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Abstract

Biosignature is one of the most important evidences of life available to researchers. However, many complex physical
and chemical phenomena can mimic prints of life so closely that special methods are required to make the distinction. In
addition to that, life, in principle, can be composed of components which are fundamentally different from those known on
Earth. That is why identification of biosignatures should be based upon some phenomenological invariants. Such invariants,
within the framework of Newtonian formalism, are introduced and discussed. q 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

It does not take much knowledge or experience to
distinguish a living matter from inanimate in day-to-
day situations. Paradoxically, there is no formal defi-
nition of life which would be free of exceptions and

w xcounter-examples 1 . There are at least two reasons
for that. Firstly, many complex physical and chemi-
cal phenomena can mimic prints of life so closely
that special methods are required to make the distinc-
tion. Secondly, extraterrestrial life, in principle, can
be composed of components which are fundamen-
tally different from those known on Earth.

One of the most important evidences of extrater-
restrial life available to researchers is a biosignature,
i.e., a print of a living system in environments or
samples from planets. For the reasons mentioned
above, identification of a biosignature requires devel-
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opment of special criteria which would allow one to
disqualify any inanimate forgery, and at the same
time to recognize life even if it is in a form funda-
mentally different from those on Earth. Since living
systems belong to Newtonian macro-world, it is
reasonable to start with Newtonian formalism which
would capture some phenomenological invariants of
living system based upon postulated definition of
life. Such a definition has to reconcile experimental
observations, Newtonian mechanics and thermody-
namics.

Firstly, living systems have a sense of the direc-
w xtion of time 2 , and therefore, their models must be

irreversible. In addition to that, evolution of living
systems is directed toward higher levels of complex-
ity if complexity is associated with a number of
different features. Combining Newtonian mechanics,
thermodynamics and the phenomenon of instability,
both of these properties can be implemented. How-
ever, they are necessary, but not sufficient for life:
there are plenty of physical processes which possess
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the same characteristics: chaos, turbulence, convec-
tion, etc.

The third property of living systems is the capac-
ity to stimulate their own replication; however, even
that property is not sufficient since it cannot disqual-
ify fire or other exponentially unstable physical pro-
cesses.

The fourth property can be associated with a so
called ‘‘free will’’, or in terms of mathematical
formalism, with a probabilistic evolution. Again,

Žthere are plenty of physical phenomena chaos,
.Langevin models whose evolution can be described

only probabilistically.
The fifth property can be stated as the ability to

perform certain transitions or motions which are not
directly controlled from outside. Such an autonomy

Žmust be supported by energy flux with low entropy
.input and high entropy output , and as a ‘‘side

effect’’, it can be accompanied by information pro-
cessing. Indeed, autonomous systems can converge

Ž . Žto a limit cycle flutter , to chaotic attractor Lorenz
. Ž .model or to a static attractor neural nets , and that

can serve as a memory.
All the five properties listed above exhibit ‘‘com-

plexity without purpose’’, and that is why they are
necessary, but not sufficient for life identification.
We will postulate now the last property: any living
system has an objective of its activity. The global
objective is always to survive, but local objectives
can be different as long as they contribute to the
global one. From the viewpoint of phenomenological
formalism, a living system must possess its own
model and interact with it to achieve the objective.
For instance, it can run the model faster than real
time thereby predicting its future state, compare this
state with the objective and change the strategy if
necessary. Actually, all the man-made controlled

Žsystems mimic this property of a living system how-
ever, controlled systems usually do not possess all

.the previous five properties mentioned above .
The purpose of this paper is to develop a phe-

nomenological model of living systems which would
include all the properties listed above, and to estab-
lish physical invariants of the corresponding biosig-
natures. One of the challenges of the approach is to
keep the model within the Newtonian formalism

Žexcluding any man-made devices such as random
.number generators .

2. Background

The mathematical theory of active systems, both
natural and artificial, has a relatively short history.
The most general approach to it is presented in the

w xmonograph by Mikhailov 3 . On a time-scale of
motions of simple individual elements, a one-compo-
nent model is represented by a set of ODE:

a sg a , . . . ,a , is1, . . . ,n 1Ž . Ž .˙i i 1 n

where a are state variables, and g is a non-monoto-i

nous function with, at least, two extremal parts. An
isotropic multicomponent active medium is de-
scribed by a system of PDE:

2 2� 4a sg a q B =a q D = a 2Ž .˙ Ž .Ž . Ý Ýi i j i j j i j j
j ij

Ž .The main source of complexity of the models 1
Ž .and 2 is the multi-extremal configuration of the

functions g which causes such phenomena as phasei

transition, trigger and spiral waves, travelling pulses,
etc.

