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Abstract

A quantum device simulating human decision making process is introduced. It

consists of quantum recurrent nets generating stochastic processes which represent the

motor dynamics, and of classical neural nets describing evolution of probabilities of

these processes which represent the mental dynamics. The autonomy of the decision

making process is achieved by a feedback from mental to motor dynamics which

changes the stochastic matrix based upon the probability distributions. This feedback

replaces an unavailable external information by an internal knowledgebase stored in the

mental model in the form of probability distributions. As a result, the coupled motor-

mental dynamics is described by a nonlinear version of Markov chains which can de-

crease entropy without an external source of information. Applications to common

sense based decisions as well as to evolutionary games are discussed. Ó 2000 Elsevier

Science Inc. All rights reserved.

1. Introduction

A human common sense has always been a mystery for physicists, and an
obstacle for arti®cial intelligence. It was well understood that human behavior,
and in particular, the decision making process, is governed by feedbacks from
the external world, and this part of the problem was successfully simulated in
the most sophisticated way by control systems. However, in addition to that,
when the external world does not provide su�cient information, a human turns
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for ``advise'' to his experience, and that is associated with a common sense. In
this paper, by common sense we will understand a feedback from the self-image
(a concept adapted from psychology), and based upon that, we will propose a
physical model of common sense in connection with the decision making
process.

A decision making process can be modeled by a time evolution of a vector p
whose components pi �i � 1; 2; . . . ;N� represent a probability distribution over
N di�erent choices. The evolution of this vector can be written in the form of a
Markov chain

pi�t� s� � pi�t�P ;
XN

i�1

pi � 1;
XN

j�1

pij � 1; 06pi61; 06pij < 1; �1�

where P is the transition matrix representing a decision making policy. If
P � Const, the process (1) approaches some ®nal distribution p1 regardless of
the initial state p0. In particular, in the case of doubly-stochastic transition
matrix, i.e., when

XN

j�1

pij � 1; and
XN

i�1

pij � 1 �2�

all the ®nal choices become equally probable

pi � pj � 1=N ; �3�
i.e., the system approaches its thermodynamics limit which is characterized by
the maximum entropy. When the external world is changing, such a rigid be-
havior is unsatisfactory, and the matrix P has to be changed accordingly, i.e.,
P � P �t�. Obviously this change can be implemented only if the external in-
formation is available, and there are certain sets of rules for correct responses.
However, in real world situations, the number of rules grows exponentially
with the dimensionalities of external factors, and therefore, any man-made
device fails to implement such rules in full.

The main departure from this strategy can be observed in human approach
to decision making process. Indeed, faced with an uncertainty, a human uses a
``common sense'' approach based upon his previous experience and knowledge
in the form of certain invariants or patterns of behavior which are suitable for
the whole class of similar situations. Such an ability follows from the fact that a
human possesses a self-image, and interacts with it. This concept which is
widely exploited in psychology has been known as far back as to ancient
philosophers, but so far its mathematical formalization has never been linked
to the decision making model (1).

First we will start with an abstract mathematical question: can the system (1)
change its evolution, and consequently, its limit distribution, without any
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external ``forces''? The formal answer is de®nitely positive. Indeed, if the
transition matrix depends upon the current probability distribution

P � P�p� �4�
then the evolution (1) becomes non-linear, and it may have many di�erent
scenarios depending upon the initial state p0. In particular case (2), it can
``overcome'' the second law of thermodynamics decreasing its ®nal entropy by
using only the ``internal'' resources. The last conclusion illuminates the
Schr�odinger statement [2] that ``life is to create order in the disordered envi-
ronment against the second law of thermodynamics''. Obviously this statement
cannot be taken literally ± as will be shown below, Eq. (1) subject to the
condition (4) describes the system which is not isolated, and therefore, the
result stated above does not violate the second law of thermodynamics. In
order to discuss the physical meaning of the condition (4), let us turn to Eq. (1)
and introduce the underlying stochastic process. The latter can be simulated by
a quantum device represented by quantum recurrent nets (QRN) [3], and we
will start with a brief description of that device.

