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Abstract

A special class of quantum recurrent nets (QRNs) simulating Markov chains with absorbing states is introduced. The absorbing

states are exploited for pattern recognition: each class of patterns is attracted to a unique absorbing state. Due to quantum interference

of patterns, each combination of patterns acquires its own meaning: it is attracted to a certain combination of absorbing states which is

di�erent from those of individual attractions. This fundamentally new e�ect can be interpreted as formation of a grammar, i.e., a set of

rules assigning certain meaning to di�erent combinations of patterns. It appears that there exists a class of unitary operators in which

each member gives rise to a di�erent arti®cial language with associated grammar. Ó 2000 Elsevier Science Ltd. All rights reserved.

One of the oldest and most challenging problems is to understand the process of language formation. In
this note, based upon recent successes in quantum information theory [1], and in particular, upon a concept
of quantum recurrent nets (QRNs) [2], a new phenomenological formalism for pattern recognition and
grammar formation is proposed.

A quantum recurrent network consists of a conventional quantum network augmented with a classical
measurement and quantum reset operation. The design of a one-dimensional quantum recurrent network is
shown in Fig. 1.

An initial state, jwi, is fed into the network, transformed under the action of a unitary operator, U,
subjected to a measurement, indicated by the measurement operator Mf g, and the result of the mea-
surement is used to control the new state fed back into the network at the next iteration. One is free to
record, duplicate or even monitor the sequence of measurement outcomes, as they are all merely bits and
hence constitute classical information. Moreover, one is free to choose the function used during the reset
phase, including the possibility of adding no o�set state whatsoever. Such ¯exibility makes the QRN ar-
chitecture remarkably versatile. To simulate a Markov process, it is su�cient to return just the last output
state to the next input at each iteration.

For a proof-of-concept, we will start with the following unitary N-dimensional operator U
0

U
0 �

u11 u12 � � � u1n 0 � � � 0

u21 u22 � � � u2n 0 � � � 0

un1 un2 � � � unn 0 � � � 0

0 0 � � � 0 1 � � � 0

0 0 � � � � � � � � � 0 1

0BBBB@
1CCCCA; n < N ; �1�

which maps the ith eigenvector into a jth eigenvector
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with the probability

p j
i � jujij2: �3�

Eq. (3) is modi®ed to the following [2]

p j
i �

Pn
k�1 ujkak � uji

�� ��2P
k 6�i a2

k � �ai � 1�2
��� ���2 �4�

if each result of the measurement is combined with an arbitrary o�set vector

jw0i � fa1 . . . ang: �5�
It should be emphasized that the sum of the output vector in (2) and the o�set vector (5) is ®rst calculated,
normalized, and then the corresponding quantum re-entering state is prepared.

For the purpose of pattern recognition, the o�set vector will be chosen as follows:

jw00i �
fa1; a2; . . . ; aNg if i6 n;
0 if i > n;

�
�6�

where i is de®ned by Eq. (2).
Now the probability of the mapping (2) performed by the unitary operator U

0

and the o�set vector (6)
can be obtained by combining Eqs. (3) and (4), and the transition matrix for the corresponding Markov
chain is

P1 �

P 1
1 � � � P n

1 P n�1
1 � � � P N

1

P 1
2 � � � P n

2 P n�1
2 � � � P N

2

P 1
n � � � P n

n P n�1
n � � � P N

n

0 � � � 0 1 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 1

0BBBBBBBBB@

1CCCCCCCCCA
; 06 P j

i < 1;
XN

j�1

P j
i � 1: �7�

This chain has n transient states Tp �p � 1; 2; . . . ; n� and N1 ÿ n absorbing states Ac �c �
n� 1; n� 2; . . . ;N�, and therefore, regardless of an initial state, the stochastic process eventually will be
trapped in one of the absorbing states Ak. However, the probability that it will be a prescribed state Ac

depends upon the initial state. Indeed, as follows from theory of Markov chains, the probability f k
p of

absorption into Ak from Tp satis®es the system of equations

f k
p �

Xn

j�0

pj
pf k

j for p � 0; 1 . . . ; n; k � n� 1; n� 2; . . . ;N : �8�

Consequently, by appropriate choice of U
0

and jw00i in Eqs. (1) and (6), one can divide all the initial states
into N1 ÿ n groups such that each state of the group is absorbed (with a su�ciently high probability) into
the same prescribed state. Such a performance can be interpreted as pattern classi®cation if each eigen-
vector introduced to the QRN is associated with the corresponding patterns.

