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Synchronized Chaotic Mode Hopping in DBR Lasers
with Delayed Opto-Electric Feedback

Yun Liu, Peter Davis, and Tahito Aida

Abstract—We propose and demonstrate a scheme for gener-
ating synchronized chaotic mode hopping in two wavelength-tun-
able lasers. Chaotic mode hopping resulting in large hops in wave-
length is induced by delayed feedback of an electrical signal pro-
portional to the intensity of the laser output which passes through
an optical filter. Mode hopping among up to 11 modes was exper-
imentally observed and optical signals in each wavelength band
show a different on–off modulation time series. Analysis of the time
series indicates high dimensionality. By using a unidirectional cou-
pling method that injects part of the output of one laser into an-
other, we can synchronize the chaotic mode hopping of two sepa-
rate lasers and obtain synchronized chaotic on–off modulation pat-
terns in multiple corresponding wavelength bands. The robustness
of the synchronization with respect to the parameter mismatch and
the effects of the coupling strength are investigated. The chaotic
mode hopping dynamics and synchronization are well described
with a numerical model that includes the characteristics of the laser
tuning and the filter transmission. A multiplexed data transmis-
sion scheme using chaotic carriers is proposed and experiments
demonstrate that multiple messages can be simultaneously recov-
ered when chaos synchronization is achieved.

Index Terms—Chaos, synchronization, mode hopping, optical
communications, secure data transmission, spread-spectrum.

I. INTRODUCTION

CHAOS synchronization, or synchronization of chaotic os-
cillators, provides a means to copy chaos, that is, to gen-

erate identical chaotic oscillations in different sites, by coupling
the oscillators with suitable link signals [1], [2]. The topic of
chaos synchronization has received considerable attention be-
cause of possible relevance to secure and robust communica-
tions [2], [3] and signal processing in biological systems [4],
[5]. In the context of communication, an information signal con-
taining a message is transmitted using a chaotic signal as a
broad-band carrier. A key problem is the synchronization of
a driven oscillator in a remote receiver by injecting a signal
sent from a master oscillator in a transmitter. This is important
when applying chaos to both secure communications and spec-
trum-spread systems where chaotic oscillations are used to mask
or multiplex information in signals.

Owing to its high dimension and high bandwidth, laser chaos
has been of particular interest in recent research on chaos syn-
chronization and related secure communications using chaos
[6]–[14]. Most of the laser chaos systems studied so far have
been implemented using a delayed-feedback configuration due
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to the simplicity of implementation and feasibility of gener-
ating high dimensional dynamics [15]. In achieving synchro-
nization of laser chaos in delayed-feedback systems, a unidi-
rectional coupling scheme has been widely employed. Abar-
banel and Kennel [16] numerically demonstrated the synchro-
nization of two Ikeda type ring cavities via the unidirectional
coupling. Recent experiments by Van Wiggeren and Roy [9]
and Goedgebueret al. [10] demonstrated the excellent perfor-
mance of secure optical data transmission based on chaos syn-
chronization using a particular unidirectional coupling method,
i.e., the open-loop receiver scheme, which was first proposed by
Volkovskii and Rulkov [17] in electronic systems.

Another attractive aspect of laser chaos is the possibility
of generating signals with multiple wavelengths. This is
potentially useful for communications systems using wave-
length-hopping spread spectrum [18] or systems combining
spread spectrum with wavelength multiplexing [19]. Chaotic
variation of wavelength has been observed and studied in
a number of different laser systems. Liu and Ohtsubo [20]
demonstrated chaotic oscillations in a laser diode with feed-
back from a Twyman–Green interferometer which nonlinearly
converts wavelength variation to injection current of the laser
diode itself. In their experiments, attention was given to inten-
sity variations and the accompanying wavelength oscillations
were limited to a few tens of gigahertz corresponding to a
subnanometer order. Recently, Largeret al. [21] proposed
a chaotic wavelength oscillation system that consists of a
wavelength-tunable laser and a birefringent plate between
crossed polarizers to generate a feedback signal which is a
nonlinear function of lasing wavelength. The variation range of
the wavelength is extended to a few subnanometers but is still
within the continuous tuning range of a single mode of the laser.
They further demonstrated synchronized chaotic oscillation in
two similar lasers using the unidirectional coupling scheme
[10].

In our previous work [22], we reported the synchronization
of chaotic mode hopping among multiple longitudinal modes
in two wavelength-tunable distributed Bragg reflector (DBR)
lasers. This paper extends the previous work and presents
detailed discussions, both experimentally and numerically, on
mode-hopping dynamics, its synchronization, and applications
to secure data transmission. This paper is organized as follows.
In the next section, we describe the setup of the experimental
system which mainly consists of a wavelength-tunable DBR
laser, an optical wavelength filter, and delayed opto-electric
feedback. Characteristics of some key elements including
the tuning characteristics of the light source and the optical
filter transmission function are described with experimental
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measurements. A numerical modeling of the system is briefly
described at the end of this section with the details left to
the Appendices. In Section III, chaotic mode hopping is
investigated from two aspects: the mode switching among
different modes and the optical output time series of a partic-
ular wavelength band. The key features of the mode hopping
are: 1) the laser lases in one mode at a time; 2) the laser hops
among different modes; and 3) the total optical power is nearly
constant. The deterministic nature of the dynamics has been
verified through the observation of bifurcations, dimensionality
analysis, and comparison with numerical simulations. In
Section IV, we show that it is possible to synchronize mode
hopping between two similar lasers by coupling light output
from the transmitter laser to the receiver laser. The robustness
of the synchronization with respect to parameter mismatches
and the effects of coupling strength are investigated with both
numerical calculations and experimental measurements. In
Section V, a form of multiplexed secure data transmission is
demonstrated using the chaotic signals as carriers which mask
the data. Based on the fact that, in the synchronized state, the
modulation pattern for each wavelength band coincides with
its counterpart in the receiver laser, we propose a multiplexed
data encoding scheme using multiple wavelength bands. We
experimentally demonstrate that two different pseudo-random
sequences can be successfully recovered in the receiver side
when the receiver laser is synchronized to the transmitter laser.
We summarize our work in Section VI.