The simplest QRN is described by the following set of di�erence equations
with constant time delay s

ai�t � s� � r1

X
uij�t�aj�t�

n o
; i:e:; a0a1; . . . ; aNf g

! 0; 0; . . . ; 1; . . . ; 00
"i

( )
; i � 1; 2; . . . ;N ; �5�

where aj is the input to the network at time t, uij is a unitary operator de®ned
by the corresponding Hamiltonian of the quantum system, and r1 is a mea-
surement operator (in the computational basis) that has the e�ect of projecting
the evolved state into one of the eigenvectors of r1. The curly brackets are
intended to emphasize that r1 is to be taken as a measurement operation with
the e�ect similar to those of a sigmoid function in classical neural networks.
Obviously, the outputs ai�t � s� are random because of the probabilistic
nature of quantum measurements. As shown in [3], these outputs form a
Markovian stochastic process with the probabilities evolving according to the
chain (1) and

pij � jujij2;
XN

j�1

pij � 1;
XN

i�1

pij � 1; pij P 0; i; j � 1; 2; . . . ;N �6�

is the N � N doubly-stochastic matrix which is uniquely de®ned by the unitary
matrix U. Each element of this matrix represents the probability that the ith
eigenvector as an input produces jth eigenvector as an output

00 010
i"

0

� �
! 00 010

j"
0

� �
: �7�
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In a special case when

pij > 0; i; j � 1; 2; . . . ;N

the Markov process is ergodic, i.e., the solution to Eq. (1) approaches an at-
tractor (3) which is unique and it does not depend upon the initial value p0 at
t � 0. Only this case will be considered in this paper. Thus, Eq. (5) describes the
evolution of the vector

a1; . . . ; anf g �< uj;
XN

j�1

a2
j � 1 �8�

representing a quantum state in a Hilbert space, and all the components �ai; uij�
are to be actually implemented. This evolution is irreversible, non-linear and
non-deterministic because it includes measurement operations.

On the other hand, the vector

�p1; p2; . . . ; pn� � p;
Xn

j�1

pj � 1; pi > 0; �9�

as well as the stochastic matrix pij exist only in an abstract Euclidean space:
they never appear explicitly in physical space. Evolution (1) is also irreversible,
but unlike (5), it is linear and deterministic.

So far we have simulated the case P � Const. In order to control P, let us
assume that the result of the measurement, i.e., a unit vector

am�t� � 00; . . . ; 010
"
i

; . . . ; 0

( )
is combined with an arbitrary complex (interference) vector.

If the interference state vector is

a0 �

a00
a01
..
.

a0N

0BBBB@
1CCCCA �10�

and r is a measurement operator in the computational basis, then jw�t � s�i,
the recurrent state re-entering the circuit, must take one of the forms

j/0i �
1�����
R0

p

1� a00
a01
..
.

a0Nÿ1

0BBBB@
1CCCCA � 1�����

R0

p

a�0�0

a�0�1

..

.

a�0�Nÿ1

0BBBB@
1CCCCA;
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j/1i �
1�����
R1

p
a00

1� a01
..
.

a0Nÿ1

0BBB@
1CCCA � 1�����

R1

p
a�1�0

a�1�1

..

.

a�1�Nÿ1

0BBB@
1CCCA; �11�

j/Nÿ1i �
1����������

RNÿ1

p
a00
a01
..
.

1� a0Nÿ1

0BBB@
1CCCA � 1����������

RNÿ1

p
a�Nÿ1�

0

a�Nÿ1�
1

..

.

a�Nÿ1�
Nÿ1

0BBB@
1CCCA

with re-normalization factors

R0 � j1� a00j2 � a01
�� ��2 � � � � �12�

R1 � ja00j2 � j1� a01j2 � � � � �13�

..

.

RNÿ1 � tja00j2 � ja01j2 � � � � j1� a0Nÿ1j2 �14�
It should be emphasized that the states (11) are ®rst calculated and then pre-
pared as new quantum inputs.