Fig. 1. A one-dimensional quantum recurrent network.
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We will not go into mathematical details here in order to focus attention upon formation of an arti®cial
language instead. For that purpose, suppose that each run of the quantum device is repeated ` times while
`6 n independent measurements are collected and fed back into QRN. Then, instead of mapping (2), one
arrives at the following:

1��̀p 0 . . . 010
"
i1

. . . 010
"
i`

. . . 0

8<:
9=;! 1��̀p 00 . . . 010

"
j1

. . . 0010
"

jm

. . . 0

8<:
9=;; m6 `: �9�

This corresponds to evolution of k di�erent patterns introduced to QRN simultaneously.
One can generalize Eq. (4) to the following

P j1...jm
i1...il �

Qm
a�1

Pn
k�1 Ujakak �

P`
b�1 Ujaib

��� ���2P
k 6�i a2

k �
P`

b�1 aib � 1
ÿ �2

��� ���2m ; m6 `; �10�

by considering how each of the recurrent states combined with the o�set vector (5) evolves under the action

of U
0

:

Eq. (10) de®nes the probability of transition from the set of inputs i1 . . . i` to the set of outputs j1 . . . im:
If m � `, and the o�set vector is expressed by Eq. (6), the transition probability matrix P` can be pre-

sented in the form similar to P1 in Eq. (7):

P` �

p11...1
11...1 � � � P nn...n

11...1 � � � P N `N ` ...N `

11...1

p11...1
nn...n � � � P nn...n

nn...n � � � P N `N ` ...N `

nn...n

0 � � � 010 � � � 0

0 � � � � � � � � � 01

0BBBB@
1CCCCA: �11�

This means that the corresponding `-variate stochastic process has n` transient states Tp �p � 1; 2; . . . ; n`�
and N ` ÿ n` absorbing states Ac, and therefore, n

`

ÿ �
combinations of ` di�erent patterns (in the form of

normalized sums of ` di�erent eigenstates) are mapped onto Nc6 n
`

ÿ �
di�erent classes. Hence, the total

number of pattern combinations which can be classi®ed by the QRN is

S �
Xn

`�1

n
`

� �
� 2n: �12�

Now the performance of the QRN can be given the following interpretation. As soon as the unitary matrix
U and the o�set vector jw0i are chosen (see Eqs. (1) and (6)), all the transition matrices Pk �k � 1; 2; . . . ; `�
are uniquely de®ned (see Eqs. (4), (7), (10) and (11)). It should be noticed that these matrices do not have to

be implemented: they exist in an abstract mathematical space being induced by U
0

and jw00i. If only one
measurement is fed back �` � 1�, then the transition matrix (7) manipulates by basic patterns-eigenstates
which can be identi®ed with ``letters'' of an alphabet: by mapping each eigenvector into a corresponding
class, it assigns a certain meaning to the letter. If ` independent measurements are fed back �1 < `6 n�, then
the transition matrix (11) assigns certain meanings to combinations of letters, i.e., to `-letter ``words''. In
order to understand the rules of these assignments, i.e., the ``grammar'', let us turn to Eq. (10). As follows
from there, in general

P j1...j`
i1...i` 6� P j

i1 
 � � � 
 P j`
i` ; �13�

i.e., an `-variate stochastic process is not simply the product of ` underlying one-dimensional stochastic
processes, and the di�erence

Dj1...j`
i1... i`
� P j1...j`

i1...i`

�� ÿ P j1
i1 
 P j2

i2 
 � � � 
 P j`
i`

�� �14�
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expresses the amount of ``novelty'', or new information created by interaction between di�erent patterns via
quantum interference. Formally Eq. (14) resembles quantum entanglement which is also responsible for
creation of a new information; however, actually this entanglement is not quantum: it is a correlation
between several classical stochastic processes generated by quantum interference.

