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Abstract--An attempt to reconcile quan tum mechanics with Newton 's  laws represented by the non-  
Lipschitz formalism has been made. As a proof-of-concept, a line of equally spaced atoms was studied. It 
appeared that enforcement of  a tom incompressibility required relaxation of  the Lipschitz condition at the 
points of  contact. This, in turn, led to fractional powers and discreteness of  values of  the basic parameters 
including energy and action, and finally, to the uncertainty relationship between positions and velocities. 
In addition to that, the relaxation of  the Lipschitz condition caused instability of  velocity with respect to 
small changes of the a tom position, and that  introduced an element of  randomness  in the system behavior, 
It was shown that the only model for the probability evolution which incorporates all the new properties 
of  the motions is the Schr6dinger equation. This means  that quan tum mechanics can be derived from 
Newton 's  laws if an unnecessary mathematical  restr ict ion--the Lipschitz condi t ion-- is  removed from the 
mathematical  formalism. Non-local properties of  the model, as well as spin-effects and relativistic cor- 
rections are discussed. (~ 1998 Elsevier Science Ltd. All rights reserved 

1. I N T R O D U C T I O N  

The governing equations of classical dynamics can be derived from Lagrange equations, from 
variational principles, or directly from Newton's laws of motion, and they may be presented in 
various equivalent forms. However, there is one mathematical restriction on all such forms: the 
differential equations describing a dynamical system 

Yci = v i ( X L , X 2  . . . .  , ,  x , )  i = 1 , 2  . . . . .  n (1) 

must satisfy the Lipschitz condition, which expresses that all the derivatives 

8xj < ~ (2) 

must be bounded. This mathematical restriction guarantees the uniqueness of the solution to 
equation (1), subject to fixed initial conditions, and that makes it the most attractive for a 
mathematical treatment. However, there is a certain price to be paid for such a mathematical 
convenience since in many cases the condition (2) is not compatible with the physical nature of 
motions. A detailed analysis of such cases for dissipative systems (with application to irre- 
versibility in thermodynamics and to theory of turbulence) was presented in our earlier pub- 
lications [1-4]. 

In this paper we will discuss only non-dissipative (Hamiitonian) systems with the emphasis on 
motions in the domain of an atomic scale. 

1183 



1184 M. Z A K  

2. THE PROBLEM FORMULATION 

In order to trivialize our analysis, we will start with a line of equally spaced identical atoms of 
the mass m and the radius r0. The two-atom potential will be presented in the simplest form: 

1 
v = ~ ~2( / -  x) 2 (3) 

where x is the distance between the atoms along the center line, and E is the distance between the 
atom centers when they do not interact, Fig. 1. 

The requirement of incompressibility of the atoms leads to the conditions: 

2 = v--*0 at x ~ 0  (4) 

and 

VOx ~oo  a t x - , 0 .  (5) 

Then, as follows from the energy conservation 

m R  2 
E =  ~ + V = Const (6) 

and the condition (4): 

1 2 2 
v(0)  = ~ v ~ = ~; (7) 

where E is the total energy. 
The only way to reconcile the conditions in equations (5) and (7) is to introduce an additional 

term in equation (3) 

C 

Fig. 1. 
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X 
~" = E g  ~, ~ = - ( 8 )  

r 

where r is a constant of  the order of  the radius of  the atom, and ~ is a dimensionless positive 
constant: 

0 < ~ <  1 (9) 

Indeed, then: 

,ti7 
lim I7"(~0) = 0, but lim ~ ( ~ 0 )  = lim I~=-'1 = ~ .  (10) 

Obviously the condition (9) violates the Lipschitz condition for d ~ d g  at Y ~ 0  in equation (10). 
Now the potential (3) takes the form: 

r 2 
V = E(1 - -722-~°) ,  7 = ~5 < 1. (11) 

The additional term d I7"/d2 in the expression for the force: 

dV 
F - - - ( 2 7 2 + ~ Y  ~- ')  (12) 

dx 

dominates over the other terms when x ~ 0 ,  but it rapidly vanishes when x ~ E .  In other words, 
the term in equation (8) in the expression for the potential (10) reconciles the conditions in 
equations (5) and (6) without changing the motion in the 'classical' domain x ~ (; but as will be 
shown below, it brings fundamental changes into motions on the atomic scale x ,--r. 

