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Abstract

Arti®cial immune system is a rapidly growing ®eld of information processing and

computing based upon immune inspired paradigms of nonlinear dynamics. This paper

introduces stochastic models which mimic the phenomenology of basic functions of

immune systems such as self±nonself discrimination, self-repair, predator±prey pursuit,

and reproduction. These models represent a uni®ed formalism for building an arti®cial

immune system for e�ective information processing and computing. Ó 2000 Elsevier

Science Inc. All rights reserved.

1. Introduction

Arti®cial immune systems [2,6] is a rapidly growing ®eld of information
processing based upon immune inspired paradigms of nonlinear dynamics.
Although it has many features in common with neural networks, there are some
di�erences: the immune system is more complex, more diverse, and it performs
many di�erent functions simultaneously. In contradistinction to neural
networks, the immune system, from the viewpoint of nonlinear dynamics, can
be considered as a multi-body system (with ``bodies'' represented by cells)
which is interconnected via information ¯ows. Since these ¯ows as well as
responses to them may be distorted, delayed, or incomplete, the motion of each
cell becomes stochastic, and it can be simulated by a controlled random walk.
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One of the main challenges in modeling living systems is to distinguish a
random walk of physical origin (for instance, Brownian motions) from those of
biological origin. That will constitute the starting point of the proposed ap-
proach. As conjectured in [9], the biological random walk must be nonlinear.
Indeed, any stochastic Markov process can be described by a linear Fokker±
Planck equation (or its discretized version) [5]: and only that types of processes
have been observed in the inanimate world. However, all such processes always
converge to a stable (ergodic or periodic) state, i.e., to the states of a lower
complexity and an higher entropy. At the same time, the evolution of living
systems is directed towards a higher level of complexity if complexity is associ-
ated with a number of structural variations. The simplest way to mimic such a
tendency is to incorporate a nonlinearity into the random walk; then the prob-
ability evolution will attain the features of the Burgers equation [8] which de-
scribes the formation and dissipation of shock waves initiated by small shallow
wave disturbances. As a result, the evolution never ``dies'': it produces new dif-
ferent con®gurations which are accompanied by an increase or decrease of
entropy (the decrease takes place during formation of shock waves and the
increase during their dissipation). In other words, the evolution can be directed
``against the second law of thermodynamics'' [7] by forming patterns outside
equilibrium.

In order to elucidate both the physical and the biological aspects of the
proposed model, let us start with a one-dimensional random walk

xt�s � xt � h Sgn�R��1� � l�; h � const; s � const; �1�
where h and s are the space (along x) and time-steps, respectively, R��1� a
random function taking values from )1 to 1 with equal probability and l is a
control parameter with jlj6 1=2. (Physical implementations of this model were
discussed in [9,12].)

Eq. (1) describes motion in actual physical space. But since this motion is
irregular, it is more convenient to turn to the probability space

ft�s � pfxÿh � �1ÿ p�fx�h; ft�s � f �x; t � s�; etc:; �2�
where f �x; t� is the probability that the moving particle occupies the point x at
the instant t, and the transition probability

p � 1

2
� l; 06 p6 1: �3�

It is well known [3,5] that if the system interacts with the external world, i.e.,

l � l�x�; and therefore; p � p�x�; �4�
then the solution to Eq. (2) subject to the re¯ecting boundary conditions
converges to a stable stochastic attractor. However, if
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l � l�f �; and therefore; p � p�f �; �5�

Eq. (2) becomes nonlinear, and Eq. (1) is coupled with the feedback Eq. (3).
From the physical viewpoint, the system (1) and (2) can be compared with

the Langevin equation which is coupled with the corresponding Fokker±
Planck equation such that the stochastic force is fully de®ned by the current
probability distributions, while the di�usion coe�cient is fully de®ned by the
stochastic force. The process described by this system is Markovian since
future still depends only upon present, but not past. However, now present
includes not only values of the state variable, but also its probability
distribution, and that leads to nonlinear evolution of random walk.

From the mathematical viewpoint, Eq. (1) simulates probabilities while
Eq. (2) calculates their values. The connection between these equations is the
following: if Eq. (1) is run independently many times and a statistical analysis
of these solutions is performed, then the calculated probability will evolve
according to Eq. (2).