It should be recalled that classical neural nets where patterns are stored at dynamical attractors, do
not have a grammar: any combination of patterns is meaningless unless their storage is specially
arranged, and that would require actual implementation of an exponential number of new attractors
(see Eq. (12)).

Thus, each unitary operator U
0

having the structure (1) and supplied with an o�set vector jw00i of the type
(6) generates a new grammar. Since the structure (1) is preserved under matrix products, new operators

U
01

� U
0

1U
0

2; U
011

� U
0

1 
 U
0

2 �15�
as well as their linear combinations represent new grammar. In particular, if the time period of each run of
the QRN is increased in q times, then the e�ective unitary operator will be di�erent from the original one

U
01

� U
0q

�16�
and thereby a set of new languages can be generated by the same quantum ``hardware''. The second
equation in (15) opens up a possibility to build a high-dimensional operator _U from low-dimensional
components of the same structure.

It is worth mentioning that not every language of the possible set of languages is useful. Indeed, the
performance of the QRN, and in particular, the assignments of pattern combinations to speci®c absorbing
states is probabilistic. It is reasonable to require that for each selected patterns combination, the corre-
sponding absorbing probability distribution over all possible states has a well-pronounced preference for a
certain state; otherwise a word would lose its stable meaning. (It should be noticed that small overlapping
of absorbing states is acceptable: it makes the language more colorful by incorporating double-meaning to
some words.) As mentioned earlier, stability of the meaning of the basic patterns, i.e., letters, can be

achieved by an appropriate choice of U
0

and jw00i based upon solutions of Eq. (8). However, as soon as U
0

and jw00i are ®xed, there is no further control over stability of words' meaning since all the transition
matrices P` are already predetermined (see Eqs. (10) and (11)). In this situation, one can characterize the
e�ectiveness of the language by the ratio f of the number W of useful words to the total number of words S

f � W
S
; S � O�2n�: �17�

Hence, to maximize f one has to identify such a solution to Eq. (8) which simultaneously stabilizes the
meanings of all the letters as well as most of the words. Obviously, in general, this problem is hard.

In order to demonstrate the existence of e�ective emerging grammars, consider the following example.
Suppose that in Eqs. (1) and (6)

U �
cos u sin u 0 0
ÿ sin u cos u 0 0

0 0 1 0
0 0 0 1

0BB@
1CCA; a � 0; 0; a3a4� �; �18�

where u; a3 and a4 are real.
Then, applying Eq. (4) one ®nds the elements of the transition matrix P1 (see Eq. (7)):

P 1
1 � P 2

2 � c1 cos2 u; P 2
1 � P 1

2 � c1 sin2 u;

P 3
1 � P 3

2 � c1a2
3; P 4

1 � P 4
2 � c1a2

4

P 1
3 � P 2

3 � P 4
3 � P 1

4 � P 2
4 � P 3

4 � 0; P 3
3 � P 4

4 � 1; c1 �
1

a2
3 � a2

4 � 1
:

�19�

As follows from Eq. (19), there are two transient states �T1 and T2�, and two absorbing states (A3 and A4).
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Introducing four input patterns

jw1i � f1000g; jw2i � f0100g; jw3i � f0010g; jw4i � f0001g �20�

as well as their images in the probabilistic space

p1 � f1000g; p2 � f0100g; . . . ; p1 � jwii; �21�

®rst one can write down trivial mapping

jw3i ! p3 ! A3; f 3
3 � 1; and jw4i ! p4 ! A4; f 4

4 � 1: �22�

Other transitions

jw1i ! p1 ! A3; jw1i ! p4 ! A4; jw2i ! p2 ! A3 and p2 ! A4 �23�

are more complex, and they can be found from Eq. (8):

f 2
1 � P 1

1 f 3
1 � P 2

1 f 3
2 � P 3

1 ; f 3
2 � P 1

2 f 3
1 � P 2

2 f 3
2 � P 3

2 ; �24�

whence

f 3
1 �

a2
3

a2
3 � a2

4

; f 3
2 �

a2
4

a2
3 � a2

4

: �25�

Similarly one ®nds

f 4
1 � f 3

1 ; f 4
2 � f 3

2 : �26�
Thus, if

a3 � a4; �27�
the patterns jw1i and jw2i do not have any meaning; with the same probability they can be absorbed by the
states A3 or A4. However, if

a3 � a4; or a3 � a4; �28�
the same patterns are absorbed by only one state A3 or A4 and that assigns certain meaning to each of them.

