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Abstract—A scattering system is commonly called irregular or chaotic if it has a scattering function
which is singular on a fractal. The only previously known mechanism generating such an irregular
scattering function rests on the existence of a chaotic bound set in the closure of the set of asymptotically
free trajectories. Therefore, it has been generally assumed that the measurement of an irregular scattering
function implies the existence of a chaotic bound dynamics which is responsible for the fractal set
of singularities. In this paper a counterexample is constructed yielding an integrable and smooth
Hamiltonian which has orbiting resonances on a Cantor set. This counterexample shows that the
existence of a chaotic bound set is not a necessary condition for irregular scattering. It is possible to
have irregular scattering without chaotic bound motion. Copyright ©1996 Elsevier Science Ltd.

1. INTRODUCTION

Irregular or chaotic scattering—both terms are used interchangeably in the literature—is nowadays
commonly defined as the ‘irregular’ situation where some scattering function is singular on a
fractal set. A scattering function in the present context is roughly any function which describes
the behaviour of the outgoing scattering asymptote as a function of the incoming scattering
asymptote.

Irregular scattering in this sense is also called chaotic because of two reasons. The first circum-
stantial reason is the scattering function’s instability near the fractal set of singularities, a feature
reminiscent of chaos in bound systems. The second hypothetical but crucial one is that the origin
of the fractal singularity set is assumed to be a chaotic motion on the invariant bound set. This
hypothesis was suggested by the known examples of irregular scattering. In other words, one has
as a phenomenon an irregular scattering function, for which only one mechanism is known: a
chaotic bound motion. But whereas the phenomenon is readily measurable by physical experi-
ments the mechanism is often not so easily accessible. Even if there are no experimental barriers
to get to the bound orbits one typically meets the difficulty that they form a set of measure zero.

The general, if often implicitly stated, conception has been that phenomenon and mechanism
were more or less equivalent. The irregularity of a scattering function has been considered to be
just the distinct fingerprint of an otherwise elusive form of bound chaos (cf.,, for example, [6]).
Indeed, this conception seems to be at the bottom of the interchangeable usage of both terms,
irregular and chaotic scattering.

The first indication that there were problems with this picture was found in 1990 in a paper
by Chen ez al [1]. These authors showed that bound chaos can be invisible in those scattering
maps whose dimensionality is smaller than the degrees of freedom of the Hamiltonian dynamics.
If phase space has N > 2 degrees of freedom one needs a large enough fractal dimension D, of
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the chaotic bound set, namely D, > 2N — 3, in order to be able to see the chaos with positive
probability in one-dimensional scattering maps as a fractal set of singularities. However, this was
taken only as a caveat that sometimes one needed the full scattering transformation to see the
fingerprints of chaos.

So there are fingers (chaotic sets of small fractal dimension) which leave only a weak fingerprint
(singularities in higher dimensional scattering maps). But surely, where there is a fingerprint there
must be a finger? In [3] Jung et al. constructed an infinite sequence of hard discs accumulating at
one end and obeying a special scaling law such that the ensuing deflection function has an infinite
and self-similar set of singularities although the bound set is not chaotic. However, since in their
example the singularity set is not a fractal because it is only a countable set and chaos arises
simultaneously with fractality when perturbing the configuration of scatterers, they concluded
that as a criterion for ‘true scattering chaos’ one requires in addition that the singularity set is
truly a fractal, i.e. in the language used here one needs a chaotic bound set.

In this paper it will be shown that the existence of a chaotic bound set is not a necessary
condition for chaotic/irregular scattering. The relevance of this result for physics is that measuring
an irregular or irregular looking scattering function need not say much about the mechanism
generating the irregularities.

In the following Section 2 we are going to construct the counterexample and discuss its prop-
erties. The construction is based on the well-known phenomenon of orbiting resonance in central
(radially symmetric) potentials. However, contrary to the known examples, our counterexample
shows orbiting singularities not just on a set of isolated points but on a Cantor set. A discussion
of properties and variants of the counterexample can be found in Section 3. In Section 4 we will
more precisely formulate the notions used heuristically in this Introduction. The section provides
largely background material to put our problem into context.