Ž . Ž .Eqs. 1 and 2 can be equipped by random
Ž .forces noise , and then they take form of the

Langevin equations whose probability evolution is
described by the associated Fokker–Planck equation.

Ž . Ž .Although solutions to Eqs. 1 and 2 can exhibit
a variety of complex behaviors, this is still a ‘‘com-
plexity without a purpose’’ and there are plenty of
inanimate systems which are governed by the same

Žequations for instance, the whole class of reaction–
.diffusion processes .

Ž . Ž .The models 1 and 2 have other limitations, and
Ž .one of them is continuous non-punctuated evolu-

tion. As many leading biologists suggest, the evolu-
tion of biological systems should include pauses for
sensing the environment and choosing the direction
of the next step; this paradigm controlled by a
biological clock makes the evolution punctuated.
From the mathematical viewpoint, it means that be-
haviors of living systems should include a random-
walk component. Obviously such a component can-
not be produced only by external noise since the
solutions to the Fokker–Planck equations are contin-
uous; in addition to that, external noise does not have
enough power to drive a biological system.

In the next sections we will discuss a model in
which all these limitations are removed.
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3. Model of punctuated evolution

The model proposed in this section is based upon
dynamical simulation of random walk introduced

w x w x w xand discussed in 4 5 6 .
Consider a rectilinear motion of a particle of unit

mass described by the following differential equa-
tions:

ysÕy 1r3sin v tq´ , Õsconst.,

< < < 1r3 <vsconst., ´ <Õ y 3Ž .
xsy 4Ž .˙

where x and y are position and velocity, respec-
Ž .tively, and ´ t is vanishingly small noise.

w xAs shown in 4–6 the particle performs a random
walk with constant steps h and the transition periods
t :

2py5r2 3r2hs64 3v Õ , ts 5Ž . Ž .
v

Ž .The probability density f x,t is governed by the
following difference equation:

f x ,tqt spf xyh ,t q 1yp f xqh ,tŽ . Ž . Ž . Ž .
6Ž .

which represents a discrete version of the Fokker–
Planck equation, while

x
f x ,t d xs1 7Ž . Ž .H

yx

and

psp ´)0 8Ž . Ž .r

Several comments concerning a physical interpreta-
Ž .tion of the solution to Eq. 3 should be made.

Firstly, this solution has an infinite number of
equilibrium points

ys0, xs"h"h"h PPP etc. 9Ž .˙

which are stable when sin v t-0, and unstable when
sin v t)0 .

Since

dẏ
™` at y™0 10Ž .

dy

the Lipschitz conditions at the equilibrium points are
w xviolated, and that makes them terminal 4 attractors

or repellers. As a result of that, the transition time t

Ž Ž ..is finite see Eq. 5 .
Secondly, the noise ´ is not driving the evolution:

it only triggers the mechanism of instability which
controls the energy supply via the harmonic oscilla-

Ž .tions sin v t. As follows from Eq. 3 , ´ can be
ignored when ys0 or when y/0, but the equation˙
is stable, i.e., at tsprv,pr3v PPP etc. Indeed, at

Ž .these instants, the solution to Eq. 3 has a choice to
Ž . Ž .move left if sgn ´-0 , or right if sgn ´)0 . In

other words, the sign of ´ at the equilibrium points
uniquely defines the evolution of the solution. But
since ´ is a random variable, the evolution becomes
random too.

Ž . Ž .Thus, the solution to Eqs. 3 and 4 combines
Žacting the transition from one equilibrium point to
. Žanother and ‘‘thinking’’ the decision making pro-

.cess based upon sgn ´ . Both the energy reservoir
for acting, i.e., the harmonic oscillations sin v t, and
the ‘‘brain’’, i.e., the noise ´ can be simulated by

Ž .different autonomous dynamical systems: the first
system is supposed to converge to a periodic attrac-
tor, and the second one to a chaotic attractor.

4. The noise structure

In this section we will analyze possible structures
of the noise ´ which is responsible for triggering the
transition from one equilibrium to another in the
direction depending upon sgn ´ .