II. EXPERIMENTAL SETUP AND MODELING

A. Experimental Setup

The experimental setup is shown schematically in Fig. 1. The
light source is a wavelength-tunable DBR laser diode (NEL-
KELD1571) with a fiber output. An optical isolator with 55-dB
isolation is employed within the laser package, which prevents
external optical feedback from the fiber facet or the coupler. The
wavelength of the laser can be tuned by control of the current
injected into the DBR section of the laser. The light output from
the DBR laser is transmitted through a fiber delay line and
then divided into two parts by a 90:10 fiber coupler C1. The
first port (90%) of C1 is connected to a polarization-independent
wavelength-tunable optical filter and the second port A (10%)
is used for laser output monitoring as described later. The light
output from the optical filter is further divided into two parts
by a 70:30 fiber coupler C2. The first port (70%) of C2 is con-
nected to a fast photo-receiver (New Focus 1611, 1 GHz band-
width) and the detected signal is amplified with an RF amplifier
(1.3 GHz bandwidth) before being fed back to drive the DBR
section of the laser diode. The second port (30%) of C2 is con-
nected to another photo-receiver (New Focus 1811, 125 MHz
bandwidth) and the detected signal is monitored with a digital
oscilloscope (LeCroy 9362, 750-MHz bandwidth). An optical
variable attenuator (OVA) is employed in the feedback loop to
adjust the feedback gain.

The light output from port A of the fiber coupler C1 is inves-
tigated in three ways, as shown in the inset of Fig. 1. First, the
spectral structure of the DBR laser is measured with an optical
spectrum analyzer (HP71450A, 0.1-nm resolution). Second, the

Fig. 1. Schematic diagram of experimental setup for a generation of chaotic
wavelength hopping.i : DBR current.i : phase control current.i : LD pump
injection current.i : offset DBR current.T : fiber delay line. C1, C2: fiber
couplers. P1, P2: photo-receivers. OVA: optical variable attenuator. AMP: RF
amplifier. Inset: spectral and intensity measurements of the laser output.

intensity fluctuation of the total laser output is detected with a
photo-receiver. Third, each longitudinal mode of the laser is se-
lected using a narrow-band optical filter (0.3-nm bandwidth and
center wavelength continuously tunable from 1540 to 1560 nm)
and its intensity variation is measured with a photo-receiver.

The DBR laser diode used in the experiment has a structure
consisting of three sections: an active section, a passive phase
control (PC) section, and a passive DBR section, which are, re-
spectively, driven by a pumping injection current, a PC injec-
tion current , and a DBR injection current . When there is no
injection in the passive sections, the laser lases at the threshold
of 8 mA and in a single mode at the wavelength of about 1554
nm. The side-mode suppression ratio is more than 45 dB, which
guarantees the single-mode behavior. As long asand are
constant values, the laser is always in a single-mode state regard-
less of the pumping level. When is increased, the laser wave-
length decreases monotonically with the mode hops. The mode
separation is measured to be 0.7 nm. The laser output power
weakly depends on the change of. Fig. 2(a) shows a mea-
sured wavelength tuning characteristic of the DBR laser. Here,

and are fixed at 30 and 0 mA, respectively. The character-
istic contains 11 segments corresponding to the 11 modes within
the 7.5-nm tuning range of the laser. The variation of the PC
injection current , on the other hand, causes a periodic wave-
length shift with the period equal to the mode separation 0.7 nm.

The 3-dB bandwidth of the commercially available op-
tical filter (Santec OTF-310) is about 1.4 nm and the center
wavelength is continuously tunable from 1540 to 1560 nm.
This wide-band optical filter is used to obtain a nonlinear



LIU et al.: SYNCHRONIZED CHAOTIC MODE HOPPING IN DBR LASERS WITH DELAYED OPTO-ELECTRIC FEEDBACK 339

(a)

(b)

Fig. 2. Characteristics of key components of the system. (a) Wavelength tuning
characteristic and accompanying power variations of the DBR laser used in the
experiment ati = 30 mA and i = 0. (b) Transmission characteristic of
optical filter measured at� = 1548 nm.

function between the light output and the wavelength over a
wide multinanometer range of wavelength variation, covering
multiple longitudinal modes of the laser. Fig. 2(b) shows the
measured transmission characteristic of the optical filter. The
light output of the optical filter is detected with a photo-receiver
and this electric signal is further amplified with an RF amplifier
to generate feedback signal. Finally, the feedback signal is
coupled to the DBR section of laser with a variable offset
current .

The response characteristics of the system are measured by
opening the loop at port B in Fig. 1, driving the DBR section
of the laser with an external modulation signal and measuring
the output signal of the amplifier. The frequency characteristic
of the open loop gain is obtained by changing the frequency of
the modulation signal. The result reveals that the 3-dB cut-off
frequency of the system is about 250 MHz, implying that the
response time of the whole system is about 4 ns. Although both
the detector and the amplifier have a bandwidth of more than 1
GHz, this frequency is mainly limited by the electrical charac-
teristics of the laser module, namely the bandwidth of the elec-
trical driving of the refractive index of the DBR section in the
laser.

B. Numerical Modeling

The dynamics of the above system can be understood from a
relatively simple dynamical model describing the relaxation of a

single slow variable, such as the tuning current of the DBR sec-
tion. The current injected into the DBR section determines the
refractive index and, thus, the effective reflectivity of the DBR.
This, in turn, determines the lasing mode, its wavelength, and
amplitude [23]–[25]. Since the pumping level is kept fixed,
the carrier density in the active section of the laser can be re-
garded as constant. The relaxation of the optical field in the
laser, including mode transitions, due to changes in the refrac-
tive index in the DBR section is much faster than the response
of the electrical feedback driving the refractive index changes,
so we consider the lasing state adiabatically follows the change
of the electrical feedback signal. Therefore, we can describe the
dynamics of the chaotic mode hopping in terms of the relaxation
of a single slow variable such as the tuning current with delayed
electrical feedback.

