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Abstract*Quantum analog computing is based upon similarity between mathematical formalism of
quantum mechanics and phenomena to be computed[ It exploits a dynamical convergence of several
competing phenomena to an attractor which can represent an extremum of a function\ an image\ a solution
to a system of ODE\ or a stochastic process[ In this paper\ a quantum version of recurrent neural nets
"QRN# as an analog computing device is discussed[ This concept is introduced by incorporating classical
feedback loops into conventional quantum networks[ It is shown that the dynamical evolution of such
networks\ which interleave quantum evolution with measurement and reset operations\ exhibit novel
dynamical properties[ Moreover\ decoherence in quantum recurrent networks is less problematic than in
conventional quantum network architectures due to the modest phase coherence times needed for network
operation[ Application of QRN to simulation of chaos\ turbulence\ NP!problems\ as well as data com!
pression demonstrate computational speedup and exponential increase of information capacity[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

0[ INTRODUCTION

Analog computing is based upon similarity between mathematical formalism of a physical
phenomenon to be simulated and phenomena to be computed[ Usually it exploits a dynamical
convergence of a physical process to a certain state\ or attractor\ so that the measured parameters
characterizing this attractor can be uniquely identi_ed[ Thus\ unlike digital computers which
operate via manipulations with numbers\ in analog computers numbers appear as a result of
measurement of physical parameters[ That is why the criteria of computational complexity
developed for digital algorithms\ strictly speaking\ are not applicable to analog algorithms[ At
the same time\ analog algorithms have their own criteria of {complexity| such as] the time of
convergence to an attractor subject to a prescribed error\ the degree of stability of the attractor\
the pattern of convergence "asymptotic\ or oscillatory#\ type of the attractor "static\ periodic\
chaotic\ or stochastic#\ etc[

The competition between digital and analog computers\ i[e[\ between computations and simu!
lations\ has a long history[ During the last _fty years\ the theory of computation has been
based\ implicitly\ upon classical physics as idealized in the deterministic Turing machine model[
However\ despite the many successes of digital computers\ the existence of so called hard problems
has revealed limitations on their capabilities\ since the computational time for solving such
problems grows exponentially with the size of the problem[

It was well understood that one possible way to _ght the {curse| of the combinatorial explosion
is to enrich digital computers with analog devices[ In contradistinction to a digital computer\
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which performs operations on numbers symbolizing an underlying physical process\ an analog
computer processes information by exploiting physical phenomena directly[ It is this problem
solving via direct simulation that allows an analog approach to reduce the complexity of the
computations signi_cantly[ This idea was stressed by Feynman ð0Ł who demonstrated that the
problem of exponential complexity in terms of calculated probabilities can be reduced to a
problem of polynomial complexity in terms of simulated probabilities[ Conceptually\ a similar
approach can be applied to the whole class of NP!complete problems[ Indeed\ the theory of
computational complexity is an attribute of digital approach to computations[ At the same
time\ in principle\ one can _nd such a physical phenomenon whose mathematical description is
equivalent to those of a particular NP!complete problem[ Then\ incorporating this phenomenon
into an appropriate analog device\ one can simulate the corresponding NP!complete problem[
But is it possible\ in general\ to _nd a new mathematical formulation for any intractable problem
in such a way that it becomes tractable< Some experts in computational complexity believe that\
in the spirit of the Godel theorem\ there always exists computational problems such that every
mathematical formulation that captures the essence of the problem is intractable ð1Ł[ At this
stage\ we cannot prove or disprove this statement[

There is another class of problems for which simulations are superior over computations[ In
contradistinction to NP!complete problems whose complexity is in an exponentially large number
of simple computations\ these problems have complex and sometimes\ partially unknown ana!
lytical structure[ Simulations of solutions to such problems are based upon a black!box approach
when unknown components of the model are found in the course of a trial!and!error learning
process[ A typical representative of a corresponding analog device implementing black!box based
simulations is a neurocomputer where unknown "learnable# parameters are incorporated in the
form of synaptic interconnections between dynamical units called {neurons|[ However\ usually
analog computers are associated with certain limitations such as the lack of universality\ slow
performance\ and low accuracy\ and this is the price to be paid for certain advantages of
simulations[ A partial success in development of a universal analog device is associated with
neurocomputers which are based upon massively parallel adaptive dynamical systems modeled
on the general features of biological neural networks that are intended to interact with the object
of the real world in the same way the biological systems do[ However\ the capacity of the
neurocomputers is roughly proportional to the size of the apparatus\ and that limits actual power
signi_cantly[

A second way to _ght a curse of dimension is to utilize a non!deterministic approach to
computations[ This approach is associated with the Monte Carlo method introduced by N[C[
Metropolis and S[M[ Ulam in 0839[ The idea of this method is based upon the relationships
between the probabilistic characteristics of certain stochastic processes and solutions to some
deterministic problems such as values of integrals\ solutions to di}erential equations\ etc[ The
strength of the method is that its error does not depend on the number of variables in the
problem\ and therefore\ if applicable\ it breaks the curse of dimension[ The e}ectiveness of the
Monte!Carlo approach is inversely proportional to the smoothness parameter that characterizes
the degree of correlation within the input data[ However\ the Monte!Carlo method is not the
only way to apply nondeterminism for computations[ There is a class of so!called randomized
algorithms that are e}ective for combinatorial problems[ In general\ a randomized strategy for
this kind of problem is useful when there are many ways in which an algorithm can proceed\ but
it is di.cult to determine a way that is guaranteed to be good[ In particular\ if the bene_ts of
good choices outweighs the costs of bad choices\ a random selection of good and bad choices
can yield a good algorithm[

In general\ the theory of computational complexity proves that polynomial time non!
deterministic algorithms are more powerful than polynomial time deterministic ones[ However\
the main limitation of the whole non!deterministic approach is in the generation of random
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numbers] the generators are slow and not always reliable "i[e[\ the sequence of numbers that they
produce may harbor hidden correlations that no truly random sequence would possess#[ That is
why the concept of a quantum computer became so attractive] its analog nature is based upon
physical simulations of quantum probabilities\ and at the same time\ it is universal "at least for
modeling physical world#[

Although the development of the quantumÐmechanical device is still in progress\ a new
quantum theory of computations has been founded ð2Ł[ This theory suggests that there is a second
fundamental advantage of the hypothetical quantum computer which is based upon the wave
properties of quantum probabilities] a single quantum computer can follow many distinct com!
putational paths all at the same time and produce a _nal output depending on the interference
of all of them[ This particular property opened up a new chain of algorithms that solve in
polynomial time such hard problems as factorization and discrete log\ i[e[\ the problems that are
believed to be intractable on any classical computer[

There are remarkably few "actually four# papers in which quantum analog computing is
discussed[ The _rst one ð3Ł introduces a hypothetical quantum device "a slot machine# for solving
a traveling salesman problem[ As shown by the author\ such a device\ although intellectually
appealing\ requires an exponentially large number of measurements to get the right answer[ In
the second one ð4Ł\ an attempt is made to exploit combinatorial properties of tensor product
decomposability of unitary evolution of many!particle quantum systems for simulating solutions
to NP!complete problems\ the reinforcement and selection of the desired solution being executed
by quantum resonance^ although the implementability of the approach is still in question\ the
potential di.culties are not associated with the NP!completeness of the problem[ The last
publication ð5Ł introduces a new dynamical paradigm] quantum recurrent nets "QRN# which will
be discussed in this paper[

The rest of the paper is organized as follows[ In the next section\ a QRN as an analog quantum
device is introduced[ Then\ in Sec[ 2\ the dynamical complexity of QRN is demonstrated and
discussed[ Sec[ 3 and Sec[ 4 discuss the computational power of QRN with applications to
combinatorial optimization\ and to simulations of chaos and turbulence[ Sec[ 5 addresses infor!
mation processing by QRN^ special attention is paid to data compression and recognition of
collection of patterns[ In Sec[ 6\ QRN as a generator of stochastic processes is discussed[ The
results are summarized in Sec[ 7[

1[ QUANTUM RECURRENT NETS

Quantum recurrent nets "QRN# were introduced and discussed in ð5Ł[ They are represented by
quantum version of recurrent neural networks whose outputs are coupled to their inputs via
measurements and reset operations[

1[0[ The simplest QRN

The simplest QRN is described by the following set of di}erence equations with constant time
delay\ t\

ai"t¦t#�s0"SUij"t#aj"t##\ i[e[\ "aoal[ [ [an#:69\9[ [ [0[ [ [99
	i

7\ i�0\1[ [ [n\ "0#

where aj is the input to the network at time t\ Uij is a unitary operator de_ned by the corresponding
Hamiltonian of the quantum system\ and s0 is a measurement operator "in the computational
basis# that has the e}ect of projecting the evolved state into one of the eigenvectors of s0[ The
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Fig[ 0[

curly brackets are intended to emphasize that s0 is to be taken as a measurement operation with
the e}ect similar to those of a sigmoid function in classical neural networks "Fig[ 0#[ Obviously\
the outputs ai "t¦t# are random because of the probabilistic nature of quantum measurements[
As shown in ð5Ł\ these outputs form a Markovian stochastic process with the probabilities
evolving according to the following chain]

pi"t¦t#� s
j�0

n

pj"t#pij\ s
i�0

n

pi�0\ pi�9\ i�0\1[ [ [n\ "1#

where p�p"x\t#^ x�0\1\[[\ n^ pi�p"xi\t# is the n!dimensional probability vector\ and

p j
i �pij�=Uji=1\ s

j�0

n

pij�0\ pij�9\ i\j�0\1\[ [ [n "2#

is the n×n stochastic matrix which is uniquely de_ned by the unitary matrix\ U[ Each element
of these matrix represents the probability that the ith eigenvector as an input produces jth eig!
envector as an output]

699 909 9
	i

7: 699 909 9
	j

7[ "3#

In a special case\ when ð6Ł

pij×9^ i\j�0\1\[ [ [n\ "4#

the Markov process is ergodic\ i[e[\ the solution to eq[ 1 approaches an attractor

p:p� at t:�\ "5#

which is unique and it does not depend upon the initial value\ p9\ at t�9[ Only this case will be
considered in this paper[ Thus\ eq[ 0 describes the evolution of the vector

"al[ [ [an#�ð8=\ s
j�0

n

a1
j �0\ "6#

representing a quantum state in a Hilbert space\ and all the components "ai\Uij# are to be actually
implemented ðFigure[ 1"a#Ł[ This evolution is irreversible\ nonlinear and nondeterministic because
it includes measurement operations[

On the other hand\ the vector

"p0\p1[ [ [pn#�p\ s
j�0

n

pj�0\pi×9\ "7#

as well as the stochastic matrix\ pij\ exist only in an abstract Euclidean space] they never appear
explicitly in physical space[ The evolution "1# is also irreversible\ but unlike eq[ 0\ it is linear and
deterministic ðFigure[ 1"b#Ł[