Before deriving the equation of  motion, we have to discuss in more detail the structure of  the 
constant ~. Since the two-atoms potential must be a symmetric function of the a tom coordinates, 
it can be described only by an even function: 

V ( x )  = V ( - - x ) ,  (13) 

and this requires that u must be a fraction with an even numerator  and an odd denominator: 

2m 
- 2 n + l '  m , n  = 1,2 . . . .  (14) 

It will be shown later that actually m in equation (14) must be an odd number. But now we will 
proceed with the equation of motion which immediately follows from the energy conservation 
(6): 

d t  = v = +_ 1 - -  = + 7 2 2 + 2  " (15) 

Obviously, on the atomic scale, i.e., within the domain where 

equation (15) can be simplified since 

x , , ~ r  (16) 

r 2 
7.~ "2 = E222<2 ~. (17) 

Introducing a dimensionless velocity 



1186 M. ZAK 

= v ( 1 8 )  

one finally arrives at a very simple governing equation within a small region around f = 0: 

~ =  _ ) P n , 0 < Y ~  1. (19) 

Before proceeding with the analysis of equation (19), one has to note that as follows from 
equation (4), 

Sign ~ = Sign)? at x ~ 0 ,  (20) 

i.e., g must be an odd function of  £. This condition can be enforced by requiring that m in 
equation (14) is an odd number, and therefore, the final form of equation (14) is: 

2 ( 2 m -  1) 
= 4 n + l  n , m  = 1,2,. • •etc. m < n .  (21) 

Introducing, for convenience, another constant: 

2 m -  1 
f l  - 2 - 4 m  + 1' n , m  = 1,2 . . . .  etc. rn_< n (22) 

we rewrite equation (19) in the most simple form: 

= ± £ ~ , 0 < f ~  1 (23) 

Two signs of the velocity in equations (15), (19), and (23) correspond to motions in opposite 
directions starting from the same position. 

Now we can verify the boundedness of the fundamental invariants of motion when £ ~ 0 .  
The impulse of  the force F: 

I=IFdt= ffJ~'-ldx-- .r~f~ - = - - ~  x ('/2) l d f  --2r f ~ 0  at ~--*0 

0 0 0 

vanishes with ~ despite the unboundedness of the force F itself. 
The action 

S = ( E - 2 V ) d t  = - -E  (1--2Yc 0 = - - r / ~ -  J (1 -2 )? ' ) f - (~n )d f  

0 0 0 

m/m ¢ e m/m/m  , p 
= - - r ~ / V  J()? - 2 Y ) d ~  = - r ~ v [ ( 1 - f l ) ~  - -2 (1  

0 

also vanishes with )~. 
Finally, one can find the period during which the motion approaches the point 2 = 0: 

.-.,,- ax rV J.,- a.,= T = x/2m / ~ =  2~m'/" 
J x / E -  V ( x )  - r ( 1 - f l ) f f ' - B + 0 a t  97--*0. 
0 0 

(24) 

+fl)fl+Pl--.0 at Y--*0 (25) 

(26) 
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3. QUANTS OF ENERGY AND UNCERTAINTY RELATIONSHIP 

Let us turn to equations (18), (21) and (23) and express the kinetic energy of  the motion W as 
a function of n and m: 

W = E £  t2~2m- l)/4n+ 11; n , m  = 1,2,. . .  etc., m _< n. (27) 

As follows from equation (27), the energy W can take only discrete values and change by finite 
steps, or quants, since n and m are natural numbers. The smallest quant  of  energy found from 
the condition 

m = 1 , n - * ~ ,  

vanishes since 

A W  = W . -  W . _  t = E[.~2/(4(n- t)+ l)--~2/(4n+ lq---+O 

However, if one introduces action S. for each value of  energy I41.: 

n l 
S ,  = - W , ,  v = C ons t ,  [v] = - -  

v s ec  

(28) 

(29) 

(30) 

then 

E 
minAS = - lim [n£2 / (4"+l ) - (n  - l) .~ 2/(4n 3)] : E h = 2nh 

F n ~  V 
(31) 

Thus, we have arrived at a new universal constant h which represents the minimum quant of  
action S,, and is to be considered as a fundamental characteristic of  any system on the atomic 
scale. 

In order to relate quants of  action to quants of  energy, another fundamental characteristic, 
the frequency v had to be introduced. 

Since we are trying to avoid making use of  any preliminary knowledge about  quantum 
mechanics, and instead, are deriving quantum mechanics from Newton's  laws, we will not discuss 
here the physical consequences of  the existence of h, v and n, but rather restrict ourselves by a 
comment  that these constants can be identified with the Planck constant, frequency of elec- 
tromagnetic waves, and quantum number, respectively. 