The transition probability matrix, pij for this process is given by examining
how each of the recurrent states, j/0i � � � j/Nÿ1i evolve under the action of U :

pij �

b�0�
0����
R0

p
���� ����2 b�0�

1����
R0

p
���� ����2 � � �

b�1�
0����
R1

p
���� ����2 b�1�

0����
R1

p
���� ����2 � � �

..

. ..
. . .

.

b�Nÿ1�
0��������
RNÿ1

p
���� ����2 � � � b�Nÿ1�

Nÿ1��������
RNÿ1

p
���� ����2

0BBBBBBBBBB@

1CCCCCCCCCCA
; �15�

where

b�i�j �
XNÿ1

`�0

uj`a
�i�
` � uji �

XNÿ1

`�0

uj`a`�0�: �16�

Thus, now the structure of the transition probability matrix pij can be con-
trolled by the interference vector (10), and P � P �t�.
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Let us now implement the internal feedback (4). For that purpose, assume
that the components of the interference vector (10) are de®ned by the com-
ponents pi of the probability vector by setting

a0i � fi�p1;p2; . . . ; pN � �17�
and rewriting Eqs. (12)±(16) accordingly. Then

pij � pij�p1; . . . ; pN �: �18�
However, the simplicity of this mathematical operation is illusive. Indeed, as
pointed out above, the probability vector p is not simulated by the QRN ex-
plicitly: it has to be reconstructed by a statistical analysis of the ensemble of
solutions to Eq. (5). In order to avoid that, one can simulate the evolution of
the probability vector, i.e., Eq. (1) by a classical neural network which can be
presented, for instance, in the form

pi�t � s� � S
XN

j�1

wjkpk�t�
" #

; �19�

where S is the sigmoid function, and wjk � Const are the synaptic weights.
Now Eqs. (5) and (19) are coupled via the feedbacks (6) and (17).
From the mathematical viewpoint, this system can be compared with the

Langevin equation which is coupled with the corresponding Fokker±Planck
equation such that the stochastic force is fully de®ned by the current proba-
bility distributions, while the di�usion coe�cient is fully de®ned by the sto-
chastic force [4].

From the physical viewpoint, Eqs. (5) and (19) represent two di�erent
physical systems (quantum and classical) which interact via the feedbacks (4)
and (6): the transition probability matrix P is de®ned by the unitary matrix U
of the QRN according to Eq. (6), while the input interference vector to the
QRN is de®ned by the feedback (17). Using the Feynmann terminology [1],
Eq. (5) simulates probabilities, while Eq. (19) manipulates by them.

Finally, from the cognitive viewpoint, Eqs. (5) and (19) represent two dif-
ferent aspects of the same subject: the decision maker. Eq. (5) simulates his
real-time actions, i.e., his motor dynamics, while Eq. (19) describes evolution of
self-image in terms of such invariants as expectation, variance, entropy (in-
formation), and that can be associated with the mental dynamics.

Thus, as a result of interaction with his own image and without any ``ex-
ternal'' enforcement, the decision maker can depart from the thermodynamical
limit (3) of his performance ``against the second law''. Obviously, from the
physical viewpoint, the enforcement in the form of the feedback (17) is external
since the image (19) represents a di�erent physical system. In other words, such
a ``free will'' e�ort is not in a disagreement with the second law of thermo-
dynamics.
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Eqs. (5) and (19) illuminate another remarkable property of human activity:
the ability to predict future. Indeed, Eq. (19) depends only upon the prescribed
unitary matrix U , but it does not depend upon the evolution of the vector ai.
Therefore, Eq. (19) can be run faster than real time; as a result of that, future
probability distributions as well as its invariants can be predicted and com-
pared with the objective. Based upon this comparison, the feedback (17) can be
changed if needed.

Actually such interaction with self-image simulates ``common sense'' which
replaces an unavailable external source of information and allows one to make
decisions based upon his previous experience.

Formally the knowledge base is represented by the synaptic weights wjk of
Eq. (19), and it consists of two parts. The ®rst part includes personal experience
and habits (risk prone, risk aversion, etc.). The second part depends upon the
objective formulated in terms of probability invariants (certain expectation
with minimal variance, or maximum information, etc.). The dependence upon
the objective may include real-time adjustment of synaptic weights wij in the
form of learning (adapted from theory of neural networks). As soon as
the synaptic weights are determined, the common sense simulator will follow
the optimal strategy regardless of unexpected changes in the external world.