The only way to reconstruct the probability vector p"t# is to utilize the measurement results
for the vector a"t#[ In general case\ many di}erent realizations of eq[ 0 are required for that
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Fig[ 1[

purpose[ However\ if the condition "4# holds\ the ergodic attractor p�p� can be found from the
only one realization due to the ergodicity of the stochastic process[ The ergodic attractor p� can
be found analytically from the steady!state equations]

p�
i � s

j�0

n

pijp
�
j \ s

i�0

n

p�
i �0\ s

j�0

n

pij�0\ pi×9\ pij×9[ "8#

This system of n¦0 equations with respect to n unknowns\ p�
i \ has a unique solution[

As an example\ consider a two!state case "n�1#]

p00p
�
0 ¦p10p

�
1 �p�

0 \ p01p
�
0 ¦p11p

�
1 �p�

1 [ "09#

Utilizing the constraints in eq[ 8\ one obtains]

p00p
�
0 ¦"0−p11#"0−p�

0 #�p�
j \ p�

0 "p00¦p11−1#�p11−0\ "00#

whence

p�
0 �

0−p11

1−"p00¦p11#
\ p�

1 �
0−p00

1−"p00¦p11#
\ "01#

while

p00�=u00=1\ p11�=u11=1[ "02#

Hence\ at _rst sight\ there are an in_nite number of unitary matrices\ uij\ which provide the same
ergodic attractor "01#[ However\ such a redundancy is illusive since the fact that the stochastic
matrix\ pij\ has been derived from the unitary matrix\ uij\ imposes a very severe restriction upon
pij] not only the sum of each row\ but also the sum of each column is equal to one\ i[e[\ now in
addition to eq[ 09]
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s
i�0

n

pij�0[ "03#

This makes the matrix >pij> doubly stochastic\ which always leads to an ergodic attractor
with uniform distribution of probabilities[ Obviously\ such a property signi_cantly reduces the
usefulness of the QRN[ However\ as will be shown below\ by a slight change of the QRN
architecture\ the restriction "02# can be removed[

1[1[ Multivariate ONR

In the previous sub!section we have analyzed the simplest QRN whose probabilistic perform!
ance was represented by a single!variable stochastic process equivalent to generalized random
walk[ In this section we will turn to multi!variable stochastic process and start with the two!
measurement architecture[ Instead of "3# now we have the following mapping]

0

z1699[ [ [09
	
i0

[ [ [09
	
i1

[ [ [97:
0

z1 699[ [ [09
	
j0

[ [ [09
	
j1

[ [ [97\ "04#

i[e[\

I0¦I1:J0¦J1\ "05#

where I0\ I1\ J0 and J1 are the eigenstates with unit 0 is at the i th
0 \ i th

1 \ j th
0 and j th

j1
places\ respectively[

Then the transitional probability of the mappings]

p j0
i0i1

"I0¦I1:J0#�
0
1
=J0
� U"I0¦I1#=1�

0
1
=Uj0i1

¦Uj0i1
=1 "06#

p j1
i0i1

"I0¦I1:J1#�
0
1
=J1
� U"I0¦I1#=�

0
1
=Uj1i0

¦Uj1i1
=1[ "07#

Since these mapping result from two independent measurements\ the joint transitional probability
for the mapping "04# is

p j0j1
i0i1

"I0¦I1:J0¦J1#�pj0
i0i1

p j1
i0i1

�
0
3
=Uj0i0

¦Uj0i1
=1=Uj1i0

¦Uj1i1
=1[ "08#

One can verify that

s
j�0

n

p j
i0i1

�0\ s
j0j1�j

n

p j0j1
i0i1

�0[ "19#

It should be emphasized that the input patterns\ I0 and I1 interfere\ i[e[\ their probabilities are
added according to the quantum laws since they are subjected to a unitary transformation in the
quantum device[ On the contrary\ the output patterns J0 and J1 do not interfere because they are
obtained as a result of two independent measurements[

As mentioned above\ eq[ 08 expresses the joint transition probabilities for two stochastic
processes
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Fig[ 2[

I0:J0 and I1:J1\ "10#

which are coupled via the quantum interference "06# and "07#

I0¦I1:J0¦J1[ "11#

At the same time\ each of the stochastic processes "10# considered separately has the transition
probabilities following from eq[ 2]

I0:J0\ I1:J1 "12#

and by comparing eq[ 08 and eq[ 12\ one can see the e}ect of quantum interference for input
patterns[

It is interesting to notice that although the probabilities in eq [08 and eq[ 12 have a tensor
structure\ strictly speaking they are not tensors[ Indeed\ if one refers the Hamiltonian H\ and
therefore the unitary matrix\ U\ to a di}erent coordinate system\ the transformations of the
probabilities "eq[ 08# will be di}erent from those required for tensors[ Nevertheless\ one can still
formally apply the chain rule for evolution of transitional probabilities\ for instance]

pq0q1
i0i1

"I0¦I1:J0¦J1:Q0¦Q1#�pj0 j1
i0i1

pq0q1
j0j1

etc[ "13#

Equations 08 and 13 are easily generalized to the case of l measurements "l�n#]

p j0[ [ [jl
i0[ [ [il

�
0

ll
t
a�0

l

b s
b�0

l

Ujaib b
1

\ pq0[ [ [ql
i0[ [ [il

�pj0[ [ [jl
i0[ [ [il

p q0[ [ [ql
j0[ [ [jl

[ "14#

Now the evolution in physical space\ instead of eq[ 0\ is described by the following]

ai"t¦t#�sl"SUijai"t##\ i�0\1\[ [ [n\ "15#

where sl is the l!measurements operator[
Obviously\ the evolution of the state vector a0 is more {random| than those of eq[ "0# since the

corresponding probability distribution depends upon l variables[

1[2[ QRN with input interference

In order to remove the restriction "03#\ let us turn to the architecture shown in Fig[ 3 and
assume that the result of the measurement\ i[e[\ a unit vector\

am"t#�699[[[909[[[9
	
i

7
is combined with an arbitrary complex "interference# vector[

If the interference state vector is
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and s is a measurement operator in the computational basis\ then =c"t¦Dt#Ł\ the recurrent state
re!entering the circuit\ must take one of the forms]

=f9Ł�
0

zR9

F

H

H

g

H

H

f

0¦a?9

a?0

*

a?N−0

J

H

H
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H

H
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0
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H
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9
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0
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j
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0
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H

H

h

H
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�
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zR0

F

H
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H

H
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a"0#
9

a"0#
0

*

a"0#
N−0

J

H

H

h

H

H

j

=fN−0Ł�
0

zRN−0

F

H

H

H

H

H

f

a?9

a?0

*

0¦a?N−0

J

H

H

H

H

H

j

�
0

zRN−0

F

H

H

H

H

H

f

a"N−0#
9

a"N−0#
0

*

a"N−0#
N−0

J

H

H

H

H

H

j

\ "17#

with re!normalization factors]

R9�=0¦a?9=1¦=a?0=1¦[ [ [\

R0�=a?9=1¦=0¦a?0=1¦[ [ [\

*

RN−0�=a?9=1¦=a?0=1[ [ [¦=0¦a?N−0=1[

"18#

The transition probability matrix\ p j
i for this process is given by examining how each of the

recurrent states\ =f9Ł[ [ [=fN−0Ł\ evolve under the action of U]

p j
i �

F

H

H

H

H

H

H

H

H

H

H

H

f

b
b"9#

9

zR9b
1

b
b"9#

0

zR9b
1

[ [ [

b
b"0#

9

zR0b
1

b
b"0#

0

zR0b
1

[ [ [

* * = = [

b
b"N−0#

9

zRN−0b
1

[ [ [ b
b"N−0#

N−0

zRN−0b
1

J

H

H

H

H

H

H

H

H

H

H

H

j

\ "29#

where
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Fig[ 3[

b"i#
j � s

l�9

N−0

Ujla
"i#
t �Uji¦ s

l�9

N−0

Ujlal"9#[ "20#

Thus\ now the structure of the transition probability matrix\ p j
i \ can be controlled by the

interference vector "16# and\ in particular\ the restriction "03# can be removed[
Next\ we generalize the concept of a quantum recurrent network to the case in which there are

k networks working in parallel "see Fig[4#[ During the quantum evolution and measurement
phases each network acts independently of the rest[ However\ during the reset operation the
results of all the measurements are combined with the initial state to yield k identical input states[

Note that the reset operation does not require an arbitrary quantum state to be cloned "which
is impossible#[ Instead it only requires that k classical states\ the outcomes of the k independent
measurements\ be copied[ As this information is purely classical it can be copied freely[ Moreover\
the initial state =c"9#Ł is known and can be generated afresh as needed by each of the k networks[
As a result\ the feedback process is guaranteed to be physically realizable[

The purpose of moving to the k!parallel quantum recurrent networks is to permit us to generate
multi!dimensional stochastic attractors of the most general form[ The reset operation which
includes the interference input gives the ~exibility to introduce correlations between the attractors
in each dimension[

For the k!parallel QRN\ the elements of the transition probability matrix now de_ne the
probability of making transitions between sets of measurement outcomes[ The state entering
each of the k networks at each iteration will have a form such as

=fi0i1 [[[ik
Ł�

0

zR"i0i1[ [ [ik#

F

H

H

H

H

H

f

a"i0i1[ [ [ik#
9

a"i0i1[ [ [ik#
0

*

a"i0i1[[[ik#
N−0

J

H

H

H

H

H

j

\ "21#

where the sequence\ i0\i1\[[\ ik\ speci_es the last ordered set of measurement outcomes obtained
from the k networks and R"i0i1[ [ [ik# is the renormalization constant\ given by]

R"i0i1[ [ [ik#�=a"i0i1[ [ [ik#
9 =1¦=a"i0i1[ [ [ik#

0 =1¦[ [ [=ai0i1[ [ [ik
N−0 =1[

The mathematical form of the amplitude\ a"i0i1[ [ [ik#
l \ depends upon how many of the components

in the k!parallel network produced the same measurement outcome at the last iteration through
the QRN\ i[e[\ how many of the il in the sequence\ i0\i1\[[\ ik\ were the same[ If the outcome\ il\ is
obtained nil

times\ we have a"i0i1[ [ [ik#
l �nil

¦al"9#[
As there are k networks and each network can produce one of N outcomes "independently#\

the k!parallel transition matrix de_nes a mapping from distinct sets of input states to Nk sets of
output states[ If we denote the probability of transitioning from the set of inputs\ i0\i1\[[\ ik\ to the
set of outputs\ j0\j1\[[\ jk\ by p"i0[ [ [ik#

j0j1[ [ [jk
\ we have]
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p"i0[ [ [ik#
j0[ [ [jk

�b
b"i0i1[ [ [ik#

j0"U0#

zR"i0i1[ [ [jk#
b
1

b
b"i0i1[ [ [ik#

j1"U1#

zR"i0i1[ [ [ik#
b
1

b
bi0i1[ [ [ik#

jk "Uk#

zR"i0i1[ [ [ik#
b
1

\ "22#

where

b"i0i1[ [ [ik#
j"U# � s

s�0

k

Ujis
¦ s

l�9

N−0

Ujlal"9#[

Thus\ the k!parallel transition probability matrix has a tensor structure of the form
Tk�"p "i0i1[ [ [ik#

j0j1[ [ [jk
#Nk×Nk where the sequences\ i0\i1\[[\ ik and j0\j1\[[\ jk\ are de_ned with respect to some

consistent ordering[
For the k!parallel architecture\ there are kN1 free parameters[ Thus we ought to be able to

generate k!dimensional stochastic attractors having up to kN1 degrees of freedom[ If all the
unitary matrices in "22# are the same]