Let us turn again to equation (27) and rewrite it in the following form: 

W = E . ~  2l~ : EY~g (32) 

Then the quants of  energy and action are, respectively: 

A W = EA(£a~) (33) 

and 

1 
AS = -[EA(Y'v-)] (34) 

v 

whence 

hv 
lim A(~f~ ) = lira A(g'/zvo = ~ (35) 

and therefore, 
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v h  
A(g'/2q) > --: (36) 

- E  

In other words, the accuracy to which the dimensionless product gl/2~ can  be defined, in principle, 
cannot exceed the constant vh/E. Qualitatively equation (36) is similar to Heisenberg's uncertainty 
principle [3], however, quantitatively it looks different, and the reason for that is the following: 
in the Heisenberg formulation, the position and the velocity are considered as random variables 
and their uncertainties are presented in the form of  standard deviations; on the contrary, in our 
analysis the position and the velocity are discrete, but still deterministic variables, and their 
uncertainties do not yet have any probabilistic structure. It is also interesting to note that the 
inequality (36) is not symmetric with respect to £ and q since Y is under the square root. This 
asymmetry will be discussed later in connection with instability of velocities with respect to 
changes in positions. 

Let us briefly summarize the results of this section: it has been demonstrated that enforcement 
of incompressibility of atoms leads to non-Lipschitz potential (11) which, in turn, creates a 
discreteness of possible values of kinetic energy and action. It was shown that the smallest quant 
of action is non-zero, and it can be identified with the Planck constant, while two additional 
invariants, v and n suggest that the motion on the atomic scale acquires some wave-like properties. 
Finally, the uncertainty relationship between position and velocity--similar to that postulated 
by Heisenberg---was derived. 

4. QUANTUM DOMAIN 

Let us turn now to a detailed analysis of equation (23) plotted in Fig. 2. The most remarkable 
property of the function (23) is the existence of a point g0~0 which cuts the curve into two 
qualitatively different parts: for X > ~0 the curve has a smooth 'classical' form; but for g < Yo the 
smoothness is lost, the velocity gradient grows sharply becoming unbounded at g-~0. 

The dividing point can be found from the condition that the curvature at Y0 has its maximum: 

whence 

¢'(go) fl(/~- 1)go ~-~ 
- -  --+ m a x  

[1 +(v)2] 3/2 (1+/~2xg~-2)3/2 -% 
(37) 

[-B 2 1 2B q1~/(2(~ /~))} . . (  . )_  ~ ~ 1 
= [ J ' °<"<5 (38) 

It should be emphasized that the existence of the dividing point go ¢ 0 is a consequence of the 
relaxation of the Lipschitz condition: indeed, 

go = 0 (39) 

for the classical case when fl = 1/2, i.e., n~oe .  
It is easily verifiable that the function (38) has a maximum 

goo = max g0 = 0.017 (40) 

1 
at fl = 0.3441, i.e., at n = m = 2, and it vanishes at fl = 0 and fl = ~. (41) 

One should recall that the basic arguments in equation (38) are n and m rather than fl, and 
therefore, the separating point g0 can take only discrete values. 
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Fig. 2. 

v 

The main property of  the region 

is that the velocity gradients 

0 < ~ < ~0 (42) 

d~ 
d Y  = f l X a - '  ~ ~ at X~0  (43) 

in there are extremely large becoming unbounded at Y = 0. 
In our further discussions we will call this region a quantum domain. 

5. EQUATIONS OF MOTIONS IN QUANTUM DOMAIN 

Let us turn again to equation (23) and find the equation of  motion subject to the initial 
conditions 

£ = Y0 at 7 = 0 ,  t = r [ ( 4 4 )  

when the motion starts within the quantum domain and directed toward its origin .~ = O. 
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Then taking the sign minus in equation (23) 

dY 
x ~ -  

one easily finds: 

i.e., 

- -  - - d [  (45)  

1 
(1 -- fl) (y°~ - t~_ y, - 8) = 7 (46) 

.~ = ( .~ l - - f l  - -  (1  - -  ~ ) [1 / (1  --fl>. (47) 

The period during which the motion approaches the reflection point £ = 0 follows from equation 
(46) and it coincides with the value (26) found earlier. 

However, we have some problems with the reflected motion which is obtained from equation 
(23) with the sign plus: 

= _+ (1 - fl)[1/(, -~) (48) 
1 4 n +  1 

First of  all, equation (48) is equipped with two signs since the fraction 1 - 7  - 2(n + 1~) has an 

even demoninator. Clearly the positive (negative) sign corresponds to the reflection of the right 
(left) atom from the left (right) one. 