Regardless of the type of the corresponding
chaotic attractor, the noise can be derived from a
sample of an underlying stationary stochastic process

Ž .l characterized by some probability density F l .
Suppose that

² :´sly l qm 11Ž .
² :where l is the mean of l

`

² :l s lF l dl 12Ž . Ž .H
y`

and m is some deterministic variable.
Then

`

² :p ´)0 s ly l qm dlsQ m 13Ž . Ž . Ž .Ž .Hr
0
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while

1 dQ
Q 0 s , G0, 0FQF1 14Ž . Ž .

2 dm

Obviously any stationary stochastic process uniquely
Ž .defines the function Q m . This function, in many

Žpractical cases for instance, when the stochastic
w x .process l is generated by a logistic map 4 can be

approximated as:

² :°1 if m)l y lmax

~ 1 mQs
1q if mFl slmax¢ ž /² :2 l y lmax

15Ž .

where l is the largest term in the time�func �max44
Ž .series l t .

In general, m can depend upon the particle coor-
Ž .dinate x, its probability distribution f x , and the

Ž .functionals of f x such as the mean

² :ms x sÝ xf x 16Ž . Ž .
the variance

2
ssÝ xym f x 17Ž . Ž . Ž .

Ž .or the Shannon uncertainty entropy

HsyÝ f x ln f x 18Ž . Ž . Ž .
i.e.,

msm x , f x , m f x , s f x , H f x� 4Ž . Ž . Ž . Ž .
19Ž .

Actually, all the variety and complexity of the parti-
Ž . Ž .cle behavior described by Eqs. 3 and 4 is defined
Ž .by the structure of the function 19 .

In the next sections, a variety of structures of Eq.
Ž .19 as well as specific characteristics of the corre-
sponding behaviors will be analyzed.

5. Complexity without objective

Ž .We will start with the simplest case of Eq. 19
when m depends only upon the state variable x

msm x 20Ž . Ž .

Ž . Ž . Ž .Then Eqs. 3 , 4 and 6 reduce to

1r3 ² :ysÕy sin v tqly l ym x , xsy 21Ž . Ž .˙ ˙

f x ,tqt sQ m x f xyh ,tŽ . Ž . Ž .

q 1yQ m x f xqh ,t 22� 4Ž . Ž . Ž .
Ž .Since a closed form solution of Eq. 21 is not

available, we will confine ourselves with a qualita-
tive analysis.

Suppose first that

ms0 23Ž .
Ž .Then, as follows from Eq. 14 ,

1
Qs 24Ž .

2

Ž .and the solution to Eq. 22 subject to the initial
conditions

f 0,0 s1, f x ,0 s0 if x/0 25Ž . Ž . Ž .
describes a symmetric unrestricted random walk:

1 2v t
k ynf x ,t sC 2 , ks nq1 ; ns integerŽ . Ž .n ž /2 p

26Ž .

Here the binomial coefficient C k should be inter-n

preted as zero whenever k is not an integer in the
w xinterval 0,n , and n is the total number of steps.

At this point we have to clarify the relationships
Ž . Ž .between Eq. 21 and Eq. 22 which are the follow-

ing: if one fixes the initial conditions as

xs0, ys0 27Ž .
Ž .and run Eq. 21 many times, he will get different

chaotic-like time series as solutions; but if he per-
forms a statistical analysis of these solutions and find
the evolution of the probability density, this evolu-

Ž .tion will coincide with the solution to Eq. 21 . In
Ž .other words, the probabilities described by Eq. 22

Ž .are simulated by the dynamical system 21 .
Ž .Let us assume now that, instead of Eq. 23 ,

msyax , asconst.)0 28Ž .
Then the number of negative signs in the string of

Ž .numbers 11 will prevail if x ) 0 since the effec-
tive zero-crossing line moves down away from the
middle. Similarly, the number of positive signs in
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Ž .11 will prevail if x - 0. Thus, when x s 0 at t
s 0, the system starts with an unrestricted random

Ž . < <walk 26 , and x grows. However, this growth as a
Ž .feedback changes signs in Eq. 11 such that

x-0 if x)0, and x)0 if x-0 29Ž .˙ ˙

Ž .Moreover, as follows from Eq. 15 , with probability
one the system will escape the domain where

² :m)l y l 30Ž .max

As a result of that,

1
< < ² :x F l y l 31Ž .Ž .maxa

Ž . Ž .Hence, the dynamical system 21 , 28 subject to
Ž .the initial condition 25 simulates a symmetric ran-

Ž .dom walk restricted by the boundaries 31 . The
probability evolution for this stochastic process is

Ž .described by the solution to Eq. 22 .
It has to be emphasized that although the noise ´

Ž Ž ..is vanishingly small see Eq. 3 , the boundaries
Ž . 231 can be sufficiently large since a must have the
same order as ´ . This should not be surprising
because, as mentioned earlier, the noise only triggers
the mechanism of instability while the energy for the
motion is supplied by the harmonic oscillations
sin v t.