U0�U1�[ [ [�Uk\

one arrives at the l!measurement architecture\ where eq[ 22 generalizes eq[ 14 when the input
interference is applied[

In order to clarify the more complex l!measurement architecture of QRN\ for instance\ such
as those given by eq[ 15\ turn to eq[ 08[

By simple manipulation of indices\ one obtains]

pi0 i1
"t¦t#� s

j0j1�0

n

pj0j1
"t#p j0j1

i0i1
\ s

i0i1�0

n

pi0i1
�0\"pi0i1

�9#\ i0\i1�0\1[ [ [n[ "23#

Here\ p�p"x0\x1#^ x0\x1�0\[[\ n is the n1!dimensional joint probability vector and =p j0j1
i0i1

= is the
n1×n1 stochastic matrix which is uniquely de_ned by the unitary matrix\ U\ and the interference
vector "16#\ "see eq[ 22 for k�1\ U0�U1�[[�U#[ Each element of this matrix represents the joint
probability that the combined "normalized# input of ith0 and ith1 eigenvectors produces jth0 and jth1
eigenvectors as outputs of the _rst and second measurements\ respectively[

Obviously

s
j0j1�0

n

p j0j1
i0i1

�0\ p j0j1
i0i1

�9[ "24#

In a special case similar to "4#\ when

p j0j1
i0i1

×9\ i\j�0\1[ [ [n\ "25#

the stochastic process approaches an ergodic attractor represented by an ergodic Markov process[
Since the system "23# is linear\ this attractor is unique^ it can be found from eq [23 by solving the
system of n1 linear equations with respect to n1 components of the joint probability vector pi0i1

]

p�
i0i1

� s
j0j1�0

n

p�
j0j1

p j0j1
i0i1

\ "26#

subject to the following constraint]

s
i0i1�0

n

p�
i0i1

�0\ "p�
i0i1

�9#[

This "n1¦0#th equation does not over determine the system "26# because of the condition "25#] as
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in the one!measurement case "8#\ the system has a unique solution[ Due to the interference input
"16#\ the probability distribution at the attractor is not necessarily uniform] its shape is controlled
by this input[

It is worth emphasizing that\ as follows from eq[ 2 and eq[ 08\ in general

p j0j1
i0i1

�p j
i0
&p j1

j1
\

i[e[\ the two!dimensional stochastic attractor "23# is not simply the product of two underlying
one!dimensional attractors[

Equations 23Ð26 can be generalized to l!measurement architecture]

pi0[ [ [il
"t¦t#� s

j0\[ [ [jl�0

n

pj0[ [ [jl
"t#p j0[ [ [jl

i0[ [ [il
\ s

j0[ [ [jl�0

n

p j0[ [ [jl
i0[ [ [jl

�0\ "27#

s
i0\[ [ [il�0

n

pi0[ [ [il
�0\ pi0[ [ [il

×9\ "28#

p�
i0[ [ [il

� s
j0[ [ [jl

n

p�
j0[ [ [jl

p j0[ [ [jl
i0[ [ [il

"39#

and

p j0[ [ [jl
i0[ [ [il

×9\ i\j�0\1\[ [ [n[ "30#

Thus\ the evolution of the state vector "15# in physical space corresponds to the evolution of the
probability vector pi0[ [ [il

"t# in an abstract Eucledian space\ while the l!variate stochastic attractor
of ai"t# is described by the ergodic process with the probability distribution p�

i0[ [ [il
as

pi0[ [ [il
"t:�#[

It should be noticed that\ given the unitary matrix U\ and the interference vector "16#\ the
attractor p�

i0[ [ [il
is unique^ it does not depend upon initial input ai"9#[ As mentioned above\ if the

interference vector "16# is zero\ then this unique attractor has a uniform probability distribution[

1[3[ Non!Markovian processes

The QRN "0# or "15#\ with a slight modi_cation\ can generate non!Markovian processes which
are {more deterministic| because of higher correlations between values of the vector ai at di}erent
times\ i[e[\ between ai"t#\ ai"t−t#\ ai"t−1t#\ etc[

Indeed\ let us assume that each new measurement is combined with the l previous measurements
"instead of l repeated measurements#[ Then eq[ 14 will express the joint distribution of ai"t#\
ai"t−t#\[[\ etc[

The evolution of the probabilities is described by equation similar to "23#]

pi0[ [ [il
"t¦t#�pj0[ [ [jl

"t#p j0[ [ [jl
i0[ [ [il

\ "31#

where pi0[ [ [il
is the joint probability distribution for the vectors

ai"t#\ai"t−t#\ai"t−1t#\ etc[

Thus\ instead of an l!dimensional Markov process\ we now have a one!dimensional\ non!
Markovian process of the lth order[
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2[ DYNAMICAL COMPLEXITY OF QRN|s

2[0[ Shannon and al`orithmic complexity

Although the concept of complexity is well understood intuitively\ its strict de_nition remains
an enigma since there are many di}erent aspects which can be associated with complexity "the
number of interacting variables\ the degree of instability\ the degree of determinism\ etc[#[ Here
we will associate dynamical complexity with the degree of unpredictability of the underlying
motion[ Then the Shannon entropy becomes the most natural measure of dynamical complexity
of QRNs]

H�− s
i�9

n−0

p0log1pi

and

Hmax�log1n[ "32#

Let us now assume that the unitary matrix in eq[ 0 is composed of a direct product of n 1×1
unitary matrices]

U�U0&U1&[ [ [&Un\ N�1n�1 q:3\ "33#

where the number of independent components in U0\

q�3n[ "34#

Then the dynamical complexity of QRN becomes exponentially larger "see eq[ 33#]

Hmax�log11n�n\

although the algorithmic complexity is still expressed by eq[ 2 or more precisely\ by eq[ 34[ Thus\
QRNs based upon representation "30# generate {complexity| in an exponential rate\ and therefore
the underlying stochastic processes attain structure of fractals[ Indeed\ as shown in ð7Ł\ a con!
tinuous version of a Markov process exhibits self!similar structure down to in_nitesimal scales
of observation[ Although the Markov processes generated by QRNs are _nite!dimensional\ their
scales approaches zero exponentially fast when the number of the variables n "see eq[ 30# grows
only linearly[ This means that QRNs generate {quantum fractals| which can be applied to image
compression\ animation\ or for a _nite!dimensional representation of Weierstrass!type functions
which are continuous but non!di}erentiable[ In contradistinction to classical fractals\ quantum
fractals are more controllable since their probabilistic structure can be prescribed[

Now suppose that we are interested in generating a stochastic process with prescribed prob!
ability distribution[ Then the algorithmic complexity becomes important] it will allow us to
preserve only q�3n "out of N�1n# independent characteristics of the distribution "although the
stochastic process will be still N!dimensional\ and its Shannon complexity will be of order of n#[

The di}erence between the Shannon and the algorithmic complexities e}ects the design of the
l measurements architecture in the following way[ As results from eq[ 04\ the inputÐoutput
relationships require the number of mapping "i[e[\ quantum circuits# which is polynomial in N\
i[e[\ exponential in n[ However\ if the unitary matrix U has a direct!product representation "30#
then\ as follows from the identity]

"U0&U1# = "a0&a1#�"U0a0#&"U1a1#�Ua\ "35#

i[e[\
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Fig[ 4[

a�a0&a1 "36#

and therefore\ not only the size of the unitary matrix U and the state vector a\ but also the
number of mapping circuits for l!measurement architectures become polynomial in n as far as
their actual implementation is concerned[ In addition to that\ in the case of eq[ 30\ n out of l
measurements can be performed in parallel[

Equation 33 is not the only representation of a unitary matrix which preserves its exponential
size while utilizing only polynomial resources[ Indeed\ consider the following combination of
direct and dot products]

U�"U"0#
0 &[ [ [U "0#

n # = "U"1#
0 &[ [ [U "1#

n #[ [ ["U"m#
0 &[ [ [U "m#

n #[ [ [ "37#

Here\ the number of independent components is]

q�3nm\ "38#

while the dimensionality

N�1n�1 q:3m[ "49#

In eq[ 49\ N and q are associated with the Shannon and the algorithmic complexity\ respectively[

2[1[ Hidden complexity

The complexity of QRNs is not exhausted by the phenomenon of quantum fractals] they can
exhibit even more sophisticated behavior[ Indeed\ so far it was implied that QRN simulates a
physical system[ Now suppose that we are dealing with a biological or social dynamics when the
underlying system is trying to hide its identity by intentionally misleading an observer[ It turns
out that QRNs possess a large capacity for simulating this type of behavior[

We will start with the case when the probability distribution characterizing the stochastic
process is random itself[ For that purpose\ we will introduce an additional feedback from the
output state which acts upon the basic Hamiltonian as follows] "Fig[ 2#]

H"t¦0#�H"t#¦$a"t#&a"t#¦
p

3
I%:\ "40#

i[e[\
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U"t¦0#�U"t# exp $ia"t#&a"t#¦i
p

3% \ "41#

where a"t# is the measured output state[
Then\ for N�1\

a�6
0\ 9

9\ 0

with the probabilityp�

with the probability 0−p�
\

H"t¦0#�H"t#¦

F

G

j

J

G

f

0
p:3 9

9 91

0
9 9

9 p:31

with the probabilityp�

with the probability 0−p�

U"t¦0#�U"t#

F

G

j

J

G

f

0
0:z1 0:z1

−0:z1 0:z11

0
0:z1 −0:z1

0:z1 0:z1 1

with the probabilityp�

with the probability 0−p�

[ "42#

If U"t#�0
U00 U001

U10 U11 1\ then

U"t¦0#�
0
1

F

G

j

J

G

f

0
U00−U01 U00¦U01

U10−U11 U10¦U111
0
U00¦U01 U00¦U11

U10¦U11 U10−U111

with the probabilityp�

with the probability 0−p�

"43#

Here\ the probability p� at each time!step is de_ned by a chain rule] p j
i

ðp�"t¦0#\0−p�"t¦0#Ł�ðp�"t#\0−p�"t#ŁP[ "44#

Thus\ the process described by QRN with the Hamiltonian "40# jumps randomly from one
stochastic pattern to another[ Eventually it may converge to a stationary ergodic process which
is combined of two di}erent stochastic processes visited randomly with time!independent prob!
ability[

In general\ QRNs are capable to generate multidimensional stochastic processes which con!
verge "with prescribed probability distribution# to several di}erent attractors\ while each of those
attractors in turn\ has its own probability distribution[

Now it is clear that although the physical entropy of this kind of process can be small\ their
complexity is much larger than of those described by the maximum entropy since they are more
unpredictable] their identity is hidden behind a {double shield| of probability[

Next\ we will introduce analytically more trivial\ but dynamically more complex processes
whose probability distribution change chaotically[

