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Global optimization to maximize stack energy

David B. Reister*, J. Barhen*, John B. DuBose?, and E. M. Oblow*

ABSTRACT

‘We have developed a new method for global optimiza-
tion, designed to maximize stack energy. Our method
includes upper bounds for the stack energy and maxi-
mization of the stack energy for each common midpoint.
The method quickly identifies ranges of parameter val-
ues where the maximum cannot be located. We have used
the approach to reach an excellent solution for a diffi-
cult sample problem that was created by adding static
disruptions to field data. Our new method should apply
in many areas of geophysics.

INTRODUCTION

Since the earliest days of seismic exploration, geophysicists
have recognized the need to correct for the low velocity in
the weathered and unconsolidated sediments near the earth’s
surface. The data processing procedure has been described by
Yilmaz (1987), Marsden (1993), and Sheriff and Geldart (1995).
The conventional method for calculating residual statics cor-
rections was developed in the seminal papers of Taner et al.
(1974) and Wiggins et al. (1976). Their method for calculat-
ing residual statics corrections has two steps: (1) use crosscor-
relation to estimate the total time delay for each trace and
(2) use least squares to find the parameters in the total time
delay equation. Ronen and Claerbout (1985) proposed a one-
step alternative approach: stack energy maximization. They
defined an objective function that measures the correlation
between all of the traces in each CMP gather. Changes in the
parameters in the total time delay equation cause a time shift
for each trace and change the correlation between traces. The
parameter values are varied to maximize the stack energy.

The stack energy function depends on thousands of traces
and hundreds of parameters and can have a very large number
of local maxima Most optimization methods find a local maxi-
mum. A problem with many local maxima requires a global op-

timization method. Rothman (1985) recognized that the resid-
ual statics problem was a global optimization problem and
proposed to solve the problem using the simulated annealing
method. Subsequently, Rothman improved his method (1986)
and applied it to some field data that required large static cor-
rections (up to 200 ms). DuBose (1993) proposed several in-
novations to improve Rothman’s method.

We have developed an improved algorithm for solving global
optimization problems called TRUST (terminal repeller un-
constrained subenergy tunneling). Several published papers
describe TRUST (Cetin et al., 1993; Barhen and Protopopescu,
1996; Barhen et al., 1997). It is superior to all competing meth-
ods for a standard set of nonconvex benchmark problems.
However, the stack energy problem is much larger than the
benchmark problems, and large problems are more difficult
than small ones.

We describe the substantial research required to develop this
new global optimization method for the stack energy problem.
We define the stack energy, derive an upper bound for the stack
energy, and define a stack energy for each CMP. The solution
of the CMP problems provides both an initial estimate of the
static corrections and a closer upper bound for the total stack
energy. A discussion of our new method for global optimiza-
tion [stochastic Pijavskij tunneling (SPT)] follows. The method
quickly identifies ranges of parameter values where the maxi-
mum cannot be located. With a resolution of 100 000 possible
points in the parameter range, we must usually evaluate the
function about ten times to exclude all points. We end the pa-
per with an excellent solution for a difficult test problem based
on field data and our conclusions.

THE RESIDUAL STATICS OPTIMIZATION PROBLEM

Stack energy

We consider a common midpoint (CMP) stack of traces that
have normal moveout corrections. For each trace (t =1, N;),
we assume that the data consist of the Fourier components
(f =1, N¢) of the measured signal. The Fourier components
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(D) are complex numbers. The seismic energy travels from
a source (s) to a receiver (r;) via a midpoint (k). For each
midpoint k, the data are stacked:

His = Zexp[2nif (S + Ry)]Dit. 1)

The statics corrections (S and R, ) are determined to maximize
the total energy (E) in the stacked data:

E=) ") IHl" 2
KT

Coherence factor

Sheriff and Geldart (1995) discuss several measures of co-
herence in the time domain. We define a coherence factor in
the frequency domain. When all of the traces are in phase, the
coherence factor equals one. We disaggregate the total energy
[equation (2)] by defining the energy for each CMP (Ey):

Ex =) [Hel”. 3)
f

Then the total energy is the sum of the Ey. We derive an upper
bound (Gy) for each of the Ey. The coherence factor (Qy) is
the ratio of Ey and Gy:

Qk = Ex/Gx. 4)
Since the Ey are positive, each of the coherence factors will be
in the range (0, 1).

To define the upper bound (Gy), we write the complex num-
bers Dy, in polar form

Dt = o exp(i6ty) 5)
and define the phase (1) by
Vi =2 (S + Ry) + 01t (6)
Using ¥+, the stacked data [equation (1)] may be written
Hir = D areexp(ivn) 7
t

and the stack energy for each CMP [equation 3] is given by
Ex =ZZZ(XHWHCOS(¢H — Vi) (8)
fot T

When all of the traces are in phase, cos(¥ st — ¥¢.) =1 for all
frequencies and traces in the CMP, and the upper bound on the
stack energy is

GKZZZZWW”:Z(ZQH)Z. ©)

Maximize stack energy for each CMP

We have defined the energy Ey and a coherence factor Q for
each CMP. However, each of the statics values can influence
many of the CMP gathers. We can decouple the CMP gathers
by introducing new variables. The advantage of this approach
is that we can solve a number of small problems rather than one
large problem and derive a closer upper bound for the stack
energy of the coupled problem. We have found that the solu-
tions of the decoupled problems can be mapped to an excellent
initial estimate for the parameters for the coupled problem.