Secondly, the motion (48) is fundamentally irreversible: indeed, as follows from equation (48) 

~ ( -  t) = i2(t), i = x ~ -  1. (49) 

This means that the backward motion does not exist at all. 
Thirdly, equations (47) and (48) represent a regular solution to equation (23). However, there 

also exists a singular solution: 

x -  0 (50) 

which can be verified by the direct substitution of  equation (40) into equation (23). (Obviously 
the coexistence of three different solutions to the same differential equation subject to the same 
initial conditions is caused by the relaxation of  the Lipschitz condition at Y = 0). 

We will now show that the singular solution (40) possesses a very remarkable property: it is 
extremely stable with respect to changes in incoming (negative) velocities, and extremely unstable 
with respect to changes to outcoming (positive) velocities. In order to demonstrate that, linearize 
the governing equation (23) with respect to a point ~. > 0: 

d£ 
d~ = --+a£+0(£k)'a = flY*~-~ > 0 , k  = 2,3 . . . .  (51) 

Then 

= ee "r, e < 1 (52) 

In linear approximation, the constant a characterizes the rate of stability (a < 0) or instability 
(a > 0), and here 

la[ ~ oo as ~0~0. (53) 

Therefore, the solution (50) changes its stability to instability at the moment of  reflection when 
the sign in equation (23) switches from minus to plus. 
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It can be easily verified that the motions described by the regular solutions (47) and (48) are 
neutrally stable with respect to uncertainties in position £ since 

- -  = ~ £  --*0 at T, ~ o ~ 0 .  (54)  O~ (~-P+(1- /~) t ' )  ~/°-p), and ~oo 

Indeed, as follows from equation (54), a small error in the coordinate £ decreases (in equation 
(47)) or increases (in equation (48)) with the rate of ~/~ -/~) which is slower than an exponential 
rate, and that makes the solutions (47) and (48) Lyapunov neutrally stable. 

However, the velocities of the same motions are extremely sensitive to the errors in £. Indeed 

and therefore, 

v = + (go' - '  _+ (1 - / ~ ) t y / ~ '  - t,) 

~ o  = + ( ~  ~ - + ( 1 - / 3 ) t 3 - t ( '  

Equation (56) has a remarkable property: 

~0 t~0 

(55) 

-2a)/(l-~)j (56) 

- (1 -/3~)2~°~1 2~ ~ at £o--,0. (57) 

In other words, infinitesimal errors in positions cause unbounded errors in velocities. Such an 
instability is much stronger than the Lyapunov instability: it has the same power as the Hadamard 
instability which can occur in partial differential equations [13]. In our case, the instability is 
caused by the violation of the Lipschitz condition, and we will call it non-Lipschitz instability. 

At this point, we can justify the term 'extremely unstable' applied in connection with equation 
(51): actually it means non-Lipschitz unstable, i.e., unstable in the sense of equation (57). 

One can verify that small errors in velocities cause small errors in position, i.e., positions and 
velocities are not equal with respect to the relationships between their uncertainties. 

Let us now summarize the results of this section. If the motion starts within the quantum 
domain and directed toward the point of collision Y = 0, it is described by the regular solution 
to equation (23) given by equation (47). When the motion approaches £ = 0, it switches to the 
singular solution (50) which is non-Lipschitz stable with respect to incoming velocity disturbances, 
and this switch is irreversible. But since the same singular solution is non-Lipschitz unstable with 
respect to outcoming velocity disturbances, the motion switches to the reflection branch of the 
regular solution (48), and this switch is also irreversible. 

Thus, two branches, (47) and (48), of the regular solution are separated by the singular solution 
(50), and that causes the fundamental irreversibility of the motion (see equation (49)). 

It should be emphasized that this irreversibility does not cause any loss of energy, and that is 
guaranteed by equation (6). We will stress again that both motions (47) and (48) are neutrally 
stable, but their velocities are non-Lipschitz unstable with respect to small errors in positions, 
and this asymmetry affects the uncertainty relationship (36). 