As a next step toward a higher complexity, re-
Ž .place Eq. 28 by the following:

msyasin g x , as const.)0 32Ž .

For

p 1 p
< < ² :x - , i.e., l y l - 33Ž .Ž .max2g a 2g

Ž .the behavior of the solution to Eq. 21 qualitatively
remains the same, i.e., it is described by a symmetric

Ž .random walk restricted by the boundaries 31 .
However, if

p 1 p
< < ² :x ) , i.e., l y l ) 34Ž .Ž .max2g a 2g

the motion becomes unstable since

sgn xssgn x 35Ž .˙

and x will grow until it approaches the basin of the
next attractor:

3p 5p
< <- x - 36Ž .

2g 2g

The probability of this transition is:

`

² :p s F ly l dl 37Ž . Ž .HT
p ar2g

Hence, with the probability p the boundaries of theT

random walk are shifted from

p 3p 5p
< < < <x - to - x - ,

2g 2g 2g

7p gp
< <and then to - x - , etc. 38Ž .

2g 2g

Ž .Thus, the noise structure 32 leads to much more
Ž .complex behavior of the solutions to Eq. 21 , and

this complexity is associated with the alternation of
the effects of stability sgn xsysgn x and instability˙

Žsgn xssgn x. Actually similar phenomenon but on˙
.a lower level of complexity follows from the multi-

Ž . w xextremal function 1 discussed in 3 .
Further increase of complexity can be associated

Ž .with introducing memory by replacing Eq. 4 with
the following:

xsy t qa y tyt qa y ty2t q PPP etc.Ž . Ž . Ž .˙ l 0 2 0

39Ž .

providing non-Markovian correlations between pre-
sent and past.

However, there is a more fundamental way to
enhance the dynamical complexity. Indeed, consider
the following noise structure:

² :msa x , as const.)0 40Ž .
Ž . Ž . ŽNow Eq. 21 and Eq. 22 are coupled see Eq.

Ž .. Ž .16 . Moreover, Eq. 22 becomes nonlinear.
Subject to the initial conditions

f 0,0 s1, f x ,0 s0 if x/0, xs0 at ts0Ž . Ž .
41Ž .

Ž . Ž .the solution to Eqs. 21 and 22 describes a sym-
Ž .metric unrestricted random walk 26 since for this

process

² :x '0 42Ž .
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However, for different initial conditions:

f 1,0 s1, f x ,0 s0 if x/1, xs1 at ts0Ž . Ž .
43Ž .

the solution to the same system is fully deterministic:
it is described by a travelling wave of the delta-func-
tion:

h
fsd xy1q t at t™` 44Ž .ž /t

Thus, one can observe a fundamental non-linear
effect: the dependence of the attractor upon the

Ž . Ž .initial conditions. In general, Eqs. 21 and 22 with
the noise structure depending upon the probability f
Ž Ž . Ž .as in Eq. 40 , or Eq. 19 may have different
attractors and repellers, i.e., different asymptotic so-
lutions for different initial conditions. It should be

Ž .recalled that in all the previous cases when Eq. 22
was linear, the solution had only one type of asymp-
totic behavior regardless of initial conditions.

6. Systems with prescribed objectives.

As has been demonstrated in the previous section,
Ž . Žrelatively simple structures of noise 11 see Eqs.

Ž . Ž . Ž . Ž ..23 , 28 , 32 and 40 lead to a high level of
behavioral complexity which, in principle, can match
the complexity of living systems. However, all these
systems do not exploit their complexity for the pur-
pose of survival, or to any other purpose, and that
disqualifies them as models of living systems.

In this section we will introduce systems with
objectives starting with the simplest case when the
objective is prescribed. As a rule, such systems must
include some additional parameters which represent
the ‘‘master’’ enforcing the objective.

Ž .Let us turn to Eq. 28 and assume that the
coefficient a depends upon an external parameter w

asa w , while a sa w , and wsw x ,tŽ . Ž . Ž .max 0

45Ž .
where w can represent the ambient temperature or
concentration of some chemicals which are impor-
tant for the system survival.