The dynamics of chaotic mode hopping can be mathemat-
ically modeled using a delay-differential equation for the re-
laxation of the tuning current with a single nonlinear feedback
function representing the compounded effects of the variation of
laser output wavelength and amplitude with refractive index, the
optical filter transmission characteristics, and the dependence
of electrical feedback signal on the optical intensity. The details
of the modeling are described in the Appendices. Here, we list
only the main results showing how these variables are related
with each other.

In Appendix A, we show that the wavelength and output
power of the DBR laser are functions of and . For
simplicity, we denote them as

(1)

(2)

where and represent, respectively, variation functions of
the wavelength and the power of the DBR laser. We have as-
sumed constant values for and . The filter output of
the optical filter is described in terms ofand as

(3)

where is the time delay in the loop, and are
parameters of the filter. The deduction of the above equation and
the definition of parameters are given in Appendix B. The filter
output is converted to the feedback signal through the photo-
receiver and the RF amplifier and, finally, the feedback signal
contributes to the DBR section injection current as

(4)

where
feedback gain;
response time of the feedback circuit;
offset of the DBR injection current.

We further rewrite the equation of the mode-hopping gener-
ation system as

(5)
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(6)

Here, is proportional to the optical filter output and is re-
garded as the output signal as shown in Fig. 1. We did not con-
sider noise effects in the modeling. As shown in the following
sections, the modeling agrees well with experimental results on
mode hopping dynamics and its synchronization behavior de-
spite several assumptions made.

III. M ODE-HOPPINGDYNAMICS

In this section, we first describe the mode-hopping dynamics
which occur when there is strong feedback with large optical
bandwidth, and delay which is long compared with the response
time of the wavelength tuning of the laser. For the open loop
or the weak feedback condition, the DBR laser operates in a
single mode with the wavelength uniquely determined by
and and the corresponding system outputshows a con-
stant level. When the feedback gain exceeds a certain critical
level, the system output becomes unstable. There are two types
of wavelength dynamics, depending on the feedback bandwidth
and gain. The first type is the continuous wavelength variation
of one mode, as was investigated in previous works [20], [21].
The second type is large wavelength variations with mode hops.
Fig. 3 shows experimentally the measured open-loop charac-
teristics corresponding to the above two types of wavelength
dynamics. Here, and are, respectively, the modulation
signal of the DBR injection current and the output signal of
the RF amplifier in the feedback loop. When the DBR injec-
tion current is modulated within a small range, the wavelength
varies within one mode and we observe a continuous nonlinear
curve as shown in Fig. 3(a). On the other hand, when the wave-
length variation exceeds the mode separation, mode hopping oc-
curs and one observes a piecewise nonlinear curve as shown in
Fig. 3(b). In this paper, we consider the second type of wave-
length dynamics. In the following experiments, the time delay

introduced by the fiber line is 660 ns, and the response time
of the system is fixed at about 4 ns.
The wavelength dynamics are investigated with two different

measurements. First, the wavelength variation is converted to
the light intensity variation through the optical filter and the light
output of the filter is detected with a photo-receiver. The second
measurement is to monitor the lasing wavelength with an optical
spectrum analyzer to investigate the number of modes involved
in mode hopping.

A. Bifurcation to Chaos

Bifurcation scenarios leading to the onset of chaos can be ob-
served by varying the offset DBR current, the center wave-
length of the filter , or the attenuation factor of the feedback
loop . The oscillation waveform and bifurcation route show
quite different features from the case with continuous wave-
length variations [20], [21], due to the abrupt change of the
lasing wavelength of the DBR laser when tuning. Fig. 4 shows
a period doubling bifurcation observed by varying. Other pa-
rameters are mA, , and mA. Fig. 4(a)

(a)

(b)

Fig. 3. Measured open-loop characteristics for different wavelength variation
ranges. (a) Continuous nonlinear curve when the wavelength variation
is restricted within one mode. (b) Piecewise continuous curve when the
wavelength variation involves mode hops.V : the modulation signal of DBR
injection current.V : output signal of the feedback measured at Port B in
Fig. 1.

shows a period-2 waveform at nm showing a pe-
riodic switch between two states with the period of about.
Fig. 4(b) shows a period-4 waveform at nm after
a period-doubling bifurcation. Note that, although the period
is doubled to , the number of intensity levels seems to be
three, corresponding to three lasing modes. The onset of square
wave oscillation of period , followed by period-doubling bi-
furcations and chaos, is typical of nonlinear feedback systems
with long delay, such as described by delay-differential equa-
tions like (5) with a convex nonlinear feedback function and
with large effective delay [15]. Note that, although
the signal seems almost constant over oneinterval, in the
next interval it can be split into two levels. This is attributed
to the discontinuous nature of the feedback as seen in the piece-
wise open-loop characteristic [Fig. 3(b)]. Such a splitting phe-
nomenon shows a significant difference from previous systems
[20], [21] with continuous wavelength variations. We did not ob-
serve further bifurcated periodic oscillations whenis further
decreased. Instead, the periodic oscillation changes to higher
harmonic oscillations and the oscillation frequency increases
rapidly as is reduced. At nm, we observed ir-
regular high-frequency oscillations as shown in Fig. 4(c). The
time scale of (c) is different from those of (a) and (b). There is
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Fig. 4. Bifurcation to chaos: changes in oscillations of the output optical power
with a change in the center wavelength of the optical filter. Optical power is
measured at photodiode P2 in Fig. 1. (a) Period-2 waveform at� = 1547:5

nm. (b) Period-4 waveform at� = 1547:1 nm. (c) Chaotic waveform at� =

1547:0 nm. Note that the time scale in (c) is different from that in (a) or (b).
The DBR laser is operated ati = 50 mA, i = 0, andi = 30 mA.

a coexistence of high-frequency oscillations, i.e., for the same
parameter, depending on initial conditions, different high-fre-
quency oscillations can be excited. The coexistence of high-fre-
quency oscillations is expected due to the large effective time
delay , as described in [15].

Fig. 5 shows optical spectra corresponding to Fig. 4. Since the
integration time of the optical spectrum analyzer is 20 ms, what
we observed is an average within such a time interval. From
this figure, one finds that the number of modes involved in the
variations increased from two (period-2) to three (period-4), and
finally to four (chaos).