It should be noticed that the advantage of the quantum implementation is
not only in simulation of true randomness, but also in exponential increase of
information capacity. Indeed, combining the direct product decomposability
and entanglement, one can represent the unitary matrix in Eq. (5) as follows:

U � �U �1�1 
 � � �U �1�n � � �U �2�1 
 � � �U �2�n � � � � �U �m�1 
 � � �U �m�n � � � � �20�
Here the number of independent components is

q � 4nm �21�
while the dimensionality

N � 2n � 2q=4m: �22�
In Eq. (22), N and q are associated with the Shannon and the algorithmic
complexity, respectively; therefore, the exponential Shannon complexity is
achieved by linear resources.

Further compression of Shannon information can be obtained by applying
the `-measurement architecture [3] when each step of the quantum evolution is
repeated and measured `-times, and during a reset operation the results of all
the measurements are combined with the previous state. As shown in [3], such
an architecture provides the double-exponential Shannon complexity

N � 2q`=4m: �23�
The advantage of the quantum compressions (22) or (23) can be appreciated in
view of the fact that the e�ciency of an alternative device ± the pseudo random
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number generator ± rapidly decreases with the growth of the dimensionality of
random vectors.

Finally, one should notice that QRN provides the simplest physical simu-
lation of the four constraints in Eq. (1). However, even if QRN is replaced by a
random number generator, the quantum formalism should be preserved since it
is the best mathematical tool for implementation of these constraints.

2. Spontaneous self-organization

We will start the analysis of the motor-mental dynamics, i.e., of Eqs. (5) and
(19) with the e�ect of a spontaneous self-organization when the system departs
from the state of the thermodynamics limit and approaches a deterministic
state without any external forces. For that purpose suppose that the selected
unitary matrix in Eq. (5) is

U � 1���
2
p 1 ÿ1

1 1

� �
: �24�

Then the corresponding transition probability matrix in Eq. (1), according to
Eq. (6) will be doubly-stochastic:

P � 1=2 1=2
1=2 1=2

� �
�25�

and the stochastic process (1) is already in its thermodynamics limit (3), i.e.,
p1 � p2 � 1=2.

Let us assume that the objective of the decision-maker is to approach the
deterministic state

p1 � 1; p2 � 0 �26�
without help from outside. In order to do that, he should turn to his experience
in the form of the feedback (17). If he chooses this feedback in the form

a � �a1; a2�; a1 � ÿ2p1; a2 � 1 �27�
then, according to Eqs. (11)±(16), the new transition probability matrix pij will
be

p11 � p2
1

2p2
1 ÿ 2p1 � 1

; p12 � �1ÿ p1�2
2p2

1 ÿ 2p1 � 1
;

p21 � �p1 � 1�2
2p2

1 � 2
; p22 � �1ÿ p1�2

2p2
1 � 2

:

�28�
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Hence, the evolution of the probability p1 now can be presented as

p�n�1�
1 � p�n�1 p11 � 1

ÿ ÿ p�n�
�
p21 �29�

in which p11 and p22 are substituted from Eqs. (28).
It is easily veri®able that

p11 � 1; p12 � 0; �30�
i.e., the objective is achieved due to the ``internal'' feedback (27).

3. Attraction to common sense based strategies

Classical arti®cial intelligence as well as arti®cial neural networks are ef-
fective in a deterministic and repetitive world, but faced with uncertainties and
unpredictabilities, both of them fail. At the same time, many natural and social
phenomena exhibit some degree of regularity only on a higher level of ab-
straction, i.e., in terms of some invariants. For instance, each particular real-
ization of a stochastic process can be unpredictable in details, but the whole
ensemble of these realizations, i.e., ``the big picture'' preserves the probability
invariants (expectation, moments, information, etc), and therefore, predictable
in terms of behavior ``in general''.