6. EMERGENCE OF RANDOMNESS 

Almost at the very beginning we have noticed some abnormalities in relationship between the 
position ~ and the corresponding velocity ~: it started with equation (23) which generates 
unbounded velocity gradients at ~ 0 ,  and led to dynamical instability of the velocities (55). In 
Section 4 we have defined the quantum domain: 
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0<X_<X0 (58) 

(where ~0 is given by equation (38)), within which the velocity gradient is extremely high (it 
becomes unbounded at ~ 0 ) .  Hence, for a given ~ from equation (58), the corresponding velocity 
can take any values from tT(~0) to ~(0)= 0, i.e., it actually becomes random. It should be 
emphasized that the randomness is qualitatively different from the uncertainty defined by equa- 
tion (36): the former is triggered by the instability, while the latter is emerged from the discreteness 
of the energy (although both of these phenomena represent non-Lipschitz effects). 

Since we are dealing with a Hamiltonian system (indeed, the total energy E in equation (6) 
represents the Hamiltonian H), there are two possible scenarios for the evolution of randomness. 
The classical scenario is presented by the Liouville-Gibbs equation: 

oO--ft+ {f,H} = 0 (59) 

wherefis the joint probability density as a function of generalized positions q, momenta Pt, and 
time t, and {} is the Poisson's brackets: 

{f,H} = i=1 ~ ~Pi Opi ~qi " (60) 

The quantum scenario is described by the Schr6dinger equation: 

h o ~ _  ~,O,h = h 
i Ot 2~ 'i = x ~ - I  (61) 

where ~ is a complex wave function representing a probability amplitude depending on coor- 
dinates ql and time t, and H is the Hamiltonian operator. 

The choice between these two models of the probability evolution should be based upon their 
compatibility with two constraints which have been derived in Section 3: existence of discrete 
levels of energies (27), and the uncertainty relationship equation (36). 

Let us start with the Schr6dinger equation (61). Firstly, as shown by Heisenberg [1], the 
uncertainty principle 

h 
6p 6x > ~ (62) 

(which is a statistical version of equation (36)) directly follows from equation (61). Secondly, the 
operator H in equation (52) has a discrete spectrum of real eigenvalues, and that perfectly fits 
into the discrete spectrum of energies (27). 

On the other hand, the first scenario expressed by equation (59) can be immediately disqualified 
on the basis that it does not have a mechanism to preserve the constraint equations (27) and (36). 

Thus the only model which describes the structure of microworld and uniquely follows from 
Newton's laws is the Schr6dinger equation. In this context, the equations of motion (47) and (48) 
following from the governing equation (23) describe a deterministic (but unstable) microstructure 
behind the corresponding Schr6dinger equation in the same way in which the dynamical equations 
of a random walk describe those of the Fokker-Planck equation [7, 9, 11]. 

7. DISCUSSION AND CONCLUSION 

During more than six decades, quantum mechanics enjoyed an unprecedented success which 
overshadowed some conceptual concerns that it is based upon postulated laws which are not 
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only underivable from Newton's laws, but are fundamentally different from the latter. At the 
same time, there always was a strong belief that the mathematical foundation of Newtonian 
dynamics is perfect and unshakable. We first started having doubts regarding the issue of the 
perfection and completeness of this formalism when we tried to describe the effect of the snap of 
a whip; it appears that if the Lipschitz condition at the free end is preserved, one arrives at a 
unique, smooth, stable, but useless solution which does not describe any snap; however, if the 
Lipschitz condition is relaxed, then an additional, singular solution represents a strong cumulative 
effect which simulates the snap [1]. This example suggested that there are some physical phenom- 
ena which are incompatible with the Lipschitz condition. Since then, in several works [2-4] we 
have demonstrated that the removal of physically unjustifiable Lipschitz conditions in dissipative 
systems leads to fundamentally new phenomena such as terminal attractors and repellers, dynami- 
cal simulators of the Fokker-Planck equation, etc. The non-Lipschitz formalism helped to shed 
a new light on the irreversibility in thermodynamics and the origin of turbulence [2]. It was shown 
that the new mathematical formalism of  Newtonian dynamics remained fully compatible with 
Newton's laws, and, at the same time, it preserved all the previous results of  the classical 
(Lipschitz) version. 