It can be seen that different numbers of modes can be involved
in chaotic dynamics depending on parameters such as the offset
of the DBR injection current, the center frequency of the optical
filter, and the feedback gain. Fig. 6 shows an example of an in-
crease in the number of active modes, due to a change of the
current offset from 50 mA to 20 mA. As can be seen from the
tuning characteristic of Fig. 2(a), for lower offset of the tuning
current, the same variation of the feedback current will result in
hops over more modes. Fig. 6(a) shows an example of ten modes
being active during the average time of 20 ms. Fig. 6(b) plots

Fig. 5. Optical spectra corresponding to Fig. 4: (a) two-mode; (b) three-mode;
and (c) four-mode spectrum.

a portion of its corresponding time series. The corresponding
RF spectrum shows a broad-band distribution. We analyzed the
time series by an embedding method (using a public domain
nonlinear time series analyzing software package [26]). Em-
bedding was done for time series consisting of 120 000 exper-
imental data points acquired at the sampling rate of 1.25 GS/s.
Fig. 6(c) shows the fraction of false-nearest neighbors (FNN)
versus the embedding dimension for the time series from which
the series in Fig. 6(b) was taken. From Fig. 6(c), the optimal
embedding dimension was estimated to be 9. Using this embed-
ding dimension, we calculated the Lyapunov exponents to be
0.017, 0.011, 0.006, 0.002,0.002 0.007 0.014 0.024,
and 0.057. The Lyapunov dimension was computed to be 7.6
from the above data, which indicates that the wavelength dy-
namics is high-dimensional chaos. The dynamics of a nonlinear
system with large delay can be very complicated in general (see,
for example, [15], [20], and [21]), with a complicated depen-
dence on parameters and initial conditions, and it is not our aim
in this paper to describe the dynamics in detail. Rather, here we
have just presented a few examples to show that in this system
we can obtain high-frequency, high-dimensional chaotic oscil-
lations involving multiple laser modes, and that they can typi-
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Fig. 6. Chaotic dynamics involving ten modes. Parameters arei = 20 mA, i = 0, andi = 30 mA. (a) Optical spectrum. (b) Time series of the filter output
signal. (c) Faction of FNNs versus the embedding dimension using measured data.

cally appear after bifurcation from stable periodic square-wave
oscillations.

B. Chaotic Mode-Hopping

Due to the long averaging time, the spectrum analyzer
measurements such as in Figs. 5 and 6 show the modes
which are active in the chaotic dynamics over a long time
interval but they do not show how the laser hops among
modes. To see how the laser hops among modes and to
see the variations of individual modes, we used multiple
narrow-band (bandwidth 0.3 nm) measurements of the output
from the laser. Measurements were made at the position
shown in inset A in the schematic of the experimental
setup in Fig. 1. In Fig. 7, we present an example of ob-
servation of chaos involving three modes which shows the
key features of hopping among multiple modes. With the
particular oscilloscope that we used, we were able to record
up to four time series simultaneously. In Fig. 7(a), the
top trace shows the variation of the laser output intensity,
and three other traces correspond to three different modes
whose center wavelengths are 1547.6, 1548.4, and 1549.1
nm, respectively. All of these traces are plotted with the
same scale. The time series show that individual modes
are on–off intensity modulated with a chaotic modulation
pattern. Different modes have different intensity modulation
patterns and, at any specific time, most of the lasing energy
is concentrated in just one of the three modes. Note that this
feature of abrupt hopping in the wavelength band due to
hopping among longitudinal modes of the laser is different

from the behavior described in the previous works [20],
[21], where there was variation of the wavelength of only
a single mode. Another feature of the behavior that can be
observed in Fig. 7(a) is that the total power output from
the laser shows only small fluctuations during the chaotic
mode hopping. This is due to the characteristic of the laser,
shown in Fig. 2(a), where the output power is only weakly
dependent on the lasing mode, so the laser power can stay
nearly constant even if the lasing mode changes due to a
large change in the tuning current.

In Fig. 7(b), we show a correlation plot of the time series of
neighboring modes. The plot shows that, when intensity of one
mode is high, the intensity of the other is low. This is due to the
fact that the laser tends to lase in a single mode. On the other
hand, it also shows that when the intensity of one mode is low
it cannot be said whether the intensity of the other mode will be
high or low. In this sense, the variations of the modes are not
simply correlated. The example of observation of three modes
shows the key features of hopping among multiple modes. Due
to the limitation on the number of simultaneous traces that we
could take with our oscilloscope, we were not able to make si-
multaneous measurements of total power and all the modes in-
volved in the hopping for the cases of more than three modes,
such as the case of four modes in Fig. 5(c), and ten modes in
6(a). However, plots like 7(b) for pairs of modes showed that
the laser typically lases in just one mode at a time, regardless
of the number of modes involved in the hopping. Lasing in one
mode at a time is expected from the characteristics of the laser
for a sufficiently slow variation of the tuning current. Multimode
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(a)

(b)

Fig. 7. Mode dynamics showing chaotic mode hopping ati = 30 mA, i =

0, andi = 50 mA, and� = 1549 nm. (a) Time series of each individual
mode and total laser output. (b)X–Y plot of time series between neighboring
modes.

lasing is only expected to be a transient behavior during the hop
from one mode to another.