In this section, we will map the hetero-associative memory problem per-
formed by arti®cial neural nets onto the patterns which represent stochastic
processes, namely: store a set of m stochastic processes given by vectors of their
probability distributions

p�i� � p�i�1 ; p
�i�
2 ; . . . ; p�i�N ; i � 1; 2; . . . ;m �31�

in such a way that when presented with any of the process p
� �j�

out of the set of
M processes

p
� �j� � p

� �j�
1 ; p2

� �j�
; . . . ; pN

� �j�
; j � 1; 2; . . . ;M ; �32�

the coupled motor-mental dynamics (5), (19) converges to one of the stochastic
processes (31).

The performance

p
� �i� ! p�i�; i � 1; 2; . . . ;m; �33�

represents correspondence between two classes of patterns, i.e., a hetero-
associative memory on a high level of abstraction. Indeed, each process in (33)
stores an in®nite number of di�erent patterns of behaviors which, however, are
characterized by the same sequence of invariants (31) and (32), respectively
thereby representing a decision making strategy.

Hence, if the strategy of the decision-maker is characterized by a pattern p
� �i�

from (32), and starting from t � 0, the external information becomes
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unavailable, he should change its strategy from the pattern p
� �i�

to the corre-
sponding pattern from (31), and that can be associated with a decision based
upon common sense. It is implied that the attracting strageties p�i� are su�-
ciently ``safe'', i.e., they minimize the risk taken by the decision-maker in case
of an uncertain external world.

The ®rst step in the implementation of the mapping (33) is to ®nd the
transition probability matrix P such that

p�i� � p
� �i�

P p
� �1�

; p
� �2�

; . . . ; p
� �m�

� �
: �34�

This implies that the sought stochastic process is supposed to approach its limit
state in one step, i.e.,

p
� �i��t � s� � p

� �i��t � 2s� � p
� �i��1� � p�i�: �35�

Therefore, P must have the following form:

P �
p1 � � � pN

p1 � � � pN

..

. ..
.

p1 � � � pN

0BBB@
1CCCA; 0 < p < 1;

XN

i�1

pi � 1; �36�

where the vector p � �p1; . . . ; pN � belongs to the family of the vectors p�i� in Eq.
(35).

Indeed, then any arbitrary probability vector

X � �x1; x2; . . . ; xN �;
X

i

xi � 1 �37�

is mapped onto the vector p � �p1; . . . ; pN � in one step.
Let us assume that the vector p � �p1; . . . ; pN � is representable as a direct

product of n two-dimensional vectors.

�p1; p2; . . . ; pN � ! �p1; 1ÿ p1� 
 � � � 
 �pn; 1ÿ pn�; �38�

n � log2 N : �39�
Obviously this assumption imposes constraints upon the components of the
vector p, and as a result, this vector can be de®ned only by log2 N (out of N )
independent parameters pj; i � 1; 2; . . . ; n.

Now Eq. (36) reduces to

P � p1 1ÿ p1

p1 1ÿ p1

� �

 � � � 
 pn 1ÿ pn

pn 1ÿ pn

� �
; �40�

where

p�k�11 � p�k�21 � pk; p�k�12 � p�k�22 � 1ÿ pk:
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The next step in the implementation of the mapping (33) is to express the
components of the matrix (40) via the components of the unitary operator Uij

(see Eq. (5)) and the interference vector (10). For that purpose, let us choose Uij

and a0 as follows:

U �
1 0 � � � 0
0 1 � � � 0
� � � � � � � � � � � �
0 � � � 0 1

0BB@
1CCA

� 1 0
0 1

� �

 1 0

0 1

� �

 � � � 
 1 0

0 1

� �
; �41�

a0 � a1; a1�1�
�

� ib1�1�
�

 � � � 
 an; a1�n�

�
� ib1�n�

�
: �42�

Then, according to Eqs. (11)±(16),

pk
11 �

ak � 1j j
ak � 1j j2 � a2

k�1� � b2
k�1�

��� ��� � pk � p�k�21

� akj j2
akj j2 � ak�1� � bk�1� � 1

�� ��2 ; k � 1; 2; . . . ; n: �43�

However, the components of the interference vector, ak; ak�1� and bk�1� cannot
be chosen independently since they should satisfy the equality (43) as well as
the conditions