Now the objective can be formulated as follows:
find such a small region of x where w is sufficiently
close to its optimal value of w .0

For the sake of mathematical simplicity, we will
Ž . Ž .assume that a w and w x,t are slow changing

functions, i.e.,

da h
< 46Ž .

d t t

Ž . Ž . Ž .Then eventually the solution to Eqs. 3 , 4 , 28
Ž .and 45 will be trapped in the region following from
Ž .Eq. 31 :

1
< < ² :x F l y l 47Ž .Ž .maxa wŽ .0

Ž .As follows from Eq. 45

< < < <x - x 48Ž .wsw w / w0 0

Ž .i.e., the stochastic attractor 47 has the least uncer-
tainty among all the possible stochastic processes
Ž .31 . In other words, the process of approaching the
objective is characterized by decrease of the entropy:

d H
-0 49Ž .

d t

It should be noticed that such an ‘‘inverse’’ evolu-
tion of the entropy is due to the fact that the system
Ž . Ž .3 , 4 is not isolated as a result of enforcement of
the objective via the external parameter w. Neverthe-

Ž .less, the condition 49 is necessary, but not suffi-
cient for a living system. Indeed, there is plenty of

Ž .physical non-isolated systems with self-organiza-
Ž .tion properties i.e., with different type of attractors

Ž .for which the inequality 49 holds. However, one
can argue that such physical systems do not ‘‘be-

Ž .nefit’’ from the property 49 , and therefore, they do
not have an objective. Unfortunately, the detection of
the attractor which represents an objective for the
system cannot be made based only upon biosigna-
tures: some additional information will be required.

7. Systems with emerging objectives

The main difficulties in detection of life start with
the fact that there is no definition of life. In this
section we will try to find such a level of complexity
at which we can draw a sharp boundary between
living and inanimate systems in terms of phe-
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nomenological invariants. For that purpose we will
turn to the concept of reflection introduced in psy-

w xchology 7 . Reflection is traditionally understood as
the human ability to take the position of an observer
in relation to one’s own thoughts. In other words, the
reflection is a self-awareness via the interaction with
the ‘‘image of the self’’. In terms of the phenomeno-

Ž .logical formalism proposed above, Eq. 6 represent
the probabilistic ‘‘image’’ of the dynamical system
Ž . Ž .3 , 4 . If this system ‘‘possesses’’ its own image,
then it can predict, for instance, future expected
values of its parameters, and, by interacting with the
image, change the expectations if they are not consis-

Ž .tent with the objective. In this context, Eqs. 3 and
Ž . Ž .4 simulate ‘‘acting’’, and Eq. 6 simulates ‘‘think-
ing’’. Their interaction can be implemented by incor-
porating probabilities, its functions and functionals

Ž Ž ..into the noise structure see Eq. 19 .
Now we are approaching the central point of our

Ž .discussion: the feedback 19 makes the probability
Ž . Ž Ž . Ž ..evolution 6 with reference to Eqs. 8 and 13

nonlinear. It should be recalled that any stochastic
Ž .process without memory i.e., Markov process can

w xbe described by linear Fokker–Planck equation 8 ,
or its discrete version, the Chapman–Kolmogorov
equations. Only that type of processes have been

Ž .observed in physical i.e., inanimate world. But
coupling between the dynamical equations and their
probabilistic ‘‘image’’ does not contradict any law
of physics: for instance, the Langevin equations can,
in principle, interact with the corresponding
Fokker–Planck equation if the external noise de-
pends upon the probability distribution of the state
variable. Strictly speaking, such processes are
Markovian since the future still depends only upon
the present, but not the past. However, now present
includes not only values of the state variable, but
also its probability distribution, and that leads to
nonlinear evolution of random walk.

For the proof-of-concept, suppose that the noise
Ž .structure 19 is presented in the following form:

² :f l y l if fF1Ž .max
ms 50Ž .½ ² :l y l if f)1Ž .max

Ž .In addition to that, suppose that in Eq. 5

h
h™0, t™0, s1 51Ž .

t

Ž .Then one arrives at the continuous form of Eq. 6 :

E f E 1
2q f s0 52Ž .ž /E t E x 2

which simulates a traffic flow.
The solution to this equation is well-known: start-

w xing with a flat distribution, it forms shock waves 9 .
Hence, if

1°
< <at x F/~fs 53Ž .2/¢

0 otherwise

and therefore, the entropy

HsH at ts0 54Ž .max

then, eventually

E H
-0 and H™0 at t™` 55Ž .