For each trace t, we define v; by

v =5 + Ry. (10)
Using matrix notation, the decoupled parameters satisfy
v = AXx, (11)

where x is the parameter vector that combines the vector of
source statics corrections (S) and the vector of receiver statics

corrections (R):
N
X = . 12)
R

The A matrix has many more rows than columns. The number
of columns is the total number of source and receiver static
corrections, while the number of rows is the total number of
traces. All of the elements of each row are zero except for two
elements that are one: the source position and the receiver
position for the trace. The A matrix does not have full column
rank. Taner et al. (1974) demonstrate that the matrix has a 3-D
null space. The three null space vectors are (1) a constant for all
sources and zero for receivers, (2) a constant for all receivers
and zero for sources, and (3) a vector that is proportional to
the source position for the sources and proportional to the
receiver position for the receivers. More discussion of the null
space vectors is in Reister et al. (1999).

Using the new variables, the stacked data definition [equa-
tion (1)] becomes

Hys = Zexp[Znif vt] Dt (13)
t

Each Hy; depends on a unique subset of v;(v), and the problem
is decoupled. Using the new variables (¥v), the components of
the stack energy are

Ex(*v) = > [Har . (14)
f

Each CMP stack energy global optimization problem can be
solved independently to find the components of the vector
v(vy). We shall call the maximum value for each CMP stack
energy PGy.

The value PGy is a closer upper bound for the components
of the stack energy than Gy. Why is ®Gy an upper bound for
Ex? Each source and receiver static correction influences many
values of Ex. As each static correction changes, some values
of Ey increase and others decrease. Since Hy; depends on a
unique subset of v;(¥v), there are no trade-offs with other Ej,
and PGy is an upper bound for Ex. Why is PG < G¢? We have
demonstrated [equation (8)] that E, = Gy when all phases /¢
are equal for all traces in the CMP gather and all frequencies.
Since we have only one component of v to control all of the
Fourier components for a trace, we normally are unable to get
all of the components in phase.

We have used singular value decomposition to find the in-
verse for the matrix equation (11) that defines the disaggre-
gated parameters (v) and map v back to the static corrections

(x):
x = Bv. (15)
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We find that the most striking feature of each row of the B
matrix is that only a few values are large and they are all ap-
proximately equal. Furthermore, the large valuesin a row occur
for a trace that has a one in the corresponding column of the A
matrix. We will now demonstrate why the B matrix has these
features and derive an approximate value for the large values
of the B matrix.

Since B is the inverse matrix: BA =1I. Thus, the dot product of
row n of B with column n of A is one and the dot product of row
n of B with all other columns of A is zero. We can approximate
B by assuming that all of the elements in row n are equal to
zero except the traces that correspond to the positive values in
column n of A, and that all of the nonzero values in row n of B
are equal to the same value (pn). With this assumption, the dot
product of row n of B with column n of A is M, pn, where M, is
the number of nonzero values in column n of A. Since the dot
product should be equal to one, the value of p, is pn =1/Mh.
We derive the following approximate map from v to x:

Z Ain Ut
t
X & ——. 16
T (16)
Thus, we calculate X, by averaging over all of the components
of v that contain X.

Convergence factor

The convergence factor (Fy) is the ratio of the energy for
each CMP (E) and the maximum CMP energy (°Gy):

Fv = Ex/ Gy (17)

Since Ey is positive, each convergence factor will be in the range
(0,1). Let’s compare convergence factor and coherence factor.
In the coherence factor, all Fourier components for all traces
in a CMP gather are in phase. In the convergence factor, CMP
energy reaches its upper bound, and there are values for the
static corrections that allow the CMP to reach that bound. The
convergence factor allows us to identify which CMPs have the
potential to increase their stack energy.

GLOBAL OPTIMIZATION ALGORITHM

To maximize the stack energy, we solve the following opti-
mization problem: Given an objective function [ f (x), where
x is an N-dimensional vector constrained to lie in a domain
P], find the global maximum (x,). That is, find a point x, in P
such that f (x,) > f(x) for allx in P. To introduce the concepts
of global optimization, we will consider the 1-D function dis-
playedin Figure 1. The function has five maxima. We can find an
approximate value for the global maximum by evaluating the
function at M points on a regular grid and choosing the largest
value. As we increase M, we will develop a better estimate
of the largest value. However, this brute force approach fails
for problems with many parameters because the total number
of function evaluations increases exponentially (MN), where
N is the number of parameters. We can reduce the number of
function evaluations by concentrating them near