mixture. Consequently, their centers of mass coincided:

O1O2 ¼ 0 at t ¼ 0: ð92Þ

After the topological self-organization (77), the center O2 has not changed its position (as was noticed earlier), but the

center O1 started its random motion according to Eq. (91). (Here we have chosen the case when the motions along each

of three space coordinates x1, x2, and x3 are identical.)
The expected distance between the centers of mass:

O1O2 ¼
ffiffiffi
r

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pen1t

4
p

! 1 as t! 1; ð93Þ

where r is the variance of the stochastic process (91). Thus, eventually the agents A1 and A2 will be separated in space,

and one arrives at apparent violations of the second law of thermodynamics. Indeed, the entropy of the total system

decreases (since the agent A1 becomes organized), heat flows from a cold place T to a hot place T2, the difference of the
temperatures T2 
 T1 can generate work, the initially homogeneous mixture of agents A1 and A2 turns into two separated
groups, and that can be characterized as an inverse diffusion, etc. The resolution is that the active system under

consideration is not isolated: it receives information (via the quantum entanglement) from the external world, and this

information is shared and processed by the agents. However, according to Landauer’s principle, any erasure of in-

formation is necessarily a dissipative process. But any information processing performed by the agents must include

these erasures. Similar energy dissipation can be associated with other components of the information processing such

as measurement, recording, etc.

11. Conclusions

The main purpose of this study was to better understand the degree of usefulness of entanglement-based commu-

nications without classical channels. Obviously that imposed certain limitations upon the correlations between the

agents; in particular, it forced us to create some special abstract assumptions which, at the first sight, are far from

practical applications. Nevertheless it has been demonstrated that even under a severe constraint imposed by the ab-

sence of a classical channel, and on the contrary to a well-established belief that entanglement-based messages are

useless, the active system can perform a number of emerging phenomena which lead to cooperation, competition, self-

organization, etc.

Acknowledgements

The research described in this paper was performed by the Jet Propulsion Laboratory, California Institute of

Technology. This research was performed in association with the Center for Engineering Science Advanced Research

(CESAR), Oak Ridge National Laboratory. Funding was provided by the Engineering Research Program of the DOE

M. Zak / Chaos, Solitons and Fractals 14 (2002) 745–758 757



Office of Science, under contract DE-AC05-000R22725 with UT-Battelle LLC. The author likes to thank the reviewer

for some helpful comments.

References

[1] Mikhailov AS. Foundations of synergetics. New York: Springer; 1990.

[2] Zak M. Dynamics of intelligent systems. Int J Theor Phys 2000;39(8).

[3] Risken H. The Fokker–Planck equation. New York: Springer; 1989.

[4] Zak M. Entanglement-based communications. Chaos, Solitons & Fractals 2002;13:39–41.

[5] Mittelstaedt P. Ann Phys (Leipzig) 1998;7(7/8):710–5.

758 M. Zak / Chaos, Solitons and Fractals 14 (2002) 745–758