From the biological viewpoint, Eqs. (1) and (2) represent the same subject:
a living species. Eq. (1) simulates its motor dynamics, i.e., actual motion in
physical space, while Eq. (2) can be associated with mental dynamics de-
scribing information ¯ows in the probability space. Such an interpretation [9]
was evoked by the concept of re¯ection in psychology. Re¯ection is tradi-
tionally understood as the human ability to take the position of an observer
in relation to one's own thoughts. In other words, the re¯ection is a self-
awareness via the interaction with the ``image of the self''. In terms of the
phenomenological formalism proposed above, Eq. (3) represents the proba-
bilistic ``image'' of the dynamical system (1). If this system ``possesses'' its
own image, then it can predict, for instance, future expected values of its
parameters, and, by interacting with the image, change the expectations if
they are not consistent with the objective. In this context, Eq. (1) simulates
acting, and Eq. (2) simulates ``thinking''. Their interaction can be imple-
mented by incorporating probabilities, its functions and functionals into the
control parameter l (see Eq. (5)).

The objective of this paper is to exploit the coupled motor±mental dynamics
approach to simulate the phenomenology of basic tasks performed by immune
systems such as: self±nonself discrimination, self-repair, predator±prey pursuit,
multiplication, collective strategies, etc.

2. Life without intelligence: emerging self-organization

We will start the analysis of the coupled motor±mental dynamics with
Eqs. (1) and (2) where
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p � sin2�af � b�; l � sin2�af � b� ÿ 1

2
; a; b � const; �6�

i.e.,

xt�s � xt � h Sgn R�
�
� 1� � sin2�af � b� ÿ 1

2

�
; �7�

ft�s � fxÿh sin2�af � b� � fx�h cos2�af � b�: �8�
Here, a and b are constant weights.

In order to illustrate the fundamental nonlinear e�ects, we will analyze the
behavior of special critical points by assuming that

a � 5p
12
; b � ÿ p

6

and

f0 � f �t � 0� �
f �1�0 � 1

5
at x � ÿ`;

f �2�0 � 4
5

at x � `;
f �3�0 � 0 otherwise:

8><>: �9�

Then the solution to Eq. (8) will consist of two waves starting from the points
x � ÿ` and x � `, traveling towards each other with the constant speed
t � h=s, and transporting the values f �1�0 and f �2�0 , respectively, i.e.,

f � f �1�0

�
ÿ `� h

s
n
�
� f �2�0 `

�
ÿ h

s
n
�
; n � 0; 1; . . . ;

`

h
; �10�

where n is the number of time-steps.
At n � `=h, the waves con¯uence into one solitary wave at x � 0

f � 1 at x � 0
0 otherwise

�
at t � ns � `

h
s: �11�

This process represents a discrete version of formation and con¯uence of shock
waves, and it is characterized by a decrease of the Shannon entropy from

H�0� � ÿ 1

5
log2

1

5
ÿ 4

5
log2

4

5
> 0 to H�ns� � 0: �12�

However, the solitary wave (11) is not stationary. Indeed, as follows from
Eq. (8), the solution at t � �n� 1�s splits into two equal values

f�n�1�s � 1=2 at x � `� h;
0 otherwise:

�
�13�

The process (13) can be identi®ed as a discrete version of di�usion during
which the entropy increases again from
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H�ns� � 0 to H ��n� 1�s� � ÿ log2

1

2
� 1: �14�

The further evolutionary steps t P �n� 2�s will include both di�usion and
wave e�ects, and therefore, the solution will endlessly display more and more
sophisticated patterns of behavior in the probability space. The corresponding
solutions to Eq. (7) represent samples of the stochastic process (8) in the form
of nonlinear random walks in actual physical space.

Thus, the solutions to coupled motor±mental dynamics simulate emerging
self-organization which can start spontaneously. At this level of description,
such an e�ect is triggered by instability rather than by a speci®c objective. In
other words, the model represents a ``brainless'' life. However, it serves well to
the global objective of each living system: the survival. Indeed, it is a well es-
tablished fact in biology [1] that marginal instability makes behaviors of living
system more ¯exible and therefore, more adaptable to changing environment.

The model (1) and (2) is easily generalizable to three-dimensional motions

x�i�t�s � x�i�t � hi Sgn�R��1� li��; i � 1; 2; 3; �15�

ft�s �
X3

i�1

pifx�i�ÿhi

� � �1ÿ pi�fx�i��hi

�
: �16�

Here x�1�; x�2�; x�3� are the space coordinates, and f � f �x�1�; x�2�; x�3�; t� is the
joint probability that the species occupies the point x�1�; x�2�; x�3� at the instant t.

As in the one-dimensional case, here

pi � 1

2
� li; i � 1; 2; 3: �17�

In particular, one can assume that

pi � sin2�aif � b�; i � 1; 2; 3: �18�
It should be noticed that the nonlinear random walks (15) in all three directions
are coupled by means of the joint probability f via the control parameters li.

From the mathematical viewpoint, the model of mental dynamics (8) links
to the Burger's equation in a sense that its pattern formation outside equilib-
rium is based upon the balance between dissipation and shock waves.