I'would like to state here that this counterexample does not persist under smooth perturbations,
so that it may be considered with some justification to be pathological. However, although a
perturbed set of its singularities need not remain fractal, it looks approximately like a fractal
of singularities down to resolutions depending on the size of the perturbation. Its scattering
irregularity persists at least approximately. Indeed, there are many such potentials in the sense
that for any given but large enough energy and in any C° neighbourhood of a given continuous
potential vanishing at infinity, there is a smooth potential that shows for energy irregular scattering
but not bound chaos.

It is an open question whether there are potentials for which irregular scattering without a
chaotic bound set is a feature persistent under small smooth perturbations.

2. CONSTRUCTION OF THE COUNTEREXAMPLE
2.1. The bound set for central potentials at scattering energies

By transforming to polar coordinates one can identify the set of central (rotationally symmetric)
smooth potentials defined on R? and vanishing at infinity, with the set C of smooth symmetric
functions defined on R and vanishing at infinity. Regard C as a subset of the Banach space
of real functions vanishing at infinity (i.e. with topology induced by the C’-supremum norm
11l = sup|f|). The main result of this paper can now be formulated as follows.

Theorem 2.1. In C there is a dense set of potentials exhibiting irregular scattering which is rnot
induced by chaotic bound motion.

The simplest way a potential ¥ can trap particles occurs by spiralling orbits. This is not
considered to be an example of irregular scattering as long as the initial conditions leading to
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trapping are isolated (cf. [2]). Furthermore, as the Hamiltonian is integrable, there is no chaos in
these types of dynamics. The idea leading to a counterexample is to construct a smooth potential
which shows orbiting on a Cantor set of initial conditions.

For a given smooth central potential ¥ with compact support supp(¥) C [0, byax], an asymp-
totic particle energy Eq = sup V' and an impact parameter » > 0 the total curvature of the tra-
Jjectory, that is the historical angle, is given by 0y (b) of equation (17). If the potential decreases
fast enough and has no singularities of order between r~2 and r~* then the only points where 8y
is not defined are those for which the integrand has a non-integrable singularity at the turning
point. This is called an orbiting resonance (cf. Ref. [4]). In the following let v(r) := 1 — V' (r)/ Ey
and let ryi, (b) be the classical turning point of a trajectory with impact parameter b.

Lemma 1. For a central potential V' € C@(R) with monotone increasing r — r2v(r) and energy
Ey > sup V both the bound set of trajectories and the singularities of the deflection function 8y
are given by the orbiting resonances, i.e. by those angular momenta / = b./2 Eq for which rv(r)
has a critical point (derivative 0) at rmia(b). The bound set at Ey consists of the ‘limit circles’
(radii rmin (b)) of the orbiting resonances.

Proof. Using the integrated equations of motion a spiralling orbit occurs where the deflection
function (17) is divergent. Taylor expansion with Lagrange’s remainder around the classical
turning point yields with ryin 1= rpin(b):

Pv(r) — B* = 2rmin¥(rmin) + gV’ Fmin)) (F = Fmin) + /) + P (B + 2V (1) /2 (r = rmin)?

(M

with 7 €]#min, 7[. As v and v’ are bounded, the integral exists if and only if w(r) := r?v(r) does
not have a critical point at the turning point 7 = ry;y(b). Otherwise the integrand has a non-
integrable singularity ~ 1/(r — rmin(b)). As the effective potential Veg(r) = [12/(2rH)] + V(r) =
EB 1P +V(r), b:=1) (2+/Ey) also has a critical point at ry;, (), there is also a bound circular
orbit at radius rmi; (b). However, there are no other bound orbits at energy Ej because w’ = 0
implies that the effective potential is decreasing left of rmin, s0 that ry;, is an inclination point
of Vet as Veg(r) = —(Eo/r?)(rw' (r) — 2(w(r) — b?)), we know that V(r) < 0 left of ryin (ie.
w(r) < b%), and also right of rp;, because otherwise rmi, was not reachable by a scattering orbit.