Suppose that the elements of the basic unitary matrix change in time according to the following
chain rule]

U "n¦0#
00 �1U "n#

00z0−=U "n#
00=1�U "n¦0#

11

U "n¦0#
01 �z0−=U "n#

00=1�−U "n¦0#
10 [
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Then the elements of the corresponding transition probability matrix\ P\ will evolve as logistic
maps]

p"n¦0#
00 �3p"n#

00"0−p"n#
00#�p"n¦0#

11 \

p"n¦0#
01 �0−3p"n#

00"0−p"n#
00#�p"n¦0#

10

and

p"n¦0#
0 �p"n#

0 p"n#
00¦p"n#

1 p"n#
10[ "45#

Since p"n#
00 change chaotically "according to a logistic map#\ p0 will change chaotically too[

Thus\ in this case\ the probability distribution for the underlying stochastic process is chao!
tically unstable\ and therefore\ its true identity is hidden from an observer even deeper than in
the previous case[

It should be noticed that all these complex paradigms can be exploited for simulations and
analysis of dynamical processes in physics\ biology and economics[

2[2[ Coupled stochastic processes

Let us turn to eq[ 22 which expresses the transition probability matrix for k!parallel QRN
architecture[

In order to demonstrate the power and capacity of the l!parallel QRN\ suppose that l�1\ and

U0�0
U?00 U?01

U?10 U?111�U1 � 0
Uý00 Uý01

Uý10 Uý111[ "46#

If the measured output from U0 acts as an input to U1 and vice!versa\ then one arrives at two
stochastic processes whose probabilities

p0�"p"0#
0 \p"1#

0 # andp1�"p"0#
1 \p"1#

1 # "47#

are coupled]

p0"t¦t#�p1"t#P01 "48#

and

p1"t¦t#�p0"t#P10\ "59#

where the transition probability matrices\ P01 and P10\ follow from eq[ 2]

P01�== =U ?ji=1==\ P10�== =U ýji=1==[ "50#

In this simple case\ eq[ 48 and eq[ 59 can be decoupled]

p0"t¦1t#�p0"t#P10P01 "51#

and

p1"t¦1t#�p1"t#P01P10[ "52#

If the resulting stochastic matrices P10P01 and P01P10 satisfy the condition "4# "which will be the
case when each matrix\ P01 and P10\ satis_es it separately# then a unique pair of coupled ergodic
attractors exists\ and one can _nd it from the system of linear equations]
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p�
0 �p�

0 P10P01 "53#

and

p�
1 �p�

1 P01P10[ "54#

Since\ for simplicity\ the interference input "16# was not applied\ both attractors will be identical]

p�
0 �0

0
1
\
0
1 1�p�

1 [

However\ with the input "16#\ they can be di}erent and not uniform[

2[3[ Nonlinear stochastic processes

So far all the stochastic processes considered above were linear[ Now let us assume that along
with eq[ 0 which is implemented by quantum device\ we implement "in a classical way# the
associated probability equation "eq[ 1#[ At this point\ these two equations are not coupled yet[
Now turning to eqs[ "16#Ð"22#\ assume that the interference vector =c?Ł is played by the probability
vector\ p[ Then eqs[ "0# and "1# take the form]

a0"t¦t#�s06sj Uijai"t#7 "55#

and

p0"t¦t#�Sp j
i pj"t#\ "56#

where p j
i is found from eq[ 17 if\ in the vector "16#\ the components a0? are replaced by pi and

they are coupled[ Moreover\ the probability evolution "53# becomes nonlinear since the matrix\
pij\ depends upon the probability vector\ p[ Because of that\ the solution to eq[ "56# may have
many di}erent ergodic attractors "depending upon the initial conditions# or may not have ones
at all[

In a particular case\ eq[ 56 can be interpreted as a discretised version of a parabolic partial
di}erential equation in which the di}erential operator\ D\ is replaced by the shift operator\ Eh]

Eh�ehD[ "57#

Therefore\ discretised versions of such fundamental nonlinear phenomena as shock waves\
Burger|s waves\ solitons\ etc[ can occur in solutions to eq[ "56#[ Actually\ these e}ects are
associated with concentrations of probabilities\ and they can be interpreted as special emerging
e}ects of self!organization[

3[ COMPUTING BY SIMULATIONS

3[0[ Exponential speedup

As shown in Section 1\ an l!measurement QRN converges to an ergodic attractor which\ in
probability space\ is described by an Nl!dimensional probability vector with the components
p�

i\[ [ [il [ In order to _nd these components by computations\ one has to solve a system of Nl linear
algebraic equations "eq[ 39# subject to the constraints "28# which requires exponential resources[

At the same time\ simulations of the same problem require the number of measurements which\
at most\ are reciprocal of the square of the error threshold "0:o1# while its dependence of the
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Fig[ 5[

dimensionality is linear] ln measurements per unit time t are required\ where n is expressed by
eqs[ "38# and "49#\ and the size of the input is nm[

In order to illustrate this statement\ consider a two!measurement architecture[ As follows from
eq[ "15#\ each pair of consecutive measurements consists of two eigenstates which can be labeled
by the numbers j0 and j1\ as indicated in eq[ 04[ When the stochastic process approaches its
ergodic attractor\ the plane will be _lled up by points representing pairs of the joint values\
j�0 \ j�1 \ of the outputs "see Fig[ 5#[ Actually\ the densities of these points are the values of the
discretized version of the probability density\ pj0j1

[ However\ there is a certain price to be paid
for this exponential speedup] the matrix\ p j0[ [ [jl

i0[ [ [il
in the simulated system "39#\ is supposed to satisfy

Nl normalization constraints\ and all its elements must be non!negative "see eq[ 25 and eq[ 30#[
But in addition to that\ the number of independent parameters which can be varied is exactly
equal to the number of independent parameters of the unitary matrix\ i[e[\ for the case of eq[
"37#\ it is expressed by eq[ "38#

q�3nm³S�1
ql
3m[ "58#

In terms of complexity\ here q corresponds to the algorithmic complexity\ and S to the Shannon
complexity[

This means that the ability of mapping a desired computational problem into the system "39#
is controlled by the algorithmic complexity which remains relatively low[

Now the following question can be asked] are there any practical problems which can be
mapped into the speci_c architecture simulated by QRN<

It turns out that there is a broad class of problems described by the FokkerÐPlanck equation
which exactly _ts the simulated system\ and these problems will be discussed next[

3[1[ Simulation of FokkerÐPlanck equation

The FokkerÐPlanck equation deals with those ~uctuations of systems which stem from many
tiny disturbances\ each of which changes the system in an unpredictable way[ It provides a
powerful tool with which the e}ects of ~uctuations close to the transition points can be adequately
treated[ This equation is used in a number of di}erent _elds in natural science "solid state physics\
quantum optics\ chemical physics\ theoretical biology and circuit theory#[

The FokkerÐPlanck equation for l variables is a linear parabolic partial di}erential equation]



0599 M[ ZAK

1p

1t
�$− s

i�0

l 1

1xi

D"0#
i ""x##¦ s

i\j�0

l 11

1xi1xj

D"1#
ij ""x##%p\ "69#

with respect to the probability distribution function\

p�p""x#\t#\ gV

p""x#\t#d lx�0\ "60#

with drift vector D "0#
i and the di}usion tensor D "1#

ij depending on the l variables] x0\[[xl�"x#[
A _nite!dimensional approximation to eq[ "69# obtained by replacing all the spatial derivatives

with their _nite!di}erence representations leads exactly to eq[ 39 "including the constraints "28#
imposed upon the matrix p j0[ [ [jl

i0[ [ [i1
# which are simulated by QRN[

It should be understood that the only stationary version of eq[ "69# can be simulated by QRN
e}ectively because of the ergodicity advantage[

The computational complexity of integrating eq[ "69# is on the order of "0:o#l*that is\ the
reciprocal of the error threshold raised to a power equal to the number of variables ð09Ł which is
exponential in l[ In contradistinction to that\ the resources for simulations by QRN is on the
order of "0:o1#\ i[e[\ they do not depend upon the dimensionality of the problem[

There is another advantage of QRN!simulations of the FokkerÐPlanck equation which was
predicted by Feynman ð0Ł] suppose that we are interested in behavior of the solution to eq[ "69#
in a local region of the variables "x#^ then\ in case of computing\ one has to _nd the global
solution _rst\ and only after that the local solution can be extracted\ while the last procedure
requires some additional integrations in order to enforce the normalization constraints[ On the
other hand\ in case of QRN simulations\ one can project all the measurements onto a desired
sub!space\ ja&jb\ of the total space j0&[[ jl and directly obtain the local solution just disregarding
the rest of the space[

The last comment to be made concerns the restricted number of independent variables in the
matrix p0[[ l of eq[ 39 "See eqs[ "27# and "39## which is supposed to be mapped onto the di}usion
coe.cients\ D "0#

i and D "1#
i [ As a matter of fact\ the number of non!zero components of the matrix

corresponding to the discretized version of eq[ "69# will be low because of the weak coupling
between variables provided by only _rst and second spatial derivatives] most of the far!o}!
diagonal components will be zero[ In addition to that\ the di}usion coe.cients are smooth
function of "x# and\ therefore\ they are de_ned by small "or\ at most\ polynomial# number of
coe.cients[ Therefore\ an appropriate mapping can always be performed by the corresponding
increase of the number of independent variables q in eq[ "38#[

3[2[ Simulatin` optimization problems

Since eq[ 39 represents a unique attractor of the dynamical process described by eq[ 27\ this
attractor delivers a unique "global# minimum to the following quadratic form

L� s
N

i0\[ [ [il
�00pi0[ [ [il

− s
i0[ [ [il�0

N

pi0[ [ [il
p j0[ [ [jl

i0[ [ [il 1
1

¦0 s
i0[ [ [il�0

N

pi0[ [ [il
−01

1

\ "61#

which plays the role of a Lyapunov function for eq[ 27\ subject to the normalization constraints[
After simple algebraic transformations\ eq[ 61 reduces to
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L� s
i0[ [ [il�0

N

p1
i0[ [ [il $Nl¦0− s

j0[ [ [jl�0

N

"p j0[ [ [jl
i0[ [ [il

#1%¦0

¦ s
i0[ [ [il�0

j0[ [ [jl�0

N

pi0[ [ [il
pj0[ [ [jl 21Nl¦0− s

i0[ [ [il�0

j0[ [ [jl�0

N

pk0[ [ [kl
i0[ [ [il

p j0[ [ [jl
k0[ [ [kl3[ [ [ "62#

Now it is clear that L is a positive quadratic form since

p j0[ [ [jl
i0[ [ [il

³0[ "63#

Here\ Nl is the dimensionality of the probability vector[
Obviously\ all the advantages of quantum simulations over the computations of the minimum

of L in eq[ 62 are the same as for the solution of the system "27# discussed above[

3[3[ Simulatin` NP problems

Let us turn to eq[ 69 and pose the following problem] _nd the probability p"x# at a prescribed
point

"x�#�x0
� \[ [ [xl

� [ "64#

Another problem of a similar complexity is the following] _nd the expected value of "x#\ i[e[\
E""x�##\ which is equivalent to _nding expected values for all the coordinates\ i[e[\