In general, this model can be enriched with the Belousov±Zhabotinskii ef-
fects by slight modi®cation of random walk (7)

xt�s � xt � 1

2
hf1ÿ Sgn�R��1� � l0�gSgn�R��1� � l�; �7a�

which now includes the third choice for the species: to remain at rest with the
probability
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q � 1

2
� l0; �6a�

The corresponding version of Eq. (8) reads

ft�s � qf � pfxÿh � �1ÿ qÿ p�fx�h; 06 p; q6 1: �8a�
If q � q�f � and p � p�f �, one arrives at the discretized version of the combined
Burger±Belausov±Zhabotinskii equation which possesses a variety of new
complex patterns outside equilibrium, and that increases the adaptability
of species to environmental changes. One should recall that Belousov±
Zhabotinskii equation was already exploited for studying pattern formation in
biology [4]. However, these patterns dwell in physical space; in contradistinc-
tion to that, Eqs. (8) and (8a) simulate patterns in the probability space, i.e.,
in the space of the mental dynamics so that the corresponding actual motions in
physical space are described by nonlinear random walks (7) and (7a), respec-
tively. Due to that, a species is not locked up in a certain pattern of behavior: it
still can perform a variety of motions, and only the statistics of these motions is
constrained by this pattern. It should be emphasized that such a ``twist'' is
based upon the concept of re¯ection, i.e., the existence of the self-image.

In Section 3, we will discuss motions driven by the objectives; for that
purpose, we will stay with the simpler models (7) and (8), since the formation of
patterns outside of equilibrium will be less important.

3. Self-identi®cation and self-repair

One of the most remarkable properties of living systems is the ability to
detect and to repair a damage to their structure, and this ability is observed at
such low level as DNA. Without going into details of the biological machinery
of the process, we will try to exploit the phenomenology of our arti®cial model
of the motor±mental dynamics to simulate self-identi®cation and self-repair.
The key to that is provided by the fact of possession of the self-image. We will
assume that the identity of a species is represented by the weights ai and bi (see
Eqs. (7), (8), or (18)). Indeed, by changing these weights, one can switch from
one evolutionary scenario to another.

Let us turn to the one-dimensional model (7) and (8) of an arti®cial species
and assume that the nominal values of the weights a and b are

a0 � p
2
; b0 � 0: �19�

Then the arti®cial species can perform a calibration test starting with any initial
position x � x0, i.e.,
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f � 1 at x � x0;
0 otherwise:

�
�20�

it must move deterministically, as it follows from Eq. (7).

xt�ns � x0 � nh; n � 1; 2; . . . ; etc: �21�
Suppose that as a result of some structural damage, the weights (19) have

been changed

a1 � p
2
� e1; b1 � e2; j e1 j; j e2 j� 1: �22�

Then, according to Eq. (8), the motion with the same initial conditions (20) will
be represented by a random walk

x0; x1; . . . ; xn: �23�
Now the degree of the damage can be measured by the di�erence between the
trajectories (21) and (23) in the form of the function

E � 1

2

Xn

k�0

�x0 � khÿ xk�2: �24�

To ®nd the correct weights (19), the species has to minimize the function (24).
In order to do that, it can perform the following simple algorithm: start with
the pair of arbitrary values a�1�1 ; b�1�1 and a�2�1 ; b�2�1 , and run the system (7) and (8)
subject to the initial conditions (20) twice; as a result, ®nd the corresponding
values E�1� and E�2�; then use the following recurrent relationships:

a�j�1�
1 � a�j�1 ÿ k�2�1

E�j� ÿ E�jÿ1�

a�j�1 ÿ a�jÿ1�
1

; k2
1 � const; �25�

b�j�1�
1 � b�j�1 ÿ k2

2

E�j� ÿ E�jÿ1�

b�j�1 ÿ b�jÿ1�
1

; k2
2 � const; �26�

which actually implement the gradient decent of E, and therefore, the se-

quences a�j�1 and b�j�1 converge

lim
j!1

a�j�1 � a00; lim
j!1

b�j�1 � b00: �27�

Strictly speaking, the limit values a00; b
0
0 may be di�erent from the corre-

sponding nominal values in (19), if the functional (24) has local minima.
Therefore, the species has to repeat the whole procedure several times starting
from di�erent values of a�1�1 ; b�1�1 ; a�2�1 , and b�2�1 and then to choose those limit
values in (27) which correspond to the lowest minima. It should be noticed that
prior to each iteration in Eqs. (25) and (26), the system (7) and (8) have to be
run in order to ®nd the corresponding value of E�j�
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4. Self±nonself discrimination

Immunology deals with understanding how the body distinguishes between
what is ``self '' and ``nonself ''. The biological machinery of this process is not
well understood, but it involves cell surface molecules that are able to specif-
ically bind and adhere to other molecules on opposing cell surfaces. However,
within the formalism of the motor±mental dynamics, the only way to make the
self±nonself discrimination is by observing the behavior of the potential in-
vader, extraction of its phenomenological invariants (for instance, the weights
a and b in Eqs. (7) and (8)) and by comparison with those of the self. In this
section, we will propose a simple procedure for the implementation of this
strategy.