C. Numerical Simulation of Wavelength Hopping

It is possible to reproduce the typical features of the dynamics
observed in the experiment by numerical simulations using the
model introduced in Section II. Here we mean to show that
wavelength hopping can be obtained with a deterministic model.
It is not our purpose here to reproduce the details of the dy-
namics. To get identical waveforms for bifurcated solutions re-
quires very precise matching of the model functions and pa-
rameters. However, the general scenario of onset of high-fre-
quency multimode mode-hopping chaos after bifurcation from
stable period square-wave oscillations is easily reproduced
in the simulations. We set the value ofto be 4 ns and that
of to be 600 ns. Other parameter values are either mea-
sured or determined from the modeling based on the optimum
matching of DBR tuning and filter transmission characteristics
between modeling results and measurements. Table I shows pa-
rameter values used in the simulations. Fig. 8 shows an ex-
ample of the simulation results of the bifurcation route versus
the center wavelength of the optical filter. Fig. 8(a)–(c)shows,
respectively, the wavelength variations of period-2, period-4,

Fig. 8. Simulations of mode hopping. Parameters used areT =� = 150; i =

50mA, i = 0; � = 100, andi = 3:75i wherei is the threshold injection
current. (a) Period-2 waveform at� = 1547:8 nm. (b) Period-4 waveform at
� = 1547:5 nm. (c) Chaotic wavelength hopping waveform at� = 1547:4
nm. Note that the time scale in (c) is different from that in (a) or (b).

and chaos. Here, the corresponding values ofare 1547.8,
1547.5, and 1547.4 nm, respectively. Other parameters are fixed
at mA, , and where
is the threshold injection current. It is found that the number
of modes involved in the mode hopping increased from 2 at
the period-2 state to 4 for both period-4 and chaos states. In
Fig. 8(c), one observes a fast chaotic wavelength hopping time
series where no periodicity could be identified. Similar to the
experiments, by appropriately setting parameters, we can ob-
tain either periodic or chaotic mode hopping among up to 11
modes in the numerical simulations. Especially, in the periodic
mode-hopping state, we also observed that the signal over one

interval might be split into two or more levels corresponding
to different longitudinal modes of the DBR laser.

We give the following remarks by summarizing experimental
and numerical results.

1) Periodic or chaotic mode hopping among up to the total
11 modes of the DBR laser have been observed.

2) The output signal of the fundamental periodic mode hop-
ping is characterized by stable period square-wave
oscillations.

The number of modes involved in the fundamental pe-
riod-2 mode hopping can be . In the latter case, the
signal over one interval can be split into two or more
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TABLE I
PARAMETER VALUES USED IN THE NUMERICAL CALCULATIONS

Fig. 9. Experimental setup for chaos synchronization. ODL: optical delay line.
": coupling coefficient. Other notations are the same as in Fig. 1.

levels corresponding to different longitudinal modes of
the DBR laser. Such a splitting phenomenon is due to the
discontinuous nature of the nonlinear function [Fig. 3(a)].

3) Chaotic oscillations can be observed when three or more
modes are involved in the mode hopping.

4) The first order of period-doubling bifurcation, period-2 to
period-4, was observed. The fundamental periodic square
waves coexists with high-frequency oscillations due to a
large effective delay.

IV. SYNCHRONIZATION OF CHAOTIC MODE HOPPING

In this section, we show the key result of this work. We have
been able to obtain synchronized chaotic mode hopping in two
lasers by coupling the output of one into the other [22]. Here,
we describe the synchronization of chaotic mode hopping that
we achieved in two similar lasers with unidirectional coupling,
in which part of the light from the transmitter laser system is
coupled to the receiver laser system. The experimental setup is
shown in Fig. 9. Compared with Fig. 1, a few new components
are introduced in the system for synchronization. The time delay
in each system is adjusted by variable optical delay lines (ODL1,
ODL2) in the feedback loop. This can match delays between
transmitter and receiver systems within an accuracy of 10 ps.
The intensity of the synchronization signal sent from the trans-
mitter is adjusted with an attenuator (OVA3).

A. Numerical Investigations

We start with simulations using the model introduced earlier
to check the tolerance of the synchronization with respect to pa-
rameter mismatches between the transmitter and receiver sys-
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(a)

(b)

Fig. 10. Simulation of synchronization. Parameters areT =� = 150; i = 20

mA, i = 0; i = 3:75i ,� = 1550nm, and� = 100. A relative parameter
mismatch of 2% was assumed between the transmitter and receiver.

tems. From (5) and (6), one can rewrite the equations for the
transmitter and the receiver systems shown in Fig. 9 as

(7a)

(7b)

(8a)

(8b)

Here, we rewrite the nonlinear function in (6) as
to include the effects of parameters. The

superscripts and denote variables and parameters of
the transmitter and receiver systems, respectively, andis
the transmission time of the light from the transmitter to the
receiver. We assumed the identical functionand values of

, and for both the transmitter and the receiver
systems. The difference between the transmitter and the
receiver systems is expressed by values of , and
. We do not consider the effect of noise in transmission.

denotes the coupling strength and corresponds to the
noncoupled state while corresponds to the open-loop
receiver system in which the feedback signal of the receiver
system is completely replaced by the signal sent from the
transmitter. The synchronization state corresponds to
or . In this experiment, we measure the difference
between and and call this the synchronization error.

Fig. 10 shows an example of the synchronized state obtained
from numerical simulations. Here, the coupling coefficientis
set to be 1.0, which means an open-loop receiver system. The
parameters , and in the receiver system were as-
sumed to be 2% larger than those in the transmitter. To make a
comparison with experimental results, we take the light output
intensity variations from the optical filters as the output signals
and average signals over the detector bandwidth of 125 MHz.
The upper and lower traces in Fig. 10(a) represent the signals
of the transmitter and receiver, respectively. Fig. 10(b) shows
the correlation plot between two signals. Clearly, a remarkable
synchronization is achieved, even with 2% parameter mismatch.
The performance of the synchronization is evaluated using a
synchronization error which is defined as

(9)

where denotes the rms average function. In Fig. 10,is esti-
mated to be about 2%.

B. Experimental Results of Synchronization

Before coupling the receiver with the transmitter, the pa-
rameters of the receiver system are adjusted so that the optical
spectrum of the receiver laser and output waveform (amplitude,
main frequency) are similar to those of the transmitter. Then,
when coupling the two systems, we tune the feedback gain
of the receiver system with the fiber attenuator OVA2 shown
in Fig. 9 and the synchronization signal level with another
attenuator OVA3 so that the total feedback strength (feedback
from the receiver laser itself plus the transmitted signal from
the transmitter laser) is at the same level as before coupling.
The receiver output signal is taken right after the optical
filter and compared with the transmitter output signal .
Meanwhile, the light output of a particular mode in the receiver

can also be measured with a narrow-band optical filter
(0.3 nm) and compared with the corresponding signal
in the transmitter. The time relationship between and
or between and are adjusted with variable
delay lines ODL3 and ODL4, respectively.