E"x0
� #\E"x1

� #\[ [ [E"xl
� #[ "65#

Both of these problems are signi_cantly di}erent from those described above\ and the di}erence
is the following] When one is asked to _nd the global solution to eq[ 69 or eq[ 39\ one must deal
with an exponential number of components p""x## or pi0[ [ [il

\ so the answer itself is exponentially
{long|\ no matter how the solution was obtained[ On the other hand\ the answer to the problems
"64# or "65# is very simple] it consists of only one or l numbers\ respectively[ In addition to that\
the size of the input to QRN is polynomial due to the quantum advantage] the direct product
decomposability of the unitary matrix "see\ for instance\ eq[ 37 which contracts the 1ý!vector into
mn!vectors#[

The last type of problem has all the attributes of so called NP "nondeterministic polynomial#
class of complexity[ Now the advantage of QRN simulations over computations becomes more
pronounced] QRN simulations provide exponential speedup for NP problems associated with
the FokkerÐPlanck equation for which computations require exponential resources[

3[4[ Simulatin` expectations

So far\ our analysis was restricted by ergodic processes enforced by the condition "4#\ "25# and
"30#[ The reason for that is obvious] due to ergodicity all the information about the probability
distribution can be obtained from a single run of QRN[ However\ there are cases when the
ergodicity conditions do not hold[ Indeed\ consider\ for instance\ the simplest FokkerÐPlanck
equation
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1p

1t
�

11p

1x1
\ "66#

subject to re~ecting boundary conditions[
A discretized version of this equation\

pi\j¦0�
pi¦0\j¦pi−0\j

1
\ "67#

is simulated by a symmetric random walk with the stochastic matrix

pij�

F

H

H

H

H

H

H

H

H

H

H

f

9
0
1

9
0
1

9 [ [ [

0
1

9
0
1

9 9 [ [ [

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [

[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [

J

H

H

H

H

H

H

H

H

H

H

j

\ "68#

which does not satisfy the condition "4#[
The steady state solution to eq[ 66 is trivial]

p��
0
L

�Const\ "79#

where L is the distance between the re~ecting boundaries[
The same solution can be obtained from eq[ 1 with the stochastic matrix "68# when its size

N×N tends to in_nity\ i[e[\ N:�[ However\ for a _nite N\ the solution to eq[ 1 is periodic[ For
instance\ if N�3]

p"n#
jk �ð0¦"−0#k¦j−nŁ\ n�0\1\[ [ [etc[\ "70#

i[e[\ the solution has period 1\ and the process is not ergodic[
However\ the _nite!state Markov chains have the following property "even if the conditions

"4#\ "25# or "30# do not hold#]

lim
n:�6

0
n

s
k�0

n

p"k#
ij 7�p½�

j \ "71#

where p½�
i satisfy equations similar to eq[ 8\ eq[ 26 or eq[ 39[

In our case\

p½�
i �Spijp½�

j [ "72#

Therefore\ the expected average of the probability distribution p½� approximates the ergodic
solution "79# and it can be obtained from only one run of QRN[

4[ SIMULATION OF CHAOS AND TURBULENCE

In this section\ we will apply e}ective simulations of the FokkerÐPlanck equation by QRN
discussed in the previous section\ for solving the hardest problem of theoretical physics] prediction
of chaotic and turbulent motions[
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4[0[ Back`round

Many physical phenomena cannot be e}ectively predicted because their mathematical models
are unstable in a sense that small errors in the initial conditions or in the forces grow exponentially[
If the underlying dynamical system does not have an alternative stable state\ this process continues
inde_nitely "chaos\ turbulence#\ and computations performed by any classical computer fail[ In
order to illustrate that\ suppose that the error o characterizing the chaotic evolution\ on average\
grows exponentially]

o�o9eg\ g�const×9[

If the accuracy to which the initial condition\ o9\ can be presented is given by L\ then during the
time period\

Dt³
0
g
ln

L
o9

\

two di}erent trajectories for which

=o ?9−oý9=³L

cannot be distinguished[
However\ for t×Dt\ these two trajectories diverge such that they must be considered as two

di}erent trajectories[ Moreover\ the distance between them tends to in_nity as t:�\ no matter
how small these distances were initially[ This is why the evolution ones computed cannot be
reproduced again[ Hence\ the con_dent time interval\ Dt� during which the evolution can be
predicted to accuracy of o�\ is]

Dt³
0
g
ln

o�
L

\

i[e[\ it grows logarithmically slowly with an increase in resolution[
The computational intractability of chaos can be elucidated by the argument provided by

Wolfram ð8Ł[ He notes that a universal "classical;# computer can always simulate\ step by step\
the behavior of any physical system but\ for stable systems\ it has certain shortcuts which allows
one to predict events earlier than they actually happen^ however\ since there are no such shortcuts
for chaotic systems\ they\ in principle\ cannot be predicted[ In support of this argument\ Ford
ð1Ł noted that for stable systems

tc�log1tp\

while for chaotic systems]

tc�tp\

where tc and tp are the computational and physical time\ respectively[
Thus\ this brief review demonstrates that there is a strong belief among physicists and computer

scientists that although chaos is theoretically computable "in a sense that it does not belong to
the class of uncomputable problems#\ it is nevertheless intractable by classical universal
computers\ and therefore\ chaos attains the same computational status as those of NP!complete
problems[

We will start with some comments to this statement[ Despite the indisputable similarity between
chaos and NP!complete problems from the viewpoint of computational complexity\ there is a
fundamental di}erence between them] chaos is a natural phenomenon while NP!complete prob!
lems are man!made\ i[e[\ they can be mapped into decision problems with yes:no solutions[ That
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is why the origin of the computational complexity of chaos is in the dynamical instability of the
corresponding mathematical model[ Hence\ having in mind that in_nite precision can never be
achieved\ the only way to predict chaos is to suppress this instability[ One possible way to do
that was introduced by the author in his earlier works ð2Łð3Łð4Ł[ In this paper\ in view of
potential availability of a quantum computer\ a more e}ective way to perform the computational
stabilization is proposed[

4[1[ Governin` equations

Consider a system of nonlinear ODE]

y¾i�fi""y##\ "y#�yi\y1\[ [ [yl\ "73#

which is exponentially sensitive to errors in initial conditions[ Then its solution eventually attains
some stochastic!like properties and it is representable in the Langevin form]

y¾i�fi""y##¦`ij""y##yjGj"t#\ "74#

where yi is now the ensemble averaged value of the original velocities yi\ Gi"t# is the Langevin
force]

G¹ i"t#�9\G¹ i"t#G¹ i"t#�1dijd"t−t?# "75#

and the functions `ij""y## are to be found[
Then a probabilistic description of the behavior of the solution yi�yi"t# is expressed by the

corresponding FokkerÐPlanck equation "see eq[ 69#\

1p

1t
�$− s

i�0

l 1

1yi

D"0#""y##¦ s
i\j�0

l 11

1yi1yj

D"1#
ij ""y##%p\ "76#

where p""y#\t# is the "y#!distribution function\ and

D "0#
i �fi""y##¦`kj""y##

1

1yk

`ij""y##\

D "1#
ij �`ik""y##`jk""y##[ "77#

In classical\ stochastic ODE\ the functions\ `ij\ are found from the statistical properties of the
random external force[ In our case\ such a force does not exist] it is the internal force generated
by the mechanism of instability which replaces them[ Consequently\ the sought functions\ `ij\
should be connected with the rate of instability of the original system "73#[ Since\ formally\ these
functions can be interpreted as the Reynolds stresses "introduced in the theory of turbulent
motions#\ the problem of _nding `ij is actually equivalent to the closure problem in the theory of
turbulence\ and it will be discussed below[

4[2[ The closure problem

The closure problem arose more than a hundred years ago after O[ Reynolds introduced his
famous decomposition of velocity _eld into mean and ~uctuating components in the NovierÐ
Stokes equations]
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r0
1y¼
1t

¦y¼9y¼1�−9p¦v91y¼\ 9y¼�9\ "78#

where y¼\ r\ p and v are velocity\ density\ pressure and viscosity\ respectively[
After replacing spatial derivatives by the corresponding di}erences\ eq[ 78 takes the form of

eq[ 73 and then the so!called Reynolds stresses are represented by the functions\ `ij in eq[ 74[ In
terms of eq[ 74\ the closure problem is to _nd `ij as functions of the averaged variables\ yk\ i[e[\

qij�qij""y##\ "y#�y0\[ [ [yl[ "89#

All earlier attempts to _nd the closure "89# based upon rhelogical or empirical considerations
failed since they were problem speci_c[ Our approach will be based upon the stabilization
principle ð00Ł which can be brie~y described as follows below[

Because of _nite resolution in computations and measurements\ there are always such domains
where di}erent values of a variable cannot be distinguished\ and as a mathematical idealization\
the variable in these domains can be considered as having small random ~uctuations of order
inversely proportional to this resolution[ In particular\ such random ~uctuations are present in
the initial conditions of the system "73#[ When this system is stable\ the ~uctuations do not grow\
and therefore\ they can be ignored[ However\ if the system is unstable and there is no alternative
stable state\ the ~uctuations grow until they start interacting with the mean values of the variables[
Such interaction acting as a feedback eventually stabilizes the system on the level of marginal
stability since then the mechanism for further changes in ~uctuations is eliminated[ Math!
ematically\ this can be interpreted as follows] the original system "73# is unstable in the class of
smooth functions\ but it is stable in the class of multivalued "or random# functions[ This inter!
pretation is based upon the fact that the concept of stability is only de_ned subject to a certain
class of functions\ in the same way in which convergence of a sequence is de_ned by the de_nition
of the distance] it may converge in one space and diverge in another[ Consequently\ by introducing
the stochastic force "or the Reynolds stresses#\ one enlarges the class of functions in which a
stable solution is sought and\ from this condition\ the closure "89# should be found[

Let us turn now to eq[ 73[ Its local instability is caused by those eigenvalues of the matrix]

b
1fi
1yj b"y#�"y9#

�aik ðl0\[ [ [lnŁa−0
kj \ aika

−0
kj �dij\ "80#

which has positive real parts]

Rel�i ×9[ "81#

If the condition "81# is true for any state\ "y9#\ where the motion can occur\ then the solution
becomes chaotic[ "Actually\ this condition is too strong] it is su.cient\ but not necessary^ a
su.cient and necessary condition is expressed in terms of Lyapunov exponents characterizing
global stability#[

Based upon the properties of the local stability de_ned by "80# and "81#\ one can now introduce
a stabilizing force\ `ij\ as follows]

`ij""y##�aik ðl0?[ [ [ln?Ła−0
kj \ "82#

where

li?�6
−Re l0 if Re l0×9

9 otherwise
[ "83#

By substituting eqs[ 82 and 83 into eq[ 74\ and averaging it over the ensemble one can verify that
eq[ 74 is now marginally stable in a small neighborhood of the state "x9#[
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4[3[ Computational strate`y

For better physical interpretation\ we will illustrate the computational strategy based upon the
NovierÐStokes equation "eq[ 78# in the discretized form "eq[ 73# simultaneously with quantum
simulations of the corresponding FokkerÐPlanck equation "eq[ 76#[