For mapping combinations of patterns (20), one has to repeat twice each measurement before feeding it
back. Now the input pattern's combinations will be the following:

jw12i � jw21i �
1���
2
p f1100g; jw13i � jw31i �

1���
2
p f1010g; . . . �29�

but their image in the probabilistic space will be di�erent from (20)

p12 � p1 
 p2; p13 � p1 
 p3; . . . �30�
Instead of listing all the 64 elements of the matrix P2 (see Eqs. (10) and (11)), we will concentrate upon those
which will be used in our analysis. First of all

P ab
ii � 0 if a 6� i; b 6� i; i � 3; 4;

1 otherwise;

�
P ab

ij � 0 if a 6� i; b 6� j;
1 otherwise:

�
�31�

This means that there are four absorbing states: A33, A34, A43 and A44; the rest 12 states (T12; T13; etc.) are
transient. Here we will be interested only in the evolution of the pattern's combination jw12i (see Eq. (29))
since it is the only one which entangles the patterns jw1i and jw2i (see Eq. (20)). (Other combinations:
jw13i; jw23i, etc. are not entangled, and therefore, their evolution can be predicted from the previous
analysis as direct products jw1i 
 jw3i; jw2i 
 jw3i; i.e., it does not have any novelty element.)

M. Zak / Chaos, Solitons and Fractals 11 (2000) 2325±2330 2329



Thus, one obtains

P 11
12 � c2�cos u� sin u�4; P 22

12 � c2�cos uÿ sin u�4; P 12
12 � c2�cos 2 uÿ sin2 u�2 � P 21

12 ;

P 13
12 � c2a2

3�cos u� sin u�2; P 14
12 � c2a2

4�cos u� sin u�2;
P 23

12 � c2a2
3�cos uÿ sin u�2; P 24

12 � c2a2
4�cos uÿ sin u�2; P 34

12 � P 43
12 � c2a2

3a2
4;

P 33
12 � c2a4

3; P 44
12 � c2a4

4;

�32�

where

c2 �
1

�a2
3 � a2

4 � 2�2 : �33�

As follows from the last four equations in (32), there are direct transitions from the pattern combination
jw12i to the absorbing states. However, in addition to that, there exist many indirect transitions to the same
states, for instance, T12 ! T13 ! T33; T12 ! T14 ! T44; etc. and these transitions include the entanglement
e�ect which has maxima at u � �1=

���
2
p

: As a result, the pattern combination jw12i acquires a new meaning
since it cannot be reduced to the direct product of the patterns jw1i and jw2i.

The performance of this simple QRN becomes more sophisticated if the elements of U and a in Eq. (18)
are complex numbers.

Utilizing the properties (15), one can represent a unitary operator U
0

in Eq. (1) in the form

U
0 � U �1�1

�

 � � � 
 U �1�m

�
� U 2

1

ÿ 
 � � � 
 U �2�m

� � � � U �m�1

�

 � � � 
 U �m�m

�
�34�

gaining exponential dimensionality of U with linear resources.
Thus, it has been demonstrated that QRN is capable of creating emerging grammars by assigning dif-

ferent meanings to di�erent combinations of letters. The paradigm is based upon quantum interference of
patterns which entangles the corresponding Markov processes, and thereby, creates a new meaning de-
pending upon how di�erent patterns interact. The capacity of the language, i.e., the total number of words
in it is exponential in n where n is dimensionality of the basic unitary operator. However, if this operator is
presented as a direct product, then the number of words can be made double-exponential in the dimen-
sionality of the quantum hardware.

The problems of hardware implementations of QRN have not been discussed in this note. However,
since QRN operates by interleaving quantum evolution with measurement and reset operations, they are
far less sensitive to decoherence than other designs of quantum computers.
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