Fig. 11(a) shows waveforms of the transmitter and receiver
system output signals in the synchronized state. The correla-
tion plot is shown in Fig. 11(b). In Fig. 11, the synchronization
error is estimated to be 2.1%. Note that the synchronization
between transmitter and receiver outputs is well recognized in
Fig. 11 and the correlation distribution in Fig. 11(b) is similar
to the numerical result in Fig. 10(b).

When the laser undergoes chaotic mode hopping, each mode
exhibits a different modulation pattern. Here, we demonstrate
that the waveforms of pairs of modes in two lasers show iden-
tical waveforms when two lasers are synchronized. We take a
seven-mode case as a typical example. Fig. 12(a) shows the
time-averaged optical spectrum of the laser in the chaotic mode-
hopping state. In both Fig. 12(b) and (c), the top two wave-
forms correspond, respectively, to the total power of the light
output from the transmitter and receiver systems (measured at
the output of the wide-band optical filter), while the bottom
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(a)

(b)

Fig. 11. Experimental observation of synchronization. (a) Waveforms of
transmitter and receiver outputs. (b) Correlation plot. Parameters arei = 20

mA, i = 0; i = 30 mA, and� = 1550 nm.

two show variations of the light power at one particular wave-
length in the transmitter and receiver lasers (measured as shown
in inset A of Fig. 1). Specifically, the bottom waveforms in
Fig. 12(b) show the time series of the wavelength
nm, which corresponds to the first peak in Fig. 12(a), while those
in Fig. 12(c) show the time series of nm, the fourth
peak in Fig. 12(a). In both cases, we can see excellent coin-
cidence between transmitter and receiver outputs. Outputs for
other modes were also checked and synchronization between all
the corresponding modes was observed. We have also achieved
chaos synchronization when mode hopping involves other mode
numbers. In each case, we also observed the synchronization be-
tween modulation patterns of each specific mode pair.

C. Effects of Parameter Mismatch

The influence of the parameter mismatches on the synchro-
nization was studied both numerically and experimentally.
First, we numerically examined the influence of all parameters

, and . It is found that and have much
stronger (usually ten times stronger) effects than the other
parameters. From (7) and (8), we know that a change of
will linearly affect and, thus, the lasing wavelength. A
change in , on the other hand, results in a direct shift of the
operation point and, since the mode separation of the laser is

(a)

(b)

(c)

Fig. 12. Waveforms of synchronized transmitter and receiver systems ati =

15 mA, i = 0; i = 30 mA, and� = 1550 nm. All traces are on the same
relative scale. (a) Optical spectrum showing seven modes involved in the mode
hopping. (b) Waveforms of system output and mode 1 (� = 1548:2 nm). (c)
Waveforms of system output and mode 4 (� = 1550:5 nm).

only 0.7 nm, even a subnanometer change inmay result in a
dramatic difference in dynamics. Fig. 13 shows the numerically
calculated results of the influences of and on the
synchronization error. Here, the coupling coefficientis set to
be 1, i.e., an open-loop receiver is assumed. Other parameters
are assumed to be identical for the transmitter and receiver
systems. From Fig. 13(a), it is found that the synchronization
error varies as a linear function of , and the slope

is further verified to be inversely dependent on the
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(a)

(b)

Fig. 13. Dependence of synchronization error on key parameter mismatches
(simulations). Solid dots are calculated results and lines are fitted curves with
E / �i in (a) andE / �� in (b). Parameters are the same as those in
Fig. 10.

(a)

(b)

Fig. 14. Dependence of synchronization error on key parameter mismatches
(experiments). Solid dots are experimentally measured results and lines are
fitted curves withE / �i in (a) andE / �� in (b). Parameters are the
same as those in Fig. 11.

Fig. 15. Effect of coupling coefficient on synchronization error calculated
from simulations. Solid line: the largest conditional Lyapunov exponent of
the receiver system� . White circles: synchronization error without
parameter mismatch. Black circles: synchronization error with 2% parameter
mismatch. Parameters are the same as those in Fig. 10.

Fig. 16. Effect of coupling coefficient on synchronization error measured from
experiment." is changed by appropriately adjusting variable attenuators OVA2
and OVA3 in Fig. 8. Parameters are the same as those in Fig. 11.

value of . On the other hand, when is changed, increases
as a square function of , as shown in Fig. 13(b). It is found
that negative and positive parameter mismatches have almost
symmetrical influences on the synchronization error.

The same parameter mismatch dependencies have also been
verified in experiments. Fig. 14 shows the experimental result of
the dependency of on [Fig. 14(a)] and [Fig. 14(b)].
In experiments, we also observed that the negative parameter
mismatch has effects on the synchronization performance sim-
ilar to those of the positive mismatch. There is a pedestal ofin
the experimental results due to the mismatch of other parameters
and additive noise in experiment. Note that fairly good correla-
tion between transmitter and receiver outputs can be recognized
in experiments even with the synchronization error as large as
10%. We stress that the synchronization is very stable even with
a few percent of parameter mismatch. Actually, under the op-
timal match achievable experimentally, the stable synchroniza-
tion could last as long as several tens of hours!

D. Dependence on Coupling Strength

The effects of the coupling strength on the synchronization
performance are important in understanding the mechanism of
synchronization via unidirectional coupling. Previously, Abar-
banel and Kennel [16] numerically investigated effects of the
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Fig. 17. Schematics of (a) message encoding and (b) decoding. EOM: electrooptic modulator. OVA: optical variable attenuator. LPF: low-pass filter.m: encoded
data signal.~m: recovered signal.

coupling coefficient on the mean synchronization time in the
Ikeda ring laser model. Meanwhile, experiments on synchro-
nizations in delayed-feedback systems have concentrated on the
open-loop receiver scheme [9], [10], [12], [14]. Here, we inves-
tigate the dependence of the synchronization on coupling coef-
ficient using both numerical and experimental results. Fig. 15
shows the variation of the synchronizationversus the cou-
pling coefficient obtained from the numerical simulations.
In order to make a suitable comparison with experiments, we
calculated two sets of . White circles represent calculated
without parameter mismatch and black dots representcalcu-
lated with the assumption that parameters , and in
the receiver are 2% larger than those in transmitter. We also cal-
culated the largest conditional Lyapunov exponent [2], [16] of
the receiver system for reference. The polarity of
reflects the stability of the receiver chaotic oscillator when no
signal is sent from the transmitter. Bothand are com-
puted over an ensemble of initial conditions. Two significant
conclusions are drawn from Fig. 15.