Suppose that the stationary version of eq[ 78 "with 1y:1t�9# is solved subject to some boundary
conditions\ and the corresponding laminar ~ow is obtained

yi�y9
i [ "84#

This means that all the parameters in eq[ 82 and eq[ 83 are known and the stochastic force in eq[
77 can be found[ If this force is zero\ then the laminar motion is stable and no further actions
are needed[ If this force is not zero\

`"0#
ij �9\ "85#

then the laminar ~ow is unstable\ its evolution attains stochastic properties and\ after substituting
the force "eq[ 85# in the FokkerÐPlanck equation "eq[ 76# with the initial conditions\
p"t�9#�d""y#−"y#9#\ one obtains the stationary probability distribution of velocities\ "y#\ which
characterizes the new "turbulent# state]

p�p"0#
� ""y##[ "86#

Next\ one can _nd the averaged "or expected# velocity _eld]

y¹ "0#
i �gV

yip
"0#
� ""y##dV[ "87#

In general\ these expected values may be di}erent from the original laminar values in eq[ 84\ i[e[\

y"0#
i �y"9#

i [ "88#

Then\ the stochastic force "88# should be recalculated based upon eq[ 82 and eq[ 83]

`ij�`"1#
ij "099#

and substituted back into eq[ 76 with the initial conditions "86#[ This iterative process has to be
repeated until

y¹ "n−0#
i �y¹ "n#

i [ "090#

Now\ one can appreciate the exponential speedup provided by QRN[ Indeed\ the number of
equations in the system 73\ in the case of turbulent motions\ has the order of 0946095[ This
means that the FokkerÐPlanck equation "eq[ 76# has the same number of independent variables\
i[e[\

"y#�y0\y1\[ [ [yl\ l½095[ "091#

As pointed out in the previous section\ the computational resources grow exponentially in
l"½"0:o#l# and that makes any classical approach unthinkable[ At the same time\ simulations by
QRN requires resources which are independent upon l"½"0:o1##[ It should be recalled that the
direct product representation "34# of the unitary matrix contracts the size of the input vector
from Nn to mn\ while the number of measurements\ nl per unit time t\ grows linearly in l[

In addition to that\ the size of the output which\ strictly speaking\ is also exponentially large\
can be contracted to polynomial size by selecting a polynomial number of critical points[
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Fig[ 6[

"y�#�yi0
\yi1

\[ [ [yil
\ i�0\1\[ [ [k�l\ "092#

where the solution can deliver practically su.cient information about the properties of the
velocity distribution such as expected velocity _eld\ its variance\ higher moments etc[\ and
disregarding the solution at the rest of the points in eq[ 091[

It should be noticed that the speed of convergence of the iterations to the condition "090# is
problem speci_c and\ at this stage\ we are not ready to make any comments on that[

4[4[ Prediction of chaos

In order to further elucidate the connection between the FokkerÐPlanck equation and pre!
diction of chaos\ we will discuss a relatively simple example introduced _rst in ð01Ł[ Let us
consider an inertial motion of a particle\ M\ of unit mass on a smooth pseudosphere\ S\ having
a constant negative curvature "Fig[6#

G9�Const³9[ "093#

Remembering that trajectories of inertial motions must be geodesics of S\ we will compare two
di}erent trajectories assuming that\ initially\ they are parallel and that the distance between them\
o9\ is very small[

As shown in di}erential geometry\ the distance between such geodesics will increase expo!
nentially]

o�o9ez−G9t\G9³9[ "094#

Hence\ no matter how small the initial distance o9\ the current distance\ o\ tends to in_nity[
Let us assume now that the accuracy to which the initial conditions are known is characterized

by L[ It means that any two trajectories cannot be distinguished if the distance between them is
less than L\ i[e[\ if]

o³L[ "095#

The period during which inequality "095# holds has the order]
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Dt½
0

=z−G9=
ln

L
o9

[ "096#

However\ for

tŁDt\ "097#

these two trajectories diverge such that they can be distinguished and must be considered as two
di}erent trajectories[ Moreover\ the distance between them tends to in_nity even if o9 is small
"but not in_nitesimal#[ This is why the motion\ once recorded\ cannot be reproduced again
"unless the initial conditions are known exactly#\ and consequently\ it attains stochastic features[
The Liapunov exponent for this motion is positive]

s� lim
t:�

d"9#:9

0
t
ln

o9e
z−G9t

o9

�z−G9�Const×9[ "098#

Let us introduce a system of coordinates at the surface S] the coordinate\ q0\ along the geodesic
meridians and the coordinate\ q1\ along the parallels[ In di}erential geometry\ such a system is
called semi!geodesical[ The square of the distance between adjacent points on the pseudosphere
is]

ds1�¹̀00dq1
0¦1 ¹̀01dq0dq1¦¹̀11dq1

1\ "009#

where

¹̀00�0\ ¹̀01�9\ ¹̀11�−
0

G9

e−1z−G9q0 [ "000#

The Lagrangian for the inertial motion of the particle\ M\ on the pseudosphere is expressed via
the coordinates and their temporal derivatives as]

L�¹̀ijq¾ iq¾ j�q¾1
0−

0
G9

e−1z−G9q0q¾1
1 "001#

and\ consequently\

1L
1q1

�9\ "002#

while

1L
1q0

�9\ if q¾1�9[ "003#

Hence\ q0 and q1 play roles of position and ignorable coordinates\ respectively[ Therefore\ an
inertial motion of a particle on a pseudosphere is stable with respect to the position coordinate\
q0\ but it is unstable with respect to the ignorable coordinate[ It can be shown that such a motion
becomes stochastic ð01Ł[

The governing di}erential equations follow from the Lagrangian "eq[ 001#]

y¾0�−
0

z−G9

e−1z−G9q0y1
1\ q¾0�y0\

y¾1�−1z−G9y0y1\q¾1�y1 "004#

and\ as shown above\ their solution is chaotic[ It can be veri_ed ð00Ł that the stabilizing stochastic
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force "eqs[ 82 and 83#\ which suppresses the Lyapunov exponent "eq[ 098# down to zero\ must
have the potential energy]

P�−EG9q
1
0\ G9³9\ "005#

where E is the kinetic energy of the particle[ Substituting eq[ 005 into the Lagrangian\ eq[ 001\
one rewrites eq[ 004 in the Langevin form]

y¾0�
0

z−G9

e−1z−G9q
¹0y¹1

1\ q¹q¾0�y¹0\

y¹y¾1�−1z−G9y¹0y¹1−EG9q¹
1
0G"t#\ q¹q¾1�y¹1 "006#

and\ based upon eq[ 76 and eq[ 77\ one obtains the corresponding FokkerÐPlanck equation]

1p

1t
�ap¦b0

1p

1y0

¦b1

1p

1y1

¦b2

1p

1q0

¦b3

1p

1q1

¦E1G1
9

11p

1y1
1

[ [ [\ "007#

where

a�
1

z−G9

y0\b0�−
0

z−G9

e−1z−G9q0 \ b2�y0\b3�y1[

Thus\ the probability distribution\ p"y0\y1\q0\q1\t#\ is described by eq[ 007 which is supposed to be
solved subject to the following initial and boundary conditions\ respectively]

p=t�9dðy0−y0"t�9#\y1−y1"t�9#\q0−q0"t�9#q1−q1"t�9#Ł

gV

pdy0dy0dq0dq1�0[ "008#

It should be noticed that the solution to eq[ 007 represents the exact description of an inertial
motion of a particle on a pseudosphere^ this motion is stochastic\ while the stochasticity is
generated by the orbital "chaotic# instability[ The closed form expression "005# for the stochastic
force is due to a remarkable property of the system "004#] it has constant exponential divergence
of the trajectories "094# which simply de_nes the positive Lyapunov exponent\ "see eq[ 094#[ That
is why\ in this case\ there are no iterative recalculations of the stochastic force needed[

Although eq[ 007 is relatively simple\ its closed form solution is not available\ i[e[\ numerical
computations or quantum simulations must be applied[

5[ INFORMATION PROCESSING

5[0[ Data compression

Most data to be processed are not totally random] they are correlated[ Because of that\ they
contain some amount of redundancy which can be removed when data are stored\ and replaced
when they are reconstructed[ Elimination of such a redundancy can be associated with data
compression[

Data describing natural phenomena " _elds of velocities\ temperatures\ forces\ images# most
likely have a tensor structure[ But not all of the tensor components are equally important] some
of them\ called invariants\ describe the fundamental properties of physical objects\ and they
deliver the largest portion of useful information^ other components which depend upon object
orientations in space are less informative[ In many cases a tensor can be composed "exactly or
approximately# into a direct product of tensors of lower dimensionality\ and that leads to
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signi_cant reduction of the number of informative parameters[ The e}ectiveness of QRN for
data compression can be associated with the last case[ Indeed\ as shown above "see eq[ 58#\ an
exponentially large number\ S\ components of the tensor "eq[ 39# can be generated based upon
a much lower number\ q\ of independent parameters[ Hence\ formally\ QRN can e}ectively
compress such data which have high Shannon complexity

S�1nl "019#

and low algorithmic complexity]

q�3n\ "010#

with the compression ratio

j�
1nl

3n
[ "011#

However\ the hardest part of the task is to solve the inverse problem] given Nl data "eq[ 39#\ _nd
the unitary matrix in the form of eq[ 33 or eq[ 37 and the interference vector\ eq[ 21\ which
generates a stochastic attractor whose tensor components are equal "or close# to those of eq[ 39[

Analytically\ the problem can be formulated as follows] by an appropriate choice of QRN
parameters\ minimize the function]

E� s
ik�0

N

"pi0\i1[ [ [il
−p�i0\i1[ [ [il

#1[ "012#

Here pi0[ [ [il
represents a datum out of Nl given data and p�i0[ [ [il

are the sought ergodic attractor
whose components found from eq[ 39 should match the given data[

The QRN parameters to be optimized can be represented by components of the unitary matrix
"eq[ 37#\ or by the components of the interference vector "eq[ 17#[ For the sake of concreteness\
we will choose the latter[ Assuming that the interference vector is represented as a direct and dot
products of two component vectors "see eq[ 35 and eq[ 37#\ one has to vary in eq[ 012 q?
independent parameters\ where

q?�2nm[ "013#

However\ the Nl variables pi0[ [ [il
in eq[ 012 depend upon the interference vector only via the

components of the stochastic matrix\ p0\1[[\ l "see eq[ 29 and eq[ 22#\ i[e[\ a system of Nl equations
"39# should be solved prior to minimization "012#[

Hence a gradient descent approach to minimization of the function "012# which represents a
typical way of learning in classical neural nets\ in this particular case would require exponential
computational resources[ So one arrives exactly at the same situation which was discussed in the
two previous sections[

As an alternative approach\ one can try a learning by QRN simulations based upon random
gradient descent[ That is how it can be done[