Let us assume that a body cell motion is simulated by the simplest model,
i.e., by the system (1) and (2), and its identity is represented by the weights a; b
in Eq. (6). Suppose that the unknown agent has the same model, but di�erent
weights a0; b0. What information can the body cell infer by observing the
motion of the invader?

If the agent starts with a deterministic position and makes n steps, he may go
via 2n di�erent trajectories. All these trajectories can be placed between the two
extreme trajectories which are the solutions to the following versions of Eq. (2),
respectively

ft�s � p1fxÿh � �1ÿ p1�fxÿh; �28�

ft�s � p2fxÿh � �1ÿ p2�fxÿh; �29�
where

p1 �
p if p P 1=2;

1ÿ p if p < 1=2;

�
p2 �

1ÿ p if p P 1=2;

p if p < 1=2;

�
�30�

and p � p�f ; a; b� represents the identity of the body cell. The solutions to
Eqs. (28) and (29) describe the most and the least probable trajectories,
respectively, if the agent belongs to the same class as the self. Hence, the simplest
strategy for the body cell is the following: compare the observed trajectory

x0; x1; . . . ; xn �31�
of the agent with the extreme trajectories

x�1�0 ; x�1�1 ; . . . ; x1
n; x�2�0 ; x�2�1 ; . . . ; x�2�n �32�

by computing the sums

E1 � 1

2

Xn

k�0

xk

�
ÿ x�1�k

�2

; E2 � 1

2

Xn

k�0

xk

�
ÿ x�2�k

�2

: �33�
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If

E1 > E2; �34�
then the agent is nonself, and if

E1 < E2; �35�
then the agent is self.

Obviously the con®dence of these conclusions is not high: based upon recent
advances in statistical analysis of time series, discrimination can be performed
much more accurately. However, time is precious for immune response: any
extra-second can lead to multiplication of the invader. Therefore, the self±
nonself discrimination based upon the criteria (34) and (35) can be adapted as a
reasonable starting point.

5. Predator±prey pursuit

The ®nal act of the immune response is to kill the invaders. Within the
phenomenological formalism of the motor±mental dynamic, this can be
translated into a predator±prey pursuit. We will assume that both the predator
and prey possess not only the image of the self, but the image of the adversary
as well. In terms of the three-dimensional model (15) and (16), the pursuit can
be formulated as follows:

x�i�t�s � x�i�t � hi Sgn R
�
� l�1�i

�
; i � 1; 2; 3; �36�

f �i�t�s;xi � pif
�i�
t;x�i�ÿh

� 1� ÿ pi�f �i�t;x�i�ÿhi
; i � 1; 2; 3; �37�

~f �i�t�s � ~qi
~f �i�
y�i�ÿhi

� �1ÿ ~qi� ~f �i�
y�i��hi

; i � 1; 2; 3; �38�

y�i�t�s � y�i�t � hi Sgn R
�
� l�2�i

�
; i � 1; 2; 3; �39�

u�i�t�s � qiu
�i�
y�i�ÿhi

� �1ÿ qi�u�i�y�i��hi
; i � 1; 2; 3; �40�

~u�i�t�s � ~pi ~u
�i�
x�i�ÿhi

� �1ÿ ~pi�~u�i�x�i��hi
: �41�

Here, Eq. (36) simulates the motor dynamics of the predator, i.e., a random
walk in three-dimensional space. Eq. (37) describes the predator's mental
dynamics, i.e., evolution of the probability f �x�1�; x�2�; x�3�; t� � f �1�f �2�f �3�,
where x�i� denote the predator's position, p1; p2 and p3 are the transition
probabilities
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pi � 1

2
� l�1�i � sin2 ai�1�f �1�

�
� bi�1�

�
: �42�

Eqs. (39) and (40) simulate the motor±mental dynamics of the prey, where y�i�

denote the prey's positions in space, and u�y�1�; y�2�; y�3�; t� � u�1�u�2�u�3� is the
corresponding probability; q1; q2 and q3 are the transition probabilities

qi � 1

2
� l�2�i � sin2 ai�2�u�i�

�
� bi�2�

�
: �43�

Finally, Eqs. (38) and (41) simulate mental images of the adversaries:
~f �~y�1�; ~y�2�; ~y�3�; t� � ~f �1� ~f �2� ~f �3�, and ~qi represent the prey's images in the ``mind''
of the predator, and ~u�~x�1�;~x�2�;~x�3�; t� � ~u�1� ~u�2� ~u�3� and ~pi represent the pre-
dator's images in the mind of the prey.