1) When there is no parameter mismatch,converges to
zero in the region of negative , i.e., a complete
locking of the receiver chaotic oscillator to the transmitter
chaotic oscillator occurs in the parameter region of nega-
tive .

2) When there exists a parameter mismatch,changes little
in the region but shows a drastic increase near
the boundary and shoots up to several tens of
percent after .

We further verify the dependence of the synchronization per-
formance on the coupling strength in experiments. To vary the
coupling coefficient, we need to adjust attenuators OVA2 and
OVA3 accordingly to keep the constant oscillation magnitude
of the receiver output. Fig. 16 shows the synchronization error
as a function of measured in experiments. Although details in
Fig. 16 and Fig. 15 require further studies, it can be recognized
that the two results (Fig. 16 and black dots in Fig. 15) are consis-
tent regarding the variation of versus , i.e., does not show
much change for large values ofbut exhibits a dramatic and
abrupt increase whenbecomes smaller than a critical value,
indicating the collapse of synchronization.

(a)

(b)

Fig. 18. Experimental results of message transmission and recovery based
on chaos synchronization. (a) Upper trace: a portion of RZ pseudo-random
sequence encoded at the transmitter. Lower trace: signal recovered at
the receiver using the synchronized signal. (b) Upper trace: encoded
pseudo-random sequence. Lower trace: signal recovered by directly integrating
the transmitted signal.

V. DATA TRANSMISSION WITHCHAOS SYNCHRONIZATION

As an example of an application of chaos synchronization, we
demonstrate data transmission using chaotic signals as masking
carriers. An optical data signal is produced by modulating a
light source with a pseudo-random sequence. The optical data
signal was injected into the coupler C0 as shown in Fig. 17(a). In
the receiver system, the chaotic signal is recovered based on the
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Fig. 19. Schematic of message decoding circuit in the receiver system for
two-wavelength data transmission.m ; m : data signals encoded on� and
� , respectively.~m ; ~m : recovered signals ofm andm .

synchronization between two lasers. By subtracting the recov-
ered signal from the transmitted signal, we get an error signal
that, for perfect synchronization, is proportional to the encoded
message. In the presence of imperfect synchronization due to
parameter mismatch and noise, the encoded message can be re-
covered after an appropriate integration of the error signal, as
shown in Fig. 17(b). The minimum relative intensity of the in-
jected optical data signal depends on both the synchronization
error and the integration time. In our experimental scheme, we
found that a data signal with relative intensity of 1% could be
successfully masked and recovered at a bit rate of 1 Mbit/s.

Fig. 18 shows an example of message transmission and
recovery in the experiment at a bit rate of 0.5 Mbits/s. In
Fig. 18(a), the upper trace shows a portion of the return-to-zero
(RZ) pseudo-random sequence encoded at the transmitter
system, and the lower trace shows the signal recovered at the
receiver system. It can be recognized that the peak positions of
the recovered signal coincide well with the encoded pulses. We
verified the effectiveness of the masking of the data signal by
directly filtering the transmitted signal to show that
the message cannot be simply obtained from the transmitted
signal alone. A result is shown in Fig. 18(b). Here, the upper
trace shows another RZ data sequence, and the lower trace
shows the result of direct integration of the transmitted signal.
There is no noticeable correspondence between the two signals.
This demonstrates that the encoded message can only be
recovered using the synchronized chaotic carrier signal
regenerated in the receiver system.

Since each mode has a different on–off modulation pattern,
it is also possible to use each wavelength as a separate carrier
and encode a different message on each carrier. We demonstrate
such data multiplexing in our setup. To this end, we inject dif-
ferent pseudo-random data sequences at different wavelengths
at the transmitter side. The wavelength of the injection light is
chosen to match that of the assigned mode in the mode-hop-
ping laser. At the receiver side, for each data carrier wavelength,
we simultaneously filter out the transmitted signal and the re-
ceiver outputs with a pair of narrow band filters set at the same
center wavelength. Multiple error signals can be extracted by
subtracting the corresponding pairs of the detected signals. In
this way, one can simultaneously mask multiple messages using
a single mode-hopping laser.

Fig. 19 shows a schematic showing how to simultaneously re-
cover two messages encoded in two different wavelength bands.

(a)

(b)

Fig. 20. Experimental result of multiplexed data transmission based on
synchronization of seven-mode chaotic mode hopping (Fig. 11). (a) Dashed
line: a portion of NRZ pseudo-random sequence encoded on wavelength
� = 1550:5 nm. Solid line: corresponding recovered signal at the receiver. (b)
Dashed line: a portion of RZ pseudo-random sequence encoded on wavelength
� = 1551:2 nm. Solid line: corresponding recovered signal at the receiver.

An example of two-channel secure data transmission based on
the synchronization of seven-mode hopping (Fig. 12) is shown
in Fig. 20. Two wavelengths nm and
nm, which correspond to the fourth and fifth peaks in Fig. 12(a),
respectively, are used to encode two different messages. In this
experiment, we simultaneously encode a NRZ pseudo-random
sequence on and a RZ pseudo-random sequence
on . Both sequences have the same bit rate of 0.5 Mbits/s.
Fig. 20(a) shows the data recovery onand Fig. 20(b) shows
that on . In each figure, the dashed line shows a portion of
the pseudo-random sequence encoded at the transmitter while
the solid line shows the corresponding recovered signal at the
receiver. We find both messages are well recovered. It is noted
that adding the second message does not degrade the recovery
of the first one compared with the single message case. This ex-
perimental scheme can be expanded to multiplex messages on
more wavelength bands.