2.2. A Cantor S-curve

We are looking for a function o : [0, 1] — [0, 1] with the following properties:
(1) the function o is smooth and strictly increasing,
(2) on a Cantor set C the derivative o’ = 0.
Such a function will be called a Cantor S-curve. It will be identified as o (r) = r?v(r), thus leading
to a potential Vs(r) = Ey(1 — o (r)/r*) which shows orbiting for particles with energy Ey on a
Cantor set of impact parameters.
We construct ¢ in two steps.
First, we construct a 2-level C* function 4, i.e. a function which is constant everywhere but
for a finite interval where it is strictly increasing. We use the standard smoothening function
P € Gy (R) with supp(pe) = [—¢€, €]

’ : x>0
Pelx) :=¢q (1 — %) with g(x) = {8 vx> )

ifx=<0

to define a function A
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Fig. 1. A Cantor S-curve for a C*> S-function 4. The rectangles are the Cartesian product of
the tremas of Cantor’s middle-thirds set (abscissa) and of Cantor’s middle-halves set (ordinate).

_ Ladipndy

h(x) =
|2 ®12(0)dy

1/2 (3)

J21 2 exp(1552)dy

1/2

h(x) = =
—1/2eXP(1_—4yz)dy

—-1/2 forxe[-1/2,1/2] G)]

which has the properties:
(1) h:[-1/2,1/2] = [—1/2, 1/2] bijective and strictly increasing,
(2) A is smooth (C%),
(3) for all derivatives n € N: A" (—=1/2) = 0 = A" (1/2).

Next, similar to the construction of the Cantor function (devil’s staircase), we set together
scaled down versions of A to form a smooth staircase ¢ (‘Cantor S-curve’) from 0 to 1. The
building blocks are affine images 2 A"A(i" (x — x5, _5,)) + ys,...5, Of the function 4 which map the

________ 5, With centre
Vsi..s- TO get a smooth curve we have to make sure it is continuous in the Cantor points and
that the left and right limits of the derivatives coincide in the Cantor points. Continuity can be
achieved by avoiding vertical gaps between the building blocks. As the points of the Cantor set
are accumulation points of the borders of the tremas a smooth function s will result if and only
if 0 < A < p < 1, because then the maximum of any derivative over a generation n trema will
tend to O for n — oo. A specific construction is given by
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Proposition 1. Let Cy;3 be Cantor’s middle-thirds set and Z;, ;, (Cy/3) be the middle-thirds trema
determined by its left boundary >, 5,37/, (5,2} C {0,2}, 5, = 1. The function

g: 0,11\ G5 — [0, 1] 5)

G(x) =2@""h[3"x — x5, )]+ Vsos, fOrx €L 5 i (©6)
n—1

Xopsn = D837 4372 7
i=1

Si ifS,‘ (S {0, 1}

n—1
Vtoins = ;&-4“' +47" 12 with § = { 3 ifs =2 ®

can be smoothly extended to yield a Cantor S-curve o : [0, 1] — [0, 1].

Proof. (1) Equation (6) defines a function & on [0, 1] \ C);3 which is continuously extensible to
[0, 1]: Restricted to the single Cy/3-tremas I, ;, _, (Cj;3) the function & is obviously continuous,
even smooth. The image of I, , ,1(Cy/3) is Cantor’s middle-halves trema I, 5, ,1(Ci/2) wearing
the same label s1...s,-;1. This can be seen as follows. Whereas the Cantor’s middle-thirds
encoding is just the base 3 expansion of x € [0, 1] which is given by (s5,)2, — Y=, 537", the
encoding of Cantor’s middle-halves is given by (s;)i>, — >, §ig; with weights