E t

Ž w xIt can be verified 10 that the normalization condi-
Ž . .tion for f x,t is preserved.

Thus, as a result of interaction with its own
‘‘image’’, and without any external enforcement, the

Ž . Ž .system 3 , 4 decreases its entropy in the course of
nonlinear evolution of probability, and, according to
our definition, that is the privilege of living systems.

Ž . Ž .It should be emphasized that the system 3 , 4 is
not isolated: it consumes energy via the harmonic

Ž .oscillations sin v t, and therefore, the condition 55
does not violate the second law of thermodynamics.

Ž . Ž . Ž . Ž .Eqs. 3 , 4 , 50 and 52 illuminate another
remarkable property of living systems: their ability
to predict future. Indeed, with the noise structure
Ž . Ž . Ž50 , Eq. 6 as well as its continuous version, Eq.
Ž .. Ž . Ž .52 does not depend upon Eqs. 3 and 4 , and
therefore, it can be run faster than real time. As a
result of that, future probability distributions as well

Ž .as its invariants expectation, variance, etc. can be
predicted and compared with the objective. Based

Ž .upon that comparison, the noise structure 50 can be
changed if needed.

Thus, in general, living systems are better
equipped for dealing with future uncertainties. In
other words, their present motion is ‘‘correlated with
future’’ in terms of the probability invariants. Such a
remarkable property which increases survivability
could be acquired accidentally and then be strength-
ened in the process of natural selection.
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It should be emphasized that the ability to predict
results from a special type of nonlinear probability
evolution generated by the noise structure which
does not depend explicitly upon the state variable x.

Ž . Ž .In general when Eq. 50 is replaced by Eq. 19 ,
and the shift operator E is replaced by the differen-
tial operator D as

E seh D , E set D 56Ž .h t

Ž .Eq. 52 will be replaced by a nonlinear parabolo-hy-
perbolic equation which can describe shock waves,
the Burger’s waves, solitons and even chaos, in the
probability space. However, for the ability to predict,

Ž .Eq. 19 should not depend explicitly upon x. Never-
theless, dependence of m upon both x and f does
not disqualify the system from being ‘‘alive’’: it only
means that the system interacts not only with its own
image, but also with an outside observer.

So far we avoided formulations of objectives for
systems with reflections, and we did it deliberately.
Indeed, based upon the signature in the Newtonian
world, one can detect only apparent objective which,

Ž .in the case of Eq. 52 , is to concentrate the motion
within certain domains of the state variable. Al-
though such information is not sufficient for finding
the real objective, it is still sufficient for detecting
life.

8. Discussion and conclusion

There has been demonstrated that a nonlinearity
of the evolution in the probabilistic space represents
a physical invariant of the living systems which
distinguishes them from inanimate ones. This prop-
erty results from the assumption that a living system,
by definition, possesses an ‘‘image of the self’’ and
interacts with it in order to approach the objective.
One should notice that the image has to represent
some sort of abstraction of the original system which
preserves only the most fundamental and predictable
properties such as expectation, variance, etc.; these
properties become available after ‘‘projecting’’ the
system from physical into probability space.

One of the most remarkable consequences of
nonlinear evolution of probability is the ability of
systems with reflection to predict future, and that
makes them more adaptable to uncertainties. A phe-

nomenological characteristic of such a property can
be captured in terms of correlation between present
and future, which eventually results in a spontaneous
ability to concentrate the motion within certain do-
mains of the state variable according to the objective.

The results discussed in this paper can be general-
ized in two different ways.

Ž .Firstly, the same invariant stands if Eq. 4 is
Ž . Ž . Ž .replaced by Eq. 38 , i.e., if the system 3 , 39 has

memory.
Secondly, instead of the single variable x, one

� 4can introduce a set x sx , PPP , x . Then each vari-l n
Ž . Ž . Ž .able x will be governed by Eqs. 3 , 4 and 6i

interacting with the other variables via the structured
Ž Ž ..noise compare with Eq. 19 :

� 4 � 4m sm x , f PPP etc. 57Ž .Ž .i i

if one assumes that any single-variable system pos-
sesses not only an image of the self, but images of
other systems as well.

It should be recalled that all the models discussed
in this paper do not include a capacity of self-repli-
cation, since they describe the behaviors on the
life-time scale while modelling self-replication re-
quires the time-scale of many generations. That is
why models of self-replications based upon the logis-
tic equation and its modifications are not coupled
with the behavioral models, and therefore, they can
be considered separately.
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