VI. CONCLUSION

We have demonstrated a scheme in which chaotic mode hop-
ping can be generated, synchronized and used for multiplexed
data transmission. The chaotic mode hopping among multiple
longitudinal modes of a laser can be generated in a delayed
feedback system which consists of a wavelength tunable DBR
laser and an optical filter. When chaotic mode hopping occurs,
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each mode exhibits a different on–off intensity oscillation pat-
tern while the total laser output intensity shows a nearly con-
stant level. The chaotic nature of the mode-hopping dynamics
was characterized by the observation of bifurcation from peri-
odic oscillations and dimensionality analysis. Numerical sim-
ulation of a deterministic model showed similar bifurcation to
chaotic mode hopping, and accordingly verified the underlying
determinism in the observed phenomenon.

Synchronization of mode hopping between the transmitter
and receiver lasers has been achieved by a unidirectional
coupling of part of the light output from the transmitter
laser to the receiver laser. Synchronization was observed
between the on–off intensity modulation patterns of each pair
of corresponding longitudinal laser modes. Evaluations on
synchronization performance have been performed and the
results indicate the synchronization can be achieved for a large
parameter range and with a very good robustness.

Synchronization of chaotic mode-hopping stimulates us to
consider the possibilities of secure communication or spectrum
spreading applications using chaotic signals. In this paper,
we have proposed a multiplexed secure data transmission
scheme using the simultaneous synchronization of multiple
time-varying signals at different wavelengths. A preliminary
experiment on two-channel data transmission and decoding has
been successfully demonstrated. It is noted that the limitations
on the number of modes, the mode separation, and the hopping
speed in the synchronized chaotic wavelength hopping scheme
proposed in this paper are only due to the specifications of
the laser devices and can be improved with the development
of components. Considering its simple implementation and
excellent synchronization robustness, this synchronized chaotic
wavelength hopping scheme is very promising for applications
to data transmission using chaos.

APPENDIX A
MODELING OF TUNING CHARACTERISTIC OF THE

DBR LASER DIODE

The lasing condition of a DBR laser diode with three sections
is written as [23]

(A1)

where is the effective reflectivity of the DBR section in-
cluding the reflectivity at the right facet and is the facet re-
flectivity at the left end of the laser. The complex wavenumbers
for the three sections are given by

(A2)

or (A3)

where is the net gain in the active section with
being the material gain and the internal absorption. are

the waveguide absorptions of the passive sections. can be
explicitly expressed as [24], [25]

(A4)

with and
where is the coupling coefficient of the DBR

structure, is the refractive index in DBR section without
injection, and denotes the Bragg wavelength.

Usually, the dynamics of the laser diode is described by a
group of rate equations involving the optical power, phase, and
carrier density in the active region. Since the pumping level is
kept fixed, the carrier density in the active section of the laser
can be regarded as constant. Furthermore, the relaxation of the
optical field in the laser, including the mode transition due to
changes of the refractive index in the DBR section, are assumed
to be fast enough compared to the response of the electrical feed-
back driving the refractive index changes, so we can assume
the lasing state adiabatically follows the change of the electrical
feedback signal. Therefore, we only consider the stationary state
in the rate equation. The stationary states of the threshold car-
rier density , the injection current density , and the output
power of the laser are given by the following three equations,
respectively [27]:

(A5)

(A6)

(A7)

where
linear recombination time;
bimolecular recombination coefficient;
Auger recombination coefficient;
confinement factor in the active region;
volume of the active section;
group velocity of light;
slope of gain-carrier density relation;
carrier density at the point of zero gain;
emitted light power calculated from the uniform photon
density along the active section.

The dependencies of the lasing condition onand can be
treated in similar way and here we only describe the effect of.
When is changed, the carrier density is changed according to

(A8)

where
electron charge;
volume of the DBR section;
corresponding Auger recombination coefficient.

We have made the assumption that the total rate of spontaneous
recombination per unit volume is due to nonradiative Auger pro-
cesses. The change of the carrier density results in changes of
the refractive index, the loss, and the Bragg wavelength of the
DBR structure like [23]

(A9)

(A10)

(A11)
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Fig. 21. Calculated result of tuning characteristics of DBR laser diode based
on the numerical model.i = 0 andi = 3:75i wherei is the threshold
injection current, other parameter values are listed in Table I.

where is the confinement factor in the DBR region, and
and are, respectively, the refractive index and absorption
factor at . The calculations are performed as follows.
When the DBR injection current is changed, we first calcu-
late variations of the refractive index, the absorption, and the
Bragg wavelength according to (A8)–(A11). Next we calculate
the DBR reflectivity from (A4) and obtain multiple modes from
(A1) using . Then, we chose the one that results in the
lowest threshold ( or ) as the lasing mode and calculated
its wavelength and power. The dependence of the wavelength
and optical power on is implicitly expressed in (1) and (2).
Fig. 21 shows a typical example of the tuning characteristic of
the DBR laser calculated from the above modeling. Compared
with Fig. 2(a), one can see a good agreement between the cal-
culation result and the measurement. We matched Fig. 2(a) with
the numerical model to the precision of a few percent.

APPENDIX B
MODELING OF OPTICAL WAVELENGTH FILTER

The optical filter used in this experiment has a Fabry–Perot
(FP) etalon structure and its transmission function can be written
as [28]

(B1)

with

(B2)

Here, and are, respectively, the index and thickness of etalon,
is the internal angle of incidence, andis the intensity reflec-

tivity. Using the free spectral range (FSR) of the FP etalon
and the resolution of the etalon , one

easily arrives at

(B3)

where is the finesse of the etalon, is
the amplitude related with the transmission loss of the filter,
and and are the center wavelength and the
wavelength bandwidth of the filter, respectively. We fitted the
measured filter transmission characteristics shown in Fig. 2(b)
with (B3) and found they agree with each other strikingly well.
In fact, the standard error between the measurement of the filter
used in this experiment and the calculation result based on the
numerical model is as low as 0.6%.
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