Actually the usefulness of the non-Lipschitz approach to dissipative dynamical systems gave 
a motivation for application of  the same approach to conservative (Hamiltonian) systems, and 
in particular, for an attempt to reconcile quantum mechanics with Newton's laws represented by 
the non-Lipschitz formalism. For  a proof-of-concept, we have selected a motion of a line of 
equally spaced identical atoms. We noticed a little inconsistency in conventional treatment of 
such a system: the atom incompressibility has never been incorporated into the mathematical 
formalism. It appears that the enforcement of the incompressibility of  atoms required relaxation 
of the Lipschitz condition at the points of contact. This, in turn, led to fractional powers and 
discreteness of values of  the basic variables, including energy and action, and finally, to the 
famous uncertainty principle. In addition to that, the violation of the Lipschitz condition caused 
instability of velocity with respect to small changes of  position, and that introduced an element 
of randomness in the system behavior. It was shown that the only model for the probability 
evolution which incorporates all the new properties of the motion, is the Schr0dinger equation, 
while the governing equation (23) of this motion represents a deterministic (but unstable) micro- 
structure behind the corresponding Schr0dinger equation. 

Considering equation (23) as a hidden variables model, we will discuss the Bell theorem which 
states that local hidden variables are not compatible with quantum mechanics [6]. So, is the 
model (23) local? We will show that it is not. But first of all, one should recall that some models 
of classical dynamics, and in particular, those which include geometrical or kinematical (non- 
holonomic) constraints, are also non-local. Indeed, in an incompressible fluid, pressure is found 
not from a constitutive equation, but rather from a geometrical constraint div v = 0 as a Lagrange 
multiplier, and therefore, it depends upon the global distribution of the velocity u over the whole 
volume. A similar effect takes place in a two-dimensional version of  the model discussed above. 
Indeed, by extending equation (4) to the following: 

x_" = v,-~ 0, ~ = v ~ O a t x ,  y ~ O  (63) 

i.e. by requiring a no-slip condition at the point of contact between two atoms, one must introduce 
a spin with an angular velocity ~o to enforce equation (63): 

~T 
o~ = - - -  a t  x = 0. (64) 

t" o 

From the dynamical viewpoint, the no-slip condition (63) means that the atoms are represented 



1194 M. Z A K  

by rough spheres, and therefore, the "friction" force Fiwhich is proportional to the normal force 
F in equation (12), must be unbounded at x = 0. 

But, for a rotating sphere 

IF11~oo at x ~ O. (65) 

2 2 d~o d~o _# 
Ff  = ~ mro(O = ~ m r  o d x  v,  oc ~ x . (66) 

Hence, the behavior of co in a small neighborhood of the point-of-contact x = 0 is characterized 
by the condition: 

dg ~ oo at g --* 0. (67) 

In order to reconcile equations (64) and (67), one can utilize a non-Lipschitz term similar to 
those in equation (8): 

v~( ) 2 m - ,  
c o = - - -  1 - t a n h x  ~ y - - - < l - f l ,  (68) 

ro ' 4n  + 3 

where ? is selected as a fraction whose value is the closest to the fraction (1-fl). 
Equation (68) represents a kinematical constraint which vanishes for • --, oo while satisfying 

both the conditions (64) and (67). This constraint introduces a non-locality in description of  
motion since the value of the spin is found not from the corresponding (local) dynamical equation 

Iz~b = M, (69) 

where Iz is the moment of  inertia, but rather from the global kinematical constraint (68), while 
the moment M in equation (69) plays the role of the reaction of  this constraint. 

Since equation (68) has the same structure as equation (23), the angular velocity ~o can take 
only discrete values. 

Strictly speaking, equation (23) can be rewritten in a form similar to (68) if there is no potential 
field, i.e. V = 0: 

= + tanh g~, 

since tanh 2_-__ g for small 2, but 

tanh £ ---} 1 for g ~ oe 

i.e. the contact effect gradually vanishes. 
The analog between equations (68) and (70) can be carried on further if one considers equation 

(70) as a constraint which requires that the velocity must gradually vanish as x -* 0. Indeed, then 
the non-Lipschitz force introduced in equation (12) will appear as a reaction of this constraint, 
and that in turn will introduce the corresponding non-Lipschitz potential (8). Now we can 
combine these two types of  constraints in the following one: the relative velocity between two 
particles must gradually vanish as they approach the point of contact. If, for instance, these 
particles are represented by two identical rough spheres, the combined (non-slip) constraint can 
be formulated as: 

(~,-- ~j). ( ~ , +  ~j) --  t anh  ~i~ = 0 (70) 

( f i -  ~j) x (~+  ~i) - tanh f~ = 0 (71) 

where ~ is the dimensionless velocity at the point of contact, Lj is the dimensionless shortest 
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distance between the particle surfaces, and ~i is the dimensionless radius-vector of  the center of 
the ith particle, while fl and 7 are expressed by equations (22) and (68), respectively. 

Now we are ready to consider a general case of  N interacting particles which are represented 
by incompressible rough spheres of radii ai and masses m~. 