First\ select "randomly# an initial interference vector\ a9"=a9=1�0#\ run QRN and _nd E9

according to eq[ 012[ If E9�9\ the process is _nished[ If E9×9\ generate randomly a new
interference vector\ a9¦Da"=a9¦Da=�0#\ where =Da=³³0\ run QRN again and _nd E0[ If E0³E9\
continue changing a in the same {direction|\ if E0×E9\ then switch the {direction| to the opposite
one[ If\ after several runs\ the di}erence\ En−En−0\ changes its sign\ stop the process and initiate
randomly new {direction|\ etc[

Eventually\ the process will end with E��9 or E�×9[ In the _rst case\ the data compression
is lossless\ in the second case the loss is characterized by the value of E�[
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Clearly\ the direction of descent here is selected randomly and\ therefore\ it is not optimal[
However\ the procedure does not require implementation of an exponential number of constraints
"see eq[ 69 and eq[ 63#] they are automatically implemented by QRN\ and that makes this
quantum learning alternative more attractive[ It should be noticed that\ strictly speaking\ exact
evaluation of E in eq[ 012 requires exponential resources[ But QRN allows one to select a
polynomial subset of components in eq[ 012 and only evaluate them in the same way in which it
was described in the previous section[ Similar simpli_cation cannot be done in the case of
conventional gradient descent approach\ since all of the components of eq[ 26 are coupled[

Thus\ QRN can perform data compression in the following way] the Nl data represented
"exactly or approximately# as a component of a tensor which\ in turn\ is parametrized by much
smaller number of independent components of the interference vector[ This vector stores all the
information about the original data] being introduced to the QRN\ it reconstructs them[ Obvi!
ously one can store or transport the interference vector a which is composed of nm particles "see
eq[ 35 and eq[ 37# in a classical or\ if possible\ in a quantum way[

5[1[ Reco`nition of pattern combinations

It would probably be unwise to exploit QRN for the same type of tasks "associative memory\
pattern recognition# for which classical neural nets are utilized\ and the reason for that is the
following] QRN are linear in the probabilistic space\ which means that all di}erent initial vectors
introduced to it eventually converge to the same stochastic attractor[ In other words\ QRN do
not have an ability to discriminate[ On the other hand\ if an initial vector is introduced at each
iteration in the form of the interference vector "see eq[ 21#\ then one arrives at another extreme]
each initial vector converges to its own stochastic attractor[ But that means that several di}erent
vectors introduced to QRN simultaneously "in the form of a normalized vector sum# will converge
to a new attractor which is di}erent from each of the individual attractors[ Physically\ this is a
result of quantum interference between di}erent initial vectors and such an e}ect does not exist
in classical neural nets[

In order to elucidate the importance of that\ suppose that each initial vector is identi_ed with
a letter out of a certain collection of letters forming an alphabet[ If introduced separately\ each
letter has its own image as a stochastic attractor in the probabilistic space of QRN[ But if a group
of letters is introduced simultaneously\ their image in the probabilistic space of QRN can be
interpreted as a word which has its own meaning[ That meaning can be very rich since the
attractor has a very high Shannon complexity\ which is characterized by Nl tiny features[ In the
same way\ several words form sentences\ etc[ The rules\ or grammar\ which implement such a
logical structure\ are uniquely de_ned by the components\ Uij\ of the unitary matrix "34#] each
collection of these components corresponds to a di}erent language[ It is important to emphasize
the fact that all the images of letters\ words and sentences are represented by dynamical attractors]
any small distortions of intitial vectors are suppressed by the contraction properties of the process
of attraction since the {distance| between two di}erent initial vectors eventually becomes smaller
and smaller[

To conclude this very brief description of the formation of new meanings by QRN\ we will
make some comments concerning the possible philosophical interpretation of this phenomenon[

Indeed\ it was always di.cult to understand how biological neural nets can learn the patterns
of the external world without any preliminary structure built in to their synaptic interconnections[
The experience with arti_cial neural nets shows that training without a preliminary structure is
exponentially longer than those with a structure\ and that poses the following question] who
created the {_rst| structure in biological neural nets which provides the ability to learn and select
useful properties in polynomial time< In other words\ can natural selection act without a {creator|<
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The quantum neural nets may give a positive answer to this question] the logical structure of
synaptic interconnections can be imposed by the natural laws of physics and\ in particular\ by
quantum mechanics[ Hence\ if biological neural nets utilize quantum e}ects in their performance\
they may be able to learn the model of the external world\ including its logical structure\ in
polynomial time without any preliminary structure[

6[ GENERATING STOCHASTIC PROCESSES

As shown above\ QRN can be viewed as a universal and compact generator of stochastic
processes that cannot be achieved\ even in principle\ by any classical device[ Indeed\ it can
generate multivariate Markov and non!Markov\ linear and nonlinear stochastic processes with
prescribed properties by simply changing a quantum interference pattern "see eq[ 21 and eq[ 22
or the unitary matrix itself#[

One of the most important applications of simulated stochastic processes is the Monte!
Carlo method discussed in the Introduction[ It provides approximate solutions to a variety of
mathematical problems\ such as solutions to algebraic\ di}erential and integral equations\ as well
as to combinatorial problems[ In particular\ the Monte!Carlo approach appears to be e}ective
in approximate solutions to enumeration problems "perfect matching in a bipartite graph\
estimation of matrix permanent\ estimation of the volume of a convex n!dimensional body\ etc[#
forming a class of èp!complete problems[ "The èp!complete problems are known to be at least
as hard as NP!complete problems#[ The fastest known algorithm for exact computation of the
permanent requires 9"n1n# operations[ In the case of "o\d#!approximation "where the algorithm
produces an approximation of the permanent with relative error less than o with the probability
greater than 0−d#\ the required time is still exponential\ 9"1n:1#[ As shown in ð02Ł\ by an appro!
priate selection of the Markov chain\ the same problem in "o\d�#!approximation can be solved in
polynomial time[ However\ the main restriction to the application of the Monte!Carlo approach
is the generation of true stochastic processes "the rapidly generating algorithms in common use
produce sequences whose properties depart from this ideal with errors proportional to n#[ That
is why QRN can signi_cantly amplify the e}ectiveness of the Monte!Carlo methods[

The second area of application is the performance of sampling experiments on the model of
the systems[ In this area\ not only the limit probability distributions\ but their time evolutions
are important as well[ In this connection\ the nonlinear stochastic processes\ which allow one to
control the current strategy in real!time by changing the stochastic attractors and concentrating
probabilities in a certain domain "depending upon a changing objective#\ become very useful in
modelling the decision!making process in a game!type situation[

In this section\ we will brie~y discuss the strategy for simulating stationary stochastic processes
by QRN[ We will start with the following problem] _nd a unitary matrix\ U\ and an interference
vector\ =c?Ł "see eq[ 16#\ such that the corresponding stochastic process converges to a stationary
attractor with prescribed probability distribution]

p��"p�
0 \[ [ [p�

N #\N�1n[ "014#

Clearly the _rst step is to _nd an appropriate stochastic matrix\ P\ which leads to the distribution
"014#[ As follows from eq[ 8\ there is an in_nite number of such matrices\ but only one of them
provides the shortest transient time to the attractor[ Let us select this matrix as follows

Pt
¹�

F

H

H

H

f

p�
0 p�

1 [ [ [ p�
N

* * *

p�
0 p�

1 [ [ [ p�
N

J

H

H

H

j

\ "015#

It is easily veri_able that the matrix "eq[ 015# satis_es eq[ 8 and\ at the same time\ it completely
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eliminates the transition period to the attractor[ Hence\ now in eq[ 014 and eq[ 015 the super!
index � can be omitted]

p�"p0[ [ [pN#\P�

F

H

H

H

f

p0 [ [ [ pN

[ [ [ [ [ [ [ [ [

p0 [ [ [ pN

J

H

H

H

j

\ N�1n[ "016#

Obviously

P�

F

H

H

H

f

0 [ [ [ 0

[ [ [ [ [ [ [ [ [

0 [ [ [ 0

J

H

H

H

j

F

H

H

H

f

p0 9
= = [

9 pN

J

H

H

H

j

\ "017#

while

F

H

H

H

f

0 [ [ [ 0

[ [ [ [ [ [ [ [ [

0 [ [ [ 0

J

H

H

H

j

�0
0 0

0 01&[ [ [&0
0 0

0 01[ "018#

The diagonal matrix in eq[ 017 can be approximated by a direct product of 1×1 diagonal
matrices]

F

H

H

H

f

p0 9
= = [

9 pN

J

H

H

H

j

30
p9

0 9

9 0−p9
01&[ [ [&0

p9
0 9

9 0−p9
n1\ "029#

under the condition that p
9

0\[ [ [p
9

n minimizes the sum]

"p0−p
9

0p
9

1[ [ [p
9

n#1¦[ [ [¦ðpN−"0−p
9

0#"0−p
9

1#[ [ ["0−p
9

n#Ł1:min[ "020#

Therefore\

P32
p
9

0 0−p
9

0

p
9

0 0−p
9

03&[ [ [& 2
p
9

n 0−p
9

n

p
9

n 0−p
9

n3[ "021#

Consequently\ the corresponding unitary matrix\ U\ as well as the interference vector\ =c?Ł can
be sought in a similar form\

U�U0&[ [ [&Un\Uj�0
u" j#

00 u" j#
01

u" j#
10 u" j#

111 j\ j�0\1\[ [ [\n "022#

and

=c?Ł�=c"n#?Ł&[ [ [=c"n#?Ł\ =c"i#?Ł�0
a"i#

0

a"i#
1 1\ i�0\1\[ [ [\n[ "023#

Now\ the problem of _nding U and =c?Ł is reduced to _nding the two!dimensional components
in eq[ 022 and eq[ 023\ based upon the corresponding two!dimensional components in eq[ 021[

If a unitary matrix\ Uj\ and an interference vector\ =c"g#?Ł\ are sought in the form
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u" j#
00�e

ia" j#

1
¦

ib" j#

1
¦id" j#

cos0
u" j#

1 1\

u" j#
01�e

ia" j#

1
−

ib" j#

1
¦id" j#

sin0
u" j#

1 1\

u" j#
10�−e

ia" j#

1
¦

ib" j#

1
¦id" j#

sin0
u" j#

1 1\

u" j#
11�e

−ia" j#

1
−

ib" j#

1
¦id" j#

cos0
u" j#

1 1 "024#

a" j#
0 �a9"j#

0 eig" j#
0 \ a" j#

1 �a9"j#
1 eig" j#

1 \ "025#

then the eight parameters

a" j#\b" j#\ g" j#\ u" j#\ a0

9" j#
\ a1

9" j#
\ g" j#

0 and g" j#
1 \ "026#

are supposed to satisfy the following four equations]