Imak � 0; Imak�1� � 0; Imbk�1� � 0: �44�
Simple algebra leads to the following constraints imposed upon the interfer-
ence vector

ak > ÿ1; k � 1; 2; . . . ; n; �45�

ak�1� � a4
k

2�ak � 1�2 ÿ
�a2

k � 1�
2

; �46�

bk�1� �
�������������������
a2

k ÿ a2
k�1�

q
: �47�

Now the components pk in Eq. (43) can be expressed via the only one com-
ponent of the interference vector

pk � �ak � 1�2
�ak � 1�2 � a2

k

; 1ÿ pk � a2
k

ak � 1� �2 � a2
k

� ~pk: �48�
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It is easily veri®able that ~pk is a sigmoid function of ak

~pk � S�ak� since
o~pk

oak
P 0; ~pk�0� � 0; ~pk�1� � 1

2
�49�

and that property will be exploited later.
The ®nal step is to implement the actual association between the patterns in

the mapping (33), i.e., to ®nd the appropriate dependence between the com-

ponents pk of the matrix (40) and the components of the pattern p
� �i�

. Since pk

are uniquely de®ned by ak (see Eqs. (48)), we will start with representing ak as

linear combinations of the components of the initial patterns p
� �j�

in the map-
ping (33) for each jth association

a�j�k �
XN

i�1

wikp
� �j�

i j � 1; 2; . . . ;m; k � 1; 2; . . . ; n; �50�

where wik are constant weights to be found, m the number of associations in

Eq. (33), N and n are the dimensionalities of the input pattern p
� �j�

and the
output pattern p�j�, respectively.

Eq. (50) can be written in the matrix form

Amn � WnNPmN �51�
and therefore, the matrix WnN of the weights can be explicitly expressed via the

matrix Amn, i.e., via the components of the interference vector a�j�k

WnN � AmnP
ÿ1
NN if m � N ; detP 6� 0; �52�

WnN � Amn�PTP�ÿ1PT if m > N : �53�
Eq. (52) presents the exact solution, while Eq. (53) gives a minimum norm ap-
proximation for the case when the number of association is larger than the di-

mensionality of the input patterns p
� �j�

. Since a�j�k can be expressed via
the probabilities p�j�k of the transition probability matrix (38) by means of Eq. (48)

a�j�l �
2~p�j�k �

������������������������������
12�~pj

k�2 ÿ 4~p�j�k

q
2�1ÿ 2~p�j�k �

�54�

(one can choose either of two values), the problem is solved in a closed ana-
lytical form. Indeed, given the associations (33), one ®nds the corresponding

a�j�k by Eq. (54), and then the weights wij depend upon all the values of the input

patterns p
� �j�

k (via the matrix P) and the output patterns p�j�k (via the matrix A).

As soon as the weights wij are found, Eq. (19) can be represented in the
following form:

p1i � S
XN

i�1

wikp
0
k

 !
; i � 1; 2; . . . ;N ; �55�
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where

p1i � pi�t!1�; p0
k � p�t � 0� �56�

and the sigmoid function S is de®ned by Eq. (49).
Eq. (55) has a form of a perceptron for hetero-associative memory. Ex-

ploiting this formal analogy, one can conclude that any input pattern p0 which
is su�ciently close to a pattern p�i� from the left of Eq. (33) will recall the

output pattern which is close to the corresponding associative pattern p
� �i�

from
the right-hand side of Eq. (33). Moreover, due to the contracting property of
the sigmoid function S in Eq. (55), the distance between the output patterns
will be smaller than between the input ones. In particular, several di�erent
inputs can be mapped onto the same output, and that can be interpreted as a
classi®cation problem.

However, from the cognitive viewpoint, Eq. (55) is fundamentally di�erent
from the perceptron since it not only manipulates with the patters of proba-
bilities, but it also simulates them via the QRN. Indeed, Eqs. (50) de®nes the
interference vector a0 (see Eqs. (42)) which controls the unitary evolution of
QRN (see Eqs. (5) and (41)) in such a way that the generated stochastic process
has exactly the same probability distribution as prescribed by the probability
pattern p1 manipulated by Eq. (55).