_ _{&i/4ifs;€0,2
g1—1/4, gi+l_{gi/2ifsi:1 (9)

and recoding §; as given in the proposition. As s, = 1 is the first appearance of the digit 1 in the
tuple s; . .. s, determining the trema I, , ,1(Ci,3) with centre x;, 5, , = Z;’;ll $5371+377(1+2)/2
and length 37", the trema ;, 5, ,1(Cy,2) has centre y;, ,_, = Z;’;,' §47 +4 "(1+2)/2 and length
(1/2)47"*! = 2(47"). Thus equation (6) determines & as the affinely transformed 4 which maps
trema I,  ,1(Ci/3) strictly increasing onto the trema I, ,1(Ci/2). As both trema sequences
{0,2}* = 201 5y s,y = Iy 5 1(Cyy3) and sy suy = Iy 5, ,1(Cij2) define partitions of
the unit interval minus the respective Cantor set and these partitions consist of ordered intervals,
the function & maps [0, 1] \ C},s strictly increasing onto [0, 1] \ Cj,> with

lim &3 537 = 2 5igi (10)
i=1 i=1
for s; € {0,2} so that > 537" € Cy 3.

(2) The continuous extension ¢ of & to [0, 1] is smooth (C®): As ¢ is continuous and by
construction smooth on the open set [0, 1]\ Cy,3 it is enough to check that for x € Cj;3 we have
for the mth derivatives lim,,—,, 0" (x;) exists for any sequence (x;) C [0, 11\ Ci;3. However, due
to the different scalings of the tremas of Cantor’s middle-thirds and middle-halves set we know
that for x; € I, 5, ,1(Cy;3) the derivative

-n

2
0< o™ (x) < (_ )maxh(’")(x) - 0. (11)
37 xelo,1] n—oo

For those Cantor points which are on the boundary of some trema we get from one side imme-
diately derivative 0. [
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Fig. 2. A Cantor S-potential for the Cantor S-curve of Fig. 1. Additionally, the rectangles of
Fig. 1 appear as images under the same transformation which maps the Cantor S-curve to its
associated Cantor S-potential.

Figure 1 illustrates this construction. However, as the C™ 4 given by equation (3) contains a
non-elementary integral, we chose
exp(4x/(2x + 1)) = 1] if x € [~1/2,0]
h(x) =1 (12)
ylexp(4x/(2x — 1)) — 1] if x €]0, 1/2]

which is only C? at 0. But this suffices for Lemma 1.
2.3. A Cantor S-potential

We are now in a position to give a potential which shows irregular scattering but lacks chaotic
bound orbits. Setting o (r) = r*v(r) yields:

Proposition 2. Let o be a Cantor S-curve and Ejy > 0. Then the potential

_VE(1— o/ ifrelo, 1]
Volr) = {0 ifr> 1 (13)

yields a potential on the positive real axis which is continuous everywhere and smooth but at the
boundary point r = 1 of its support [0, 1]. It shows measurably irregular scattering at energy Ey
but no bound chaos. The singularities occur for impact parameters b sit. b* € Cy ).

Proof Using impact parameter (angular momentum) and conjugate angle as coordinates a
scattering map on the energy shell E; is given by 7 : [0,2w[XR — [0,2T[XR, T(¢, b) =
(¢ + Oy, (b)mod 2, b). The deflection function 6 := @y, is by construction (Proposition 1)
divergent to infinity on the Cantor set \/Cy,;. Let bj € Cy,;. Because of divergence at by and
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Fig. 4. (a) A variant of the Cantor S-curve leading to a smooth counterexample. The original
Cantor S-curve appears as an affine image inside the rectangle. (b) The smooth potential
corresponding to the variant of the Cantor S-curve of (a) together with the deformed rectangle.