=u" j#
00"a" j#

0 ¦0#¦u" j#
01a

" j#
1 =1

=a" j#
0 ¦0=1¦=a j

1=1
�p

9

j�
=u" j#

00a
" j#
0 ¦u01"a" j#

1 ¦0#=1

=a" j#
0 =1¦=a" j#

1 ¦0=1
"027#

and

=u" j#
10"a" j#

0 ¦0#¦u" j#
11a

" j#
1 =1

=a" j#
0 ¦0=1¦=a" j#

1 =1
�0−p

9
�

=u" j#
10a

" j#
0 ¦u" j#

11"a" j#
1 ¦0#=1

=a" j#
0 =1¦=a" j#

1 ¦0=1
[ "028#

For

p
9

j�
0
1
\ "039#

i[e[\ for a uniform distribution\ the system "eq[ 027 and eq[ 028# has a trivial solution\

u" j#�
p

1
\ a" j#�b" j#�d" j#�g" j#

0 �g" j#
1 �9^ a0

9" j#
�a1

9" j#

�9[ "030#

In general\ all the parameters in eq[ 026 will be functions of the only variable\ p
9

and these
functions can be tabulated[ Some freedom in choice of the parameters "026# can be exploited for
the purpose of simple implementation[

Similar strategy can be applied for simulating multi!variate stochastic processes with utilization
of eqs[ "14#\ "22# and "37# instead of eqs[ "2#\ "29# and "33#\ respectively

In concluding this section\ we will illustrate how a prescribed probability distribution or a
stochastic matrix can be achieved by an appropriate choice of a unitary matrix\ U\ and an o}!
set vector\ a¹[

Example 0
Given a double valued random variable\



0504Quantum analog computing

pr"zi�9#�pr"zi�0#�
0
1
\ "031#

_nd the corresponding unitary matrix[Solution]

U�
0

z10
0 0

−0 01:p�

F

H

H

H

H

f

0
1

0
1

0
1

0
1

J

H

H

H

H

j

[ "032#

The number of measurements per iteration

m�1[ "033#

The number of di}erent reset operations

r�3[ "034#

The o}!set vector is not needed[
The solution "eq[ 031# is the simplest and it eliminates a transition period to the attractor[

Example 1
Given a random variable\ j\ uniformly distributed over an interval of the length l�1n\

pr"k¾j¾k¦0#�
0
l
\ "035#

_nd the corresponding unitary matrix[Solution]

U�U0&[ [ [Un\ Uk�
0

z10
0 0

−0 01\ "036#

assuming that j has a binary representation]

j�z0=1−0¦z1=1−1¦[ [ [¦zn=1−n\ "037#

where zi is de_ned by eq[ 031[
The number of measurements per iteration\

m�1n[ "038#

The number of di}erent reset operations\

r�3n[ "049#

Remark] if j is given on a hypercube "9\0#k\ then

U�U "0#
&[ [ [&U "k#\U "i#�U "i#

0 &[ [ [&U "i#
n \ "040#

where U "i#
j has the form "036#\ while

m�1nk\ r�3nk[ "041#

The o}!set vector is not needed[

Example 2
Given a double valued random variable\
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pr"zi�9#�p\ pr"zi�0#�0−p\ 9³p³0\ "042#

_nd the corresponding unitary matrix\ U\ and an o}!set vector a¹[

Solution]

U�
0

z10
0 0

−0 01\ a¹�"a0\a1#\ "043#

a0�a1�
0
1 0−02X0¦

1p−0
0−p 1\ "044#

m�1\ r�3[ "045#

Remark] Eqs[ "043# and "044# express U and a¹ in the simplest form[
Indeed\ assuming that

u�0
cos8 sin8

−sin8 cos81 "046#

one _nds that 8�1:z1 from the equality]

ð"a¦0# cos8¦a sin8Ł1�ða cos8¦"a¦0# sin8Ł1 "047#

Then a is found from the condition]

0
1
ð"a¦0#1¦a1¦1a"a¦0#Ł

"a¦0#1¦a1
�p "048#

Example 3

Given a random variable j distributed over an interval of the length l�1n[ Assume that its
probability can be de_ned by n independent parameters "moments\ Fourier coe.cients\ etc[#[ In
particular\ assume that j is sought in a binary form "037#

j� s
n

j�0

Zj = 1−j^ pr"Zj�9#�p\ pr"Zj�0#�0−pj "059#

and the probabilities of n "our 1n# particular con_gurations of j are prescribed as p� j \ j�0\ 1\ [ [ [ \ n[
For instance\ take _rst q�log1 n terms in eq[ "059# and prescribe probabilities for all n di}erent
con_gurations of these terms]

99 [[[ 9
zxcxv

q

ðthe restŁ�p�0

99 [[[ 90
zxxcxxv

q

ðthe restŁ�p�1

00 [[[ 0
zxcxv

q

ðthe restŁ�p� n "050#

Then



0506Quantum analog computing

p0p1 [ [ [pn�p�0

p0p1 [ [ [pn−0"0−pn#�p�1

[ [ [ [ [ [ [ [ [ [ "051#

"0−p0# [ [ [ "0−pn#�p� n

whence

pn

0−pn

�
p�1

p�0

\ i[e[ pn�
p�1:p�0

0¦p�1:p�0

"052#

pn−0

0−pn−0

�
p�2

p�1

\ i[e[ pn−0�
p�2:p�1

0¦p� :p�1

\ etc[ "053#

Eventually\ all the probabilities pj" j�0\ 1\ [ [ [ \ n# are found in n steps given the distribution "050#[
Hence\ the corresponding U and a¹ providing the distribution "050# can be based upon the

examples 1 and 2[

Solution

U�U0& [ [ [ Un^ a¹�a¹0& [ [ [&a¹n "054#

where

Uj�
0

z1 0
0

−0
0
01\ a¹j�"aj \ aj# "055#

and

aj�
0
1 0−02X0¦

1pj−0
0−pj 1 "056#

here

m�1n\ r�3n "057#

Remark 0[ if j is given on a hypercube "9\ 0#k\ and all the k!components are independent\ then
eqs[ "09# and "00# can be applied[

Remark 1[ If j is given on a hypercube "9\ 0#k\ and the k!components are correlated\ in general
one can _nd an equivalent one!dimensional distribution\ and therefore\ to utilize the example 3[

Example 4

Given a 1×1 "{{success|| and {{failure||# stochastic matrix

p�0
p0

p1

0−p0

0−p11\ 9³p0�p1³0[ "058#

Find U and a¹[ Solution
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if U�0
0
9

9
01 and Im a¹�9 "069#

then

"a0¦0#1

"a0¦0#1¦a1
1

�p0^
a1

0

a1
0¦"a1¦0#1

�p1 "060#

whence

a0�
0¦X 0

p0

−0

X 0
p1

−0−X 0
P0

−0

\

a1�X 0
p0

−0
0¦X 0

p1

−0

X 0
p1

−0−X 0
P0

−0

\ "061#

Example 5

Given an arbitrary n×n stochastic matrix

p�

F

H

H

H

H

f

p�00 [ [ [ p�0n

[ [ [ [ [ [ [ [ [

[ [ [ [ [ [ [ [ [

p�n0 [ [ [ p�nn

J

G

G

G

G

j

\ 9³pij³0 "062#

Find U and a¹[
The matrix p performs mappings]

p�p�p "063#

where p is a probability vector[
First represent p� in a binary form "059#\ then its transition to the vector p in eq[ "063# is

equivalent to the transitions of each component in eq[ "059#]

"p�0\ 0−p�0# 0
pIi#

0 0−p"i#
0

p"0#
1 0−p"0#

1 1�"p0\ 0−p0#\ 0�0\ 1\ [ [ [ \ n[ "064#

As follows from eq[ "068#\ the probability of the transition

"09 [ [ [ 9#:"09 [ [ [ 9# "065#

is equal to p00[
But as follows from eqs[ "059# and "064#\ the same transition has the probability

p"0#
0 p"1#

0 [ [ [ p"n#
0 hence\
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p�00�p"0#
0 p"1#

0 [ [ [ p"n#
0 "066#

Similarly\

p�01�"0−p"1#
0 #\ [ [ [ \ p"n#

0 \ etc[ "067#

whence

p"0#
0

0−p"0#
0

�
p�00

p�01

\ i[e[ p"0#
0 �

p�00:p�01

0¦p�00:p�01

[ "068#

Eventually\ all the elements of the 1×1 stochastic matrices in eqs[ "064# can be found in n steps[
As in the Example 3\ it is assumed here that the 11n components p�ij in eq[ "062# can be derived

from 2n independent parameters[ #This is always the case when the matrix "062# results from a
discretization of an underlying FokkerÐPlanck equation#[

Then the solution to the problem is unique]

Solution

U�U0& [ [ [&Un a¹�a¹ "0#
& [ [ [&a¹ "n# "079#

where

Uj�0
0 9
9 01\ a¹ "0#�a"0#

0 \ a"i#
1 \ Im a¹�9 "070#

and

a"i#
0 �

0¦X 0

p"i#
0

−0

X 0

p"i#
1

−0−X 0

p"i#
0

−0

a"i#
1 �X 0

p"i#
0

−0

0¦X 0

p"0#
1

−0

X 0

p"i#
1

−0X 0

p"i#
0

−0

[ "071#

7[ CONCLUSION

Thus\ it has been demonstrated that a quantum recurrent net\ as an analog device\ can be
based upon a sequence of quantum and classical computations[ During the quantum regime\ a
stochastic input pattern is transformed "according to Schrodinger equation# into the output
stochastic pattern of the same dimensionality[ During the following classical regime which
includes quantum measurements and reset\ the stochastic pattern is contracted into a pattern of
lower dimensionality\ and this contraction is equivalent to the performance of a sigmoid function[
The combined e}ect of the alternating quantum and classical computations can be described by
generalized random walk\ i[e[\ by Markov chains[ Eventually the output pattern approaches an
attractor "which can be static\ periodic\ or ergodic#\ and such attractors can be utilized for storing
certain patterns[ The assignment of an appropriate unitary matrix can be based upon the optimal
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choice of the time period of the regime of quantum computations which actually represents the
procedure of learning[ But in addition to that\ the transition probability matrix can be controlled
by combining the output vector with an appropriately chosen interference vector[

Let us now summarize advantages of QRN[
The _rst fundamental advantage of QRN is based upon the property that all the computations

are performed in a high!dimensional "abstract# space which is induced by quantum simulations
of a physical device manipulating by vectors of much lower dimensionality\ and that leads to
exponential speedup and exponential capacity in QRN performance[ These e}ects are ampli_ed
by the direct!product decomposability of the Hilbert space in which physical objects are de_ned
based upon this property[ E}ective simulations of high!dimensional FokkerÐPlanck equation
with applications to chaos\ turbulence\ combinatorial optimization and data compression were
proposed and discussed[

The second advantage of QRN is in generation of true randomness which has been incorporated
in a di}erent kind of stochastic process of prescribed complexity[ This property can be exploited
for Monte!Carlo simulations\ randomized algorithms\ and simulations of complex patterns of
behavior in physics\ biology and social dynamics[

The third advantage of QRN is based upon interference between di}erent patternsÐinputs[
Due to this interference the stored patterns acquire a logical structure in a sense that each
combination of patterns has a qualitatively new meaning in the same way in which combinations
of letters forming words do[ This property opens up a way for storing retrieving and recognition
of collections of patterns which may have new joint properties[

The problems of hardware implementations of quantum devices have not been discussed in
this paper[ However\ since the quantum nets operate by interleaving quantum evolution with
measurement and reset operations\ they are far less sensitive to decoherence than other designs
of quantum computers[
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