4. Discussion and conclusion

The model introduced above can be generalized in several ways.
First we will consider the case when the decision-maker controls two dif-

ferent, but correlated processes by making choices for combinations of deci-
sions with the joint probabilities pij. As mentioned in Section 1, the quantum
implementation of stochastic processes, i.e., QRN, allows one to stay with the
same evolutionary operator (41) with the only di�erence that now each step in
QRN evolution should be run and measured twice, and then the results of these
measurements, being combined with the interference vector (10) and normal-
ized, are sent back as a new input. The sequences of the ®rst and the second
measurements correspond to the joint strategy for making decisions controlling
two correlated processes. The physical origin of this correlation is quantum
interference between the results of measurements after they are combined for a
new input and subjected to the next step of unitary evolution.

Following the same methodology as those for a simple strategy, let us
present a brief sketch of the double-strategy model and start with the as-
sumption similar to Eq. (38)
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p11; p12; . . . ; pNN� � ! p�1�11 ; p
�1�
12 ; p

�1�
21 ; p

�1�
22

� �

 � � �


 p�n�11 ; p
�n�
12 ; p

�n�
21 ; p

�n�
22

� �
: �57�

Then one can deal with each 2� 2 evolutionary operator in Eq. (41) separately.
Any of these operators' gives rise to the following transition probability matrix:

P �

p11
11 p12

11 p21
11 p22

11

p11
12 p12

12 p21
12 p22

12

p11
21 p12

21 p21
21 p22

21

p11
22 p12

22 p21
22 p22

22

0BBB@
1CCCA; �58�

where

p11
11 �

1� a1j j4

1� a1j j2 � a2j j2
� �2

; p22
22 �

1� a2j j4

a1j j2 � 1� a2j j2
� �2

;

p22
11 �

a2j j4

1� a1j j2 � a2j j2
� �2

; p11
22 �

a1j j4

a1j j2 � 1� a2j j2
� �2

;

p12
11 �

1� a1j j2 a2j j2

1� a1j j2
� �

� a2j j2
� p21

11; p12
22 �

a1j j2 1� a2j j2

a1j j2 � 1� a2j j2
� �2

� p21
22;

p11
12 � p11

21 �
�2= ���

2
p � � a1

�� ��4
�1= ���

2
p � � a1

�� ��2 � �1= ���
2
p � � a2

�� ��2� �2
;

p22
12 � p22

21 �
�1= ���

2
p � � a2

�� ��4
�1= ���

2
p � � a1

�� ��2 � �1= ���
2
p � � a2

�� ��2� � ;
p12

12 � p21
12 � p12

21 � p21
21 �

�1= ���
2
p � � a1

�� ��2 �1= ���
2
p � � a2

�� ��2
�1= ���

2
p � � a1

�� ��2 � �1= ���
2
p � � a2

�� ��2� �2
:

�59�

In order to reduce the matrix (58) to the form (36), one has to provide the
following equalities:

p11
11 � p11

12 � p11
21 � p11

22; p12
11 � p12

12 � p12
21 � p12

22;

p21
11 � p21

12 � p21
21 � p21

22; p22
11 � p22

12 � p22
21 � p22

22:
�60�

Analysis of Eqs. (59) shows that only the four (out of 12) equalities, namely

p11
11 � p11

22 � p11
12; p22

22 � p22
11 � p22

12 �61�
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must be enforced since the rest of them will follow automatically. Hence, one
has to choose the four components of the interference vector

a0 � �a1; a2�; a1 � a1�1� � ib1�1�; a2 � a2�1� � b2�1� �62�
to enforce the four equalities in (61).