1.4



Chaotic scattering without chaos 1937

continuity on the complement of /Cy; for § > 0 small enough there is #n > 0 s.t. 8(b) > 2 7 for
|6 — byl < & and O(b') = 21rn for some b’ with |8 — by| < 6. Take another 0 < & < & s.t.
0(b) > O(b") + mwfor |b—by| < & and 8(b"') = 27wn + 1/2 for some n = »n and some b"’
with |6” — by| < &'. Hence, for K = 11/2 one has 45 D ([0, 2r[ X071 ([6('), O(b') + 11/2]) X
([0, 21T [x 0~ ([0(F""), 6(b"') + 1r/2]), which has positive measure. The same holds for S7!, so
that one also has a measurable mixing property. Lemma 1 shows explicitly that this irregularity
is not induced by a chaotic bound motion. [l

Figure 2 shows this potential (however for the more easily computable C?>-smooth /), whereas in
Fig. 3 the scattering function 0y, mod 2 1t is plotted.

Remark 2.1. (1) As usual for irregular scattering the staying time (time delay) has the same
singularities as the deflection function. The time spent inside the potential’s support [0, 1] is

1

T = VITE | (14)

rmin(b) VO (1) — b2

(2) One can easily proceed to construct a counterexample Vs which is defined and smooth
everywhere on the closed half axis [0, co[. To represent a central potential in R? its derivatives
must vanish at 0. All this can be achieved by affinely deforming o to the domain [1/4, 1], say, and
then extending it smoothly to & on [0, oo[ in such a way that one can extend & (r)/r* smoothly
to 0, where its derivatives should vanish and that for large enough r, & (r)/r? is constant, namely
1. For example,

(1/4) y1/5(r — 1/8) ifo<r<1/4
o) =4 B/ o@r/3—-1/3)+1/4if1/4<r<1 (15)
1+ (2 — Dy s(r—9/8) ifl1<r<oo

where . is a smooth function from level 0 to 1 on the interval [—¢, €] given, for example [cf.
equation (3)], by

IZw pe(y) dy

= . 16
2o Pe(y)dy (19

Ye(x) =
Figure 4 shows this construction.
To complete the proof of the main theorem we are finally going to show that in any neigh-
bourhood (w.r.t. the C%-supremum norm) of a continuous potential ¥ vanishing at infinity one
can find such a counterexample.

Proof. Let an € > 0 be given. As V vanishes at infinity, there is a compact interval [0, bpax[ s-t.
|V < € outside [0, bmax[. Approximate (WeierstraB3) the restriction ¥ |(op,..[ by a polynomial
Pst. [V = Pllpop,, < €/2. Let Ey > sup |V| + sup |P| and as usual v(r) = 1 — V(r)/Ey,
w(r) = r*v(r), p(r) = 1 — P(r)/Ey, q(r) = r*p(r). Then v, p > 0 and w, g > 0 have precisely one
zero, namely at r = 0. As g is also a polynomial there is an interval [0, r«] s.t. the restriction
q lor > 0 and min gl +np,.1 > g(ro) for any n > 0. Choose 0 < r; < ryx and let 0 < § <
€/(2 Eorf). AS gl(s.r,) is uniformly continuous there is a finite » and a decomposition 0 < r; <
rp < r3 < r4 <...<r,:= ryx st q varies on each interval [r;,r;41], i = 1...n— 1, by at
most 8. Define § as follows. On [0, 7] let § = ¢; on [r(, 2] let § be a smooth function s.t. for
all n = 0: g™ (r)) = ¢"™(r)), §(ra) = q(r;) and for all n > 0: §"(r;) = 0; on each [r;, ris1],
i=2...n—1let § bea Cantor S-curve between q(r;) and g(r;+1); on [r,_y, rr] let § be a smooth
interpolation between §l(o,,_,; and gli,, »...; On [#4, bmax] let § = ¢g. By construction we have for
p=q/* p =g/ llp = pll0b) < €/(2Ey). Extend now P = Ey(1 — p) to [0, oo[ by smooth
and monotonic interpolation between itself and the constant 0 function. Then, we conclude that
1V = Pllio,oo) < IV = Pllo.bge + | 1P — Pll10,5,,] < €. Furthermore, as the values §|(o,,,; assumes
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are smaller than each value assumed by §l|,, ), the critical points of §l,,) are turning points of
suitable impact parameters & € [0, bnax]. As there is a Cantor set of such critical points irregular
scattering occurs. Since the bounded motion in an integrable system is at most quasi-periodic, it
is not chaotic. [

This completes the proof of the theorem.