If the predator and the prey never met before, the best strategy for them is to
assume that

~qi � 1� ÿ pi�; ~pi � 1� ÿ qi�; �44�
i.e., to consider the adversary as an extreme opposite to the self.

At this point, Eqs. (36), (37), (39), (40) are coupled only in pairs, while
Eqs. (38) and (41) are decoupled.

Now we will introduce the objectives of the pursuit: the predator objective is
to minimize the distance between the prey and himself during the next n steps,
and the prey's objective is to maximize the same distance.

The distance after k steps is expressed as:

E �
X3

i�1

x�i�k

�
ÿ y�i�k

�2

: �45�

The only way to optimize it is to manipulate by the weights ai�1�; bi�1�; ai�2� and
bi�2� in Eqs. (42) and (43) using the strategy of the gradient descent approach
(see Eqs. (25) and (26)). However, here this strategy cannot be applied in a
direct way since neither the predator, nor the prey know their actual future
positions x�i� and y�i�. Therefore, these positions have to be predicted based
upon their images. The images can be represented by expectations, modes or
medians of the corresponding probability distributions. For instance, in case of
expectations, the distance (45) is replaced by:

~E �
X3

i�1

x̂�i�k

�
ÿ ŷ�i�k

�2

; �46�

where

x̂�i�k �
X

x�i�f �i�k ; ŷ�i�k �
X

y�i�u�i�k : �47�
Then the predator's and the prey's images of the same objective are, respec-
tively,
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~E1 �
X3

i�1

X
x�i�f �i�k

�
ÿ
X

~y�i� ~u�i�k

�2

; �48�

~E2 �
X3

i�1

X
~x�i� ~f �i�k

�
ÿ
X

y�i�u�i�k

�2

: �49�

These images are di�erent since neither the predator, nor the prey knows the
actual probabilities f �i�k and u�i�k of their adversaries, and they replace them by
the images ~f �i�k and ~u�i�k , respectively (see Eqs. (42)±(44)). Now the strategy of
the predator follows from the gradient descent minimization:

a�j�1�
i�1� � a�j�i�1� ÿ k2

1

~E�j�1 ÿ ~E�jÿ1�
1

a�j�i�1� ÿ a�jÿ1�
i�1�

; k1 � const; �50�

b�j�1�
i�1� � b�j�i�1� ÿ k2

1

~E�j�1 ÿ ~E�jÿ1�
1

b�j�i�1� ÿ b�jÿ1�
i�1�

; k1 � const: �51�

Similarly, the strategy of the prey follows from the gradient descent maximi-
zation:

a�j�1�
i�2� � a�j�i�2� � k2

2

~E�j�2 ÿ ~E�jÿ1�
2

a�j�i�2� ÿ a�jÿ1�
i�2�

; k2 � const; �52�

b�j�1�
i�2� � b�j�i�2� � k2

2

~E�j�2 ÿ ~E�jÿ1�
2

b�j�i�2� ÿ b�jÿ1�
i�2�

: �53�

Thus, prior to each move, the predator and prey ®nd the optimal weights ai

and bi from Eqs. (50)±(53), plug them into Eqs. (36)±(41) via Eq. (42), and then
make the next (``optimal'') step.

There are four comments to be made concerning the model pursuit. First of
all, the system Eqs. (36)±(41) is now fully interconnected via the objectives (48)
and (49) by means of Eqs. (50)±(53) and (42) and (43). In particular, that means
that the stochastic process (37) and (40) are correlated. But it does not nec-
essarily mean that there exists a joint probability function �f �fxg; fyg� for which
f �1� and f �2� are the conditional probabilities. Indeed, as shown in [10,11],
special compatibility constraints should be imposed upon the transition
probabilities p and q in order to guarantee the existence of �f . Hence, applying
the terminology introduced in [10], the stochastic processes (37) and (38) are
entangled in a sense that there is no such transformation of coordinates
fxg; fyg which would decouple them.
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Secondly, each species exploits the probabilistic images of the self and its
adversary to predict future positions, and therefore, to make the best available
move, and this remarkable property is a privilege of the living systems.

Thirdly, success of the pursuit depends upon the degree of superiority of the
predator's mental capacity over those of the prey if the mental capacity is
measured by the speed of learning, i.e., by ®nding the correct values, the
weights a and b from the gradient descent (50) and (51).