The kinetic energy of such a system is: 

W = ~ i= 1 miri" ri + ~ m,ai ta~" ta~ (72) 

where ri(x~, y .  zi) is the radius-vector of  the center of  ith particle, and toe(t0, qh, 0~, ~i, 0,) is the 
vector of  the angular velocity (spin) of ith particle. 

The potential energy of the system for the case of the simplest gravitational attraction is: 

1 ~ , ~ ,  m~m i 
V = ~ ,= J=, G ( 1 -  6,j) i ~  [ (73) 

where G is the gravitational constant, and 6u is the Kronecker delta. 
However, the generalized coordinates r, q~, 0g, and 0i in equation (72)equation (73) are not 

independent: they are supposed to provide no-slip contacts between the particles, and therefore, 
they should satisfy the constraints (70) and (71). 

We will rewrite these constraints in a more general form since they were formulated for only 
two interacting particles with no potential field. 

Firstly, in the presence of a potential field (V #- 0), the effect of the constraint must be localized 
within a small neighborhood of the point of contact since on a distance the corresponding non- 
Lipschitz potential sharply decreases and it can be ignored in comparison to the potential V (see 
equation (1 l)equation (17)). 

Secondly, if a particle can have contacts with several different particles, the constraint imposed 
by the closest particle must dominate over the others. 

Both of  these conditions can be implemented by introducing special compatibility parameters 
~t into v equation (70)equation (71). 

#~') ~ v~j [ (~ -  ~j)" (~g- ~j) - tanh ~] = 0, (74) 
j=l  

v~j[(f~- fj) x ( ~ -  ~j) - tanh E)] = 0, (75) 
j=l  

where 

if v 0andr . r° ifrik----ma,kr, 
#i = otherwise Yik = otherwise 

and ~,. is the distance on which the non-Lipschitz potential can be ignored in comparison to the 
potential field V. 

Equations (74) and (75) can be written down in the following compressed form: 

N 

aks0, = 0, k = 1 , 2 , . . . , N ' ,  (76) 
S = I  

where qs are generalized velocities 2x,.gx, 2t, 0x, ~x, 0s and aks are the functions of the corresponding 
generalized coordinates, and N'  is the number of  constraints. 

Now the governing equations for the system of N interacting particles can be presented by the 
Lagrange equations: 



1196 M. ZAK 

d c3L t3L N' 
d t  6gls - -  Oq~. - k=l  ~ 2ka~s, s = 1 , 2 , . . . ,  n .  (77) 

Here L = W -  V is the Lagrangian, and 2k are the Lagrangian multipliers representing reactions 
of the non-holonomic (kinematical) constraints (72) and (73). 

Equations (76) and (77) form a coupled nonlinear system of  N +  N'  differential equations with 
respect to N +  N'  variables. 

The basic properties of  this system will be outlined below. 
Firstly, on the atomic scale, the system is not Hamiltonian (because of the non-holonomous 

constraints (76)); however, since equation (77) are homogeneous, the total energy is still preserved: 

W +  V = H = C o n s t .  

Secondly, on the atomic scale, the description of motion is non-local. Indeed, the reactions of 
constraints "~k which describe forces and torques cannot be found from any local constitutive 
equations; instead, the whole global picture of the motion is needed to find them. 

Thirdly, on the atomic scale, the system possesses the same qualitative properties (quantization 
of energy, non-Lipschitz instability and randomness) as those described for equation (23). 

Forthly, the system has singularities at the points of contact where accelerations and reactive 
forces become unbounded. In order to avoid that, one can turn to the impulse-momentum 
version of  the Lagrange equations [7], since both impulses and momenta are bounded (see 
equations (23) and (24)). 

Fifthly, as follows from equation (71), the kinematical constraints have a long memory: spins 
of any two particles being in contact ones will be correlated "forever",  and that describes the 
effect known as the Einstein-Podolsky-Rosen paradox. 

It should be stressed that, generally speaking, equations (76) and (77) can be studied inde- 
pendently on the corresponding Schr6dinger equation in the same way in which the dynamical 
equations simulating random walk can be studied directly without the corresponding Fokker-  
Planck equation. In this connection, we cannot exclude a possibility that investigation of quantum 
systems directly by equations (76) and (77) may lead to new, more subtle effects which could not 
be captured by the Schr6dinger equation. In order to illustrate that, we will make some additional 
comments to these equations. 