3. PROPERTIES AND VARIANTS OF THE COUNTEREXAMPLE

(i) An arbitrarily small C2-perturbation can remove all critical points of a Cantor S-curve
because they are all inclination points. Therefore the constructed counterexample is not
persistent under such perturbations. All singularities of a corresponding scattering function
can vanish instantly, although they persist in an approximate way. The perturbed deflection
function still shows peaks close to the former singularities.

(ii) By a simple modification of a Cantor S-curve one can construct a counterexample which is
still smooth but has persistent singularities accumulating at a Cantor set. Modify an S-curve
h:[—-1/2,1/2] — [—1/2,1/2] to include one local minimum (with a non-vanishing second
derivative) in the interior 0, 1[%. This local minimum will certainly be assumed as a turning
point and being above the left boundary point the boundary points of the tremas in the
resulting modified but still smooth Cantor S-curve 0 are not shadowed so that they are
still assumed as turning points. However, contrary to the inclination points at the boundaries
of the tremas, where the derivatives of all orders vanish, these local minima are stable with
respect to small C2-perturbations. They form a set in whose closure the original Cantor set
of critical points lies. And, of course, they lead to singularities of scattering functions.

A small C2-perturbation can still destroy irregularity, but at least an isolated set of sin-
gularities persists. The local minima in the higher generation tremas can be destroyed by
smaller perturbations than the lower generation tremas with their deeper local minima. It
is an open question whether a counterexample can be constructed which is persistent under
small smooth perturbations, in the sense that the set of singularities of perturbed systems
remains (or still contains) a Cantor set.

(iil) What happens to the counterexample when one changes the energy of the incoming particles?
As V(r) = Ey(1 — w(r)/r?) with w fixed by construction, an energy change from Ej to E;
results in a new wg, (r) = (1 — Ey/E1)r? + (Eo/E\)w(r). Hence an energy change can be
regarded as a smooth perturbation of the potential ¥, so that point (ii) is applicable. A
variation of energy E — E for the modified counterexample w = o, leads to a transition
to irregularity with the deflection function acquiring more and more (in the limit containing
a Cantor set of) singularities.

This modification still lacks the feature of irregularity under small perturbations of energy.
It is possible to do a Cantor S-construction for the effective potential at a fixed impact
parameter and get irregularity in the energy instead of in the impact parameter but then
one needs just the right impact parameter. The major open question is whether there are
counterexamples showing irregular scattering without chaos on a whole energy interval.

4. BACKGROUND AND DEFINITIONS

First, we specify our definition of chaotic or irregular scattering for Hamiltonian systems. For
this purpose we review some basic notions from classical mechanics.
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4.1. Basic notions

Suppose on some manifold M a Hamiltonian system is given with Hamiltonian H and global
Hamiltonian flow @, on the cotangent bundle T*(M).

In the simple case of M = R”, interaction Hamiltonian H = |p|>/2 + V(x) (where V €
Cy’ (R™)) and reference Hamiltonian Hy = |p|?/2 with flows ®,, ®?, respectively, one knows (cf.
[7]) that Q. := lim,_. + ®_, o®? exist pointwise on the open sets D. = T*(R™)\ (R™ x {0}). The
Moller-transformations (2. are local canonical transformations (in particular, diffeomorphisms),
whose ranges we write as R +, respectively. In the present case, the complements of their ranges are
just the forward and backward bound sets, i.e. CR. = J,{u = (x, p) € T*(R™) : ||P.,ul| <
n ¥t > 0}. Furthermore, one has asymptotic completeness, i.e. the Liouville measure of the
states which are (exclusively) either forward or backward free is 0.