Finally, in the pursuit model, each species demonstrates intelligence since its
activity is not spontaneous any more, but it is rather controlled by the objective.

6. Innate and acquired immunity

In this section, we will propose a biological interpretation of the pursuit
model introduced above. As follows from that model, the successful defense
against an invader can be associated with the catching of a prey by the pre-
dator, and that depends upon how well the predator predicts the prey's moves.
The power to predict starts with Eq. (44) when the predator selects the tran-
sition probabilities for his image of the prey. The ability to make this simple
and universal choice mimics the so called innate immunity conferred by all
those elements with which the species was born. However, the choice (44), in
general, may be not good enough: it does not include the speci®c characteristic
of the prey. That is why the very ®rst ``acquaintance'' between the adversaries
may end in a failure on the part of the predator. But suppose that the predator
managed to catch the prey, then he can ``record'' the values of the actual ob-
jective (45) and its image (48). Therefore, the di�erence

DE1j j � E
��� ÿ ~E1

��� �54�
will serve as a measure of the mismatch between the image and reality. Based
upon this di�erence, the predator can correct his prey's image by appropriate
change of ~qi in Eq. (44). Actually, he should minimize the di�erence (54) as a
function of ~ai�2� and ~bi�2�, where

~q1
i � sin2 ~ai�2� ~f �2�

�
� ~bi�2�

�
; i � 1; 2; 3; �55�

i.e.,

~a�j�1�
i�2� � ~a�j�i�2� ÿ k2

1

DE�j�1

��� ���ÿ DE�jÿ1�
1

��� ���
~a�j�i�2� ÿ ~a�jÿ1�

i�2�
; k � const; �56�

~b�j�1�
i�2� � ~b�j�i�2� ÿ k2

1

DE�j�1

��� ���ÿ DE�jÿ1�
1

��� ���
~b�j�i�2� ÿ b�jÿ1�

i�2�
: �57�
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It should be noted that the predator cannot rerun the actual trajectory after the
pursuit has been ended: he can change jDEj only by rerunning the image of this
trajectory, i.e., by simulating the solutions to Eqs. (36)±(38).

Eventually,

lim
j!1

~a�j�i�2� � ai�2�; lim
j!1

~b�j�i�2� � bi�2�; �58�

i.e., the predator's image of the prey coincides with the prey's self-image.
Thus, if Eq. (44) is associated with the innate immunity, Eq. (55) can be

associated with an acquired immunity.
Obviously, the invader learns from the same experience, and as a result, he

can acquire some resistance by correcting his image of the predator, i.e., by
departing from Eq. (44) to the following:

~p1
i � sin2 ~ai�1� ~f �1�

�
� ~bi�1�

�
; i � 1; 2; 3; �59�

where the weights ~a and ~b are adjusted by means of minimizing the di�erence

jDE2j � jE ÿ ~E2j: �60�

7. Viral DNA integration

The pursuit is not the only model of the body cell±invader interaction. In
this section, we will discuss simulation of the process of destruction of the
species's self-image (cell transformation) by the invader's intrusion (virus re-
combination).

Let us assume that the body cell's behavior is described by Eqs. (7) and (8),
and suppose that the invader (virus) wants to copy the cell's mental image.
Then, following the learning paradigm described by Eqs. (46)±(53), the virus
can reorganize its own image in such a way that its mental evolution will be
described by the same equation, i.e., by Eq. (8). Now, as a result of intrusion
into the cell, the virus can change the cell's transition probability Eq. (6) as
follows:

p � sin2�a�f ÿ f 0� � b�; �61�
where f 0 is the acquired virus' probability distribution.

If f � f 0, then

p � sin2 b � const: �62�
Thus, the cell has lost its ``free will'' since it behaves now as an inanimate
physical particle performing a Brownian motion.

This e�ect can be associated with the virus DNA integration.
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8. Self-reproduction

Self-reproduction is one of the privileges of living systems. In order to
simulate it within the framework of our phenomenological formalism, we have
to make the following assumption: all the species of the same genotype have
the same probabilistic invariants of their behaviors. In other words, their
trajectories are di�erent samples of the same stochastic process, i.e., they are
di�erent on the level of deterministic details, but are identical on the level of
statistics. Then the self-production process can be simulated by throwing into
the ``battle®eld'' new samples of the same stochastic process (for instance, the
one described by Eq. (8)). The rate of reproduction has to be governed by the
logistic equation

Nj�1 � Nj ÿ cNj�1ÿ Nj�; �63�
where N is the population density and c is the coe�cient describing e�ects of
food availability and death rate.