In principle, the problem is solvable, however, unlike the previous case (see
Eqs. (45)±(47)) a closed form analytical solution is not available any more. A
numerical solution can be based upon methods of gradient-descent. As a result,
one arrives at the generalized model of motor-mental dynamics:

ai�t � s� � r2

X
Uij�t�aj�t�

n o
; �63�

pij�t � s� � S
X

wijk`pk`�t�
h i

; �64�

where r2 is a two-measurements operator.
Now the vector ai simulates two correlated stochastic processes (corre-

sponding to the ®rst and the second measurements, respectively) whose joint
probability pij is described by Eq. (64). Eqs. (63) and (64) are coupled in the
same way in which Eqs. (5) and (19) are.

Further generalization to the case of `�` > 2� correlated strategies will re-
quire to replace 2� 2 components of unitary operators by `� ` components in
the decomposition (41). As a result of that, the decomposition (57) should be
changed accordingly.

The second line of generalization of the model considered in the previous
section is associated with an objective function. Indeed, so far we did not
discuss how the limit strategy p1i (see Eq. (55)) has been prescribed. In prin-
ciple, such a prescription can be based upon the optimization of some objective
function, for example: maximize entropy subject to a given expectation and
variance, or minimize the expected cost function:

E �
XN

j�1

cjp
1
j ; �65�

subject to the constraints

0 < p1j < 1;
XN

j�1

p1j � 1; �66�

where cj are given weights representing the ``external world''. This minimiza-
tion can be performed by linear programming, and as a result, the limit
probability will be de®ned by the weights

p1i � fi�c1; c2; . . . ; cN �: �67�
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However, in general, the weights ci can represent the probability distribution of
another stochastic process (on a much slower time scale) which belongs to a
family of strategies converging to a global strategy in a way similar to the
mapping (53). By continuing this process, one arrives at a hierarchy of sto-
chastic attractors leading from local to global strategies on the higher an higher
level of abstraction. Such a hierarchy can be implemented by a set of master±
slave equations of the type of (5) and (19).

In many practical cases, the objective function depends upon the outcome
probabilites p1j , and then Eqs. (65) and (66) are coupled with Eqs. (5) and (19).
This happens for instance, when the external world is represented by another
decision-maker, and that situation can be interpreted as an evolutionary game.

Let us consider two decision-makers (players) and suppose that the ®rst
playerÕs objective is to maximize the expected payo� after b number of moves

E �
Xb

k�0

XN

i;j�1

aijpij�t � ks�; �68�

aij � Const; 0 < pij < 1;
XN

i;j

pij � 1; �69�

where pij are joint probabilities that the players will use the strategies i and j,
respectively.

Then the objective of the second player is to minimize the maximum of E.
If the objective (68) and (69) is available to both players each of them can

®nd the best strategy (for instance by applying the methods of dynamical
programming) and to implement it by simulations of Eqs. (63) and (64).
However, it may happen that the players do not know exactly the objective.
For instance, in the beginning they may ignore the correlation between their
strategies assuming that

pij � pI
i p

II
j ; �70�

where pI
i and pII

j are the independent probabilities that each player will use a
certain strategy.

Then each player will have its own image of the objective:

E0 �
Xb

k�0

XN

i;j�1

a1
ijp

I
i �t � ks�pII

j �t � ks�; �71�

E11 �
Xb

k�0

X
i;j�1

a11
ij pI

i �t � ks�pII
j �t � ks� �72�

and, based upon that, he will execute his strategy by running the corresponding
version of Eqs. (63) and (64). After b number of moves, the feedback from the
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external world becomes available, and the players can evaluate their perfor-
mance by comparing the di�erences

D0 � E0 ÿ E; D00 � E00 ÿ E: �73�
Based upon these di�erences, each of them can update the coe�cients a0ij and
a00ij in their objectives (71) and (72), respectively, and introduce correlations
between pI

i and pII
j (Such a re-evaluation of the objective can exploit the

methodology of BayesÕ procedures).
Consequently, the player who has better images of the self and of the ad-

versary has a better chance to win.
Thus we have introduced a new dynamical paradigm in the form of coupled

motor and mental dynamics which is represented by a quantum generator of
stochastic processes controlled by nonlinear Markov chains. Based upon this
paradigm, a quantum decision-maker has been proposed. New dynamical
phenomena, namely spontaneous self-organization, attraction to common
sense strategies, and a new approach to simulation of evolutionary games have
been discussed.
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