The scattering transformation S is defined as the local canonical transformation S = Q. o Q™
R_ — R,. Any f o S o g, with observables f € C®(R_, RY) and a diffeomorphism g of an
open N C R’ into R_ which is continuously extensible to N, where g, r < 2 dim(M), will now
be called a scattering function. Observe that it is smooth by definition.

For M = R?\ 0, H = p*/2 + V(|x]), ¥ smooth with compact support supp(¥) C [0, brmaxl,
Hy = p?/2 = E,, the point transformation to polar coordinates generates a canonical transfor-
mation (x, y, px, py) — (1. ¢, pr, /) by which the Hamiltonian becomes H' = p,/2 + [?/2+ V (r)
and the scattering transformation S : (r, ¢, p,, ) — (r, P + 8, (Hmod 2, pr, {) with deflection
function 8y (/) = 0y (b), impact parameter b = [//2E,, v(r) = 1 — V(r)/ Ey:

0y (b) =n—2J bdr
Fenin (B) T

rev(r) — b? 17

b P bdr an
5 I _ bdr
bmax) ron(B) £/ P2V(r) — B2

where ruin (b) is the classical turning point of the trajectory and is determined as the largest zero
of the radicand r?v(r) — b%.

2 arccos(

4.2. Irregular scattering

The usual definition of irregular scattering (cf., for example, [5], Section 5.4) can now be
formulated for M C R” as follows.

Definition 4.1. A smooth map T of an open set B C R” into some RY, with r,¢ < 25, is called
irregular if
(1) T is not uniformly continuous and
(2) the set of singularities Sing(T), i.e. the set of points in the closure B to which 7' cannot be
continuously extended, is a closed non-trivial nowhere dense set!
One speaks of irregular or chaotic (Hamiltonian) scattering, if it has an irregular scattering
function.

Observe that the presence of irregularity of scattering in spite of smoothness is a consequence
of missing uniform continuity. If the scattering transformation S is defined on a dense set then
the existence of an irregular scattering function is equivalent to § itself being irregular. This is
sufficient because the identity function f = g = Id will yield an irregular scattering function. It
is necessary because under the assumptions above for £, g the set Sing(S) D g(Sing(f o S g))
contains a closed non-trivial nowhere dense set.

Now, where are the fingerprints of chaos in chaotic (irregular) scattering? First, an irregular
scattering transformation S shows by definition sensitive dependence at least on its singularity

tie. with empty interior, but containing a Cantor set.
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set Sing(S) of initial conditions in a limit sense, i.e. since Sing(.S) is closed there is a K > 0
s.t. for all 4y € Sing(S) and for all neighbourhoods N of u, there exist points |, u € N, st.
||S(u;) — S(u)|| > K. Second, if the inverse scattering transformation S~! is also irregular then
S shows also a kind of mixing property at least on a singularity set C of initial conditions in a
limit sense, i.e. there is a K > 0 s.t. for all vy € S(C) and for all neighbourhoods N of v, there
exist points vi, v; € N, st. |[1S71(v)) — S~ (m) | > K.

However, the resulting sensitive dependence on initial conditions or mixing property are only
noticeable by experiments if it occurs on a set of positive measure. One could call such systems
measurably irregular.

4.3. The chaotic bound set

The set of bound states of a Hamiltonian system, which we also call the bound or trapped set,
is defined as the intersection of the forward and backward bound sets Bs := CR. = U, {u =
(x, p) € T*(R™) : ||®,ul|l <nVt>0},ie B:= B, n B_. Apparently it is an invariant set.
Any invariant subset B of the bound set is called an invariant bound set. 1t is called chaotic if the
restricted flow ®, |3 is chaotic w.r.t. a given definition of chaos for bound systems. The known
mechanism for irregular scattering is that a chaotic bound set B borders the forward or backward
free set R.. We say that irregular scattering is induced by chaotic bound motion if the set of
singularities Sing(S) C R, \ R, is contained but for a trivial subset in a chaotic bound set B.
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