Thus, again we arrive at two di�erent types of descriptions: the global
picture is still expressed by Eq. (8), i.e., by the mental dynamics in the prob-
ability space; the local picture, or motor dynamics represented by a set of
nonlinear random walks (7) whose density (in physical space) is expressed by
Eq. (61).

If several genotypes occupy the same physical space (for instance, the body
cells and the invaders), then the global picture (in the mental space) is repre-
sented by Eqs. (37), (38), (40), and (41), while the motor dynamics is described
by a two set of random walks (36) and (39) whose densities are expressed by the
corresponding versions of Eq. (63).

9. Collective performance

In this section, we will brie¯y describe collective phenomena in the proposed
model of arti®cial immune systems which combine the paradigms discussed
above (on the level of individual or pairs of species) with the e�ects of swarms
of species having variable population density.

(a) Collaboration. Suppose that there are several di�erent, but ``friendly''
swarms of species having the probability distributions

fj � fj fx�1�j g; fx�2�j g; fx�3�j g; t
� �

; j � 1; 2; . . . ; s; �64�

where fx�1�j g; fx�2�j g and fx�3�j g are sets of space coordinates occupied by the
species of the jth swarm.

We will postulate that within the framework of our formalism, the
``friendliness'' is equivalent to the existence of the joint probability
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f � f fx�1�1 g; . . . ; fx�3�s g
� �

; �65�

so that f1 in (64) are interpreted as the conditional probabilities

fj � ffjgjfg fx�1�1 g; . . . ; fx�3�s g
� �

: �66�

As shown in [10,11], this imposes upon fj the following constraints:

o2

oxjoxk
ln

fj

fk
� 0; j; k � 1; 2; . . . ; s; j 6� k: �67�

If these constraints are satis®ed, one can describe the joint evolution of all the s
swarms by only one equation:

ft�s �
Ys

j�1

Y3

i�1

pi
jffxgi

jÿfhgi
j

h
� 1
�
ÿ pi

j

�
ffxgi

j�fhgi
j

i
; �68�

which represents the evolution of the image of the whole set of species in the
probability space. This evolution as a collective brain [10] controls motor
dynamics of each species

x�j�t�s � x�j�t � hj Sgn R
ÿ � lj

�
; j � 1; . . . ; 3s �69�

in a centralized way.
The simplest version of the dependence pj�f � is

pj � sin2 ajf
ÿ � bj

�
; lj � pj ÿ 1

2
; �70�

which is similar to Eq. (6) for a single species. However, here the coe�cients aj

and bj may depend upon the population density N, i.e.,

aj � aj�N�; bj � bj�N�: �71�
At the same time, the coe�cient c in Eq. (63) is likely to depend upon the
probability f, i.e.,

c � c�f �: �72�
As a result, Eqs. (71) and (72) couple the motor±mental dynamics (69) and (70)
with the dynamics of the population density (63).

Hence, in addition to multi-dimensional version of the nonlinear e�ects
discussed for a single species, such as the spontaneous self-organization, one
can expect phenomena associated with a many-body problem: aggregation,
formation of new alliances, explosions of the population densities, etc.

(b) Competition. Suppose the swarms described by the probabilities (64)
are ``hostile''. In terms of our formalism, it means that the constraints (67)
are not satis®ed, and therefore, a joint probability (65) does not exist. In
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other words, the hostile swarms cannot be controlled by a uni®ed ``collective
brain'' as in the previous case. However, they can be entangled in a more
sophisticated way. Indeed, here instead of Eq. (65), one arrives at a set of s
coupled equations:

f �j�t�s �
Y3

1

pi
jf
�j�
fxgi

jÿfhgi
j

�
� 1
�
ÿ pi

j

�
f �j�fxgi

j�fhgi
j

�
; j � 1; 2; . . . ; s; �73�

where

p�j�i � p�j�i f �1�; . . . ; f �s�
ÿ �

: �74�

Each of these equations represent the evolution of the image of the corre-
sponding swarm; however, these evolutions are coupled via Eq. (74).

In order to emphasize the fundamental di�erence between the uni®ed
evolution Eq. (68), i.e., the collective brain, and the coupled evolutions (73),
one has to recall that in physics, the violation of compatibility conditions
are usually associated with fundamentally new concepts or a new physical
phenomenon. For instance, incompatibility of velocities in a ¯uid, i.e., non-
existence of a velocity potential

curl t 6� 0 �75�
introduces vorticity and rotational ¯ows. In the same way, the violations of
Eq. (67), i.e., nonexistence of a joint probability (68), leads to coupled evolu-
tion of the stochastic processes (73), while the degree of the incompatibility

ink f �j�; f �k�
ÿ � � o2

oxjoxk
ln

f �j�

f �k�
�76�

can be interpreted as a some sort of ``vorticity'' in the probability space.
As mentioned earlier, the vorticity makes impossible to ®nd such a trans-

formation of the coordinates xj which would decouple the stochastic processes
(73), i.e., these processes are entangled.

Thus, the vorticity (76) brings a new dimension in the complexity of the
motor±mental dynamics (69): it makes the control of the motor dynamics of
each species less centralized and more distributed. In addition to that, as
shown in [10], the information capacity of a set of entangled stochastic
processes (73) is greater than that of the processes having the joint proba-
bility (68).

In the same way, as it was described for a simple species, the evolutions (68)
and (73) can be driven not only by nonlinear instability, but by the objective as
well, and that includes learning, self±nonself discrimination (on the level of
swarms), calibration, etc.
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10. Minimum-free-will principle

In our previous discussion, for the proof of concept, the nonlinear function
p�f � has been chosen in the simplest form (6). However, the only restriction
imposed upon this function is the condition

06 p6 1: �77�
Therefore, in general, it can be sought in the form

p � sin2�u�f ��; �78�
where u�f � is an arbitrary function.

If this function is parametrized, for instance, as

u�f ; a� �
Xq

k�0

akf k; �79�

then the weights ak can be found from the objective by minimization of the
corresponding functional (see Eqs. (46)±(53)).

But suppose that there are several di�erent ways in which the same objective
can be achieved, i.e., the function (79) includes a set of weights b

u � u�f ; a; b�; �80�
which do not a�ect the objective. How should the species solve such a re-
dundancy problem?

Let us assume that the physical (i.e., the passive) component of the species
motion is a symmetric random walk which is a discretized version of the
Brownian motion.

Then the transitional probability p in Eq. (78) can be decomposed as

p � sin2 û�f �
h

� p
4

i
; i:e:; p � 1

2
ifû�f � � 0: �81�

In this form, the nonlinear component of p, i.e., the function û�f � represents
the deviation from the passive motion, i.e., the free will.

Now we will make the following statement: if a species can achieve its ob-
jective by several di�erent ways, it will choose one which minimizes the devi-
ation from the passive motion, i.e., it will minimize its free-will component. In
other words, if a species is o�ered a ``free ride'' by physics, it should take it.
This minimum-free-will principle can be associated with the Gaussian mini-
mum constraints principle according to which the motion of a constrained
system minimizes the deviation from the corresponding free motion. However,
in contradistinction to that, the minimum-free-will principle is not required by
physics, but it is rather imposed by biology. Indeed, a ``crazy'' species can move
against the minimum-free-will principle, but it will waste its energy and ``in-
tellectual'' e�ort, and as a result, its chances for survival will be decreased.
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A natural measure of deviation from the passive motion is the di�erence

jDH j � jH0 ÿ H j; �82�
where H0 and H are the entropies of the passive and the actual motions, re-
spectively.

Now we can give the mathematical formulation of the minimum-free-will
principle: if the species objective is de®ned in the time interval 06 t6 T , its
motion will minimize the free-will measure

Fw �
XT

t�0

jH0 ÿ H js �83�

subject to the objective. In other words, if the weights a in Eq. (80) are de®ned
by the objective, then the redundant weights b� must be found from the con-
dition

Fw�b�� � inf F �b�: �84�
One should recall that

H � ÿ
XL

x�0

fx log2 fx; 06 x6 L �85�

and f is found from Eq. (2) where p � sin2�u�f ; b��.

11. Discussion and conclusion

The natural immune system is a subject of great research interest because it
provides an excellent model of adaptive processes operating at the local level
and of useful behavior emerging at the global level; therefore, it inspires new
powerful paradigms for information processing and computing.

However, since the biological machinery of the immune system is poorly
understood, the only alternative is to mimic the phenomenology of its per-
formance using some equivalent physical models. Such a model which simu-
lates the main immune functions based upon dynamics of behavior of ``body
cells'' and ``invaders'' is developed in this paper.

In contradistinction to existing stochastic models (multi-agent nets, colored
petri net) [2], the proposed model is based upon the concept of re¯ection, i.e.,
the human ability to take the position of an observer in relation to one's own
thoughts, and that makes it more adaptable to the world of biological and
social evolutionary processes.

The model consists of a generator of stochastic processes which represents
the motor dynamics in the form of nonlinear random walks, and a simulator of
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the nonlinear version of the Fokker±Planck equation which represents the
mental dynamics.

It has been demonstrated that coupled motor±mental dynamics can simulate
such processes as emerging self-organization, self-identi®cation and repair,
self±nonself discrimination, formation of acquired immunity, etc. Therefore,
the proposed model can serve as a starting point for a uni®ed approach to
immune inspired information processing and computing.
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