A solution to equation (77) defines a two-parametric family of  trajectories and spins of the 
particles, respectively: 

r = r(r0, v0, t, n, m), to = to(r0, too, t, n, m), (78) 

r0, r(t =- 0), v0 =/ t ( t  = 0), too = to(t = 0), 

which depend upon discrete values of n and m via the parameters fl and ~ (see equations (22), 
(68), (72) and (73)). 

We will now show that fl and ~ can be interpreted as random variables. Indeed, as pointed out 
in Section 6, for a given Y from the domain (58), the corresponding velocities can take any values 
from q(~0) to ~(0) as a result of the non-Lipschitz instability described by equation (57), and that 
makes the velocities random. But for a fixed Y, different velocities mean different fl (see equation 
(23), i.e. fl can actually take all the values of the form (22) in the interval (38). However, not all 
of  these values of  fl are equally probable. Indeed, consider a state Y = 0 which is defined with an 
error A£ < 1. then, according to equation (36): 

vh  
(Ax) zp > h where h - 

E '  

i.e. the minimum e r r o r  A.~mi n 
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0 ~" m.~mi n = ]~(I/2fl) < 1 (79) 

is bounded by the condition that 0 < fl < 1/2. 
If one assumes that all the errors A27 are equally probable, then the probability distribution 

for fl can be obtained from equation (79): 

p(fl) - 4f i /3 2 (80) 

Considering /~ and 7 as random variables with the distributions (80), one can find from the 
solution (78) the probability p* that a selected particle r* at a fixed time t* is located at the point 
r*. In terms of  the SchrSdinger equation, this probability is equal to the square of the modules 
of the wave function. (At this stage, the wave function itself does not appear at all.) 

In addition to that, one can find a probability P** that a selected particle r* at a fixed time t** 
is located at the point r* having the spin o9", and that cannot be found from the Schrodinger 
equation. 

In some particular cases, the probabilities p* and p** can be time-independent. In order to 
enforce this condition, one has to restrict the free choice of the parameters n and m in such a way 
that only certain values of them are allowed. These values will define the discrete stationary levels 
of energy of  the system. 

It is worth mentioning that since equation (77) are nonlinear, the proposed model reinforces 
the link between quantum mechanics and nonlinear phenomena discussed in [8]. Moreover, due 
to Newtonian formulation of quantum mechanics, the relativistic effects can be incorporated by 
introducing the corresponding correction factor to the mass in equations (72) and (73). 

It should be emphasized that the non-Lipschitz formalism of  Newton laws is not only unified 
mechanics, but it also eliminates some "infinity-paradoxes" in quantum theory. In order to 
illustrate this, consider spherical waves as a solution to the Maxwell equation with respect to the 
electric potential ~o [9]: 

8 2 1 c ~2 
~r2r 2 (r~o) - c5 ~ (r~o) = O, (81) 

i.e. 

~o(r, t) = 1 f ( c t  + r). (82) 
r 

One immediately faces the point-charge problem with the inward wave: 

~o(r, t) --+ ~ a t  r ~ 0 (83) 

unless the solution (82) is cut off at a small value 

r = ro, ro/l  < 1 (84) 

where l represents the classical (non-quantum) length scale. 
However, the condition (84) does not represent a non-point charge: the solution (82) "does 

not know" about this charge and goes through it to infinity. 
A way out of this situation is very simple if one relaxes the Lipschitz condition at r = ro. 

Indeed, consider a solution to equation (81) subject to the following boundary conditions: 

~O(ro, t) = 0,~7(ro, t)--* oo (85) 

(compare with the conditions (4) and (5)). 
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It  c a n  be p re sen t ed  as 

f ( c t  +_ r) 2 m - -  1 
~p(r, t) - ~, % < 1 1 --  ~ - - -  (86) 

r 1- -  

n, rn = 1,2 . . . . .  etc.  m < n (87) 

Indeed ,  in the  classical  scale (r ,-~ l >> ro) it co inc ides  wi th  the  so lu t i on  (82), a n d  fo r  r = ro it 

satisfies the  b o u n d a r y  c o n d i t i o n s  (85). O n  the  q u a n t u m  scale (r = ro) e q u a t i o n  (86) has  the  

q u a n t u m  p r o p e r t i e s  s imi la r  to those  o f  e q u a t i o n  (27). 

Thus ,  it t u rns  o u t  t ha t  the  m i c r o - w o r l d  is n o t  as m y s t e r i o u s  as it  seems on  the  first sight:  a f te r  

all,  i t  is still based  u p o n  N e w t o n ' s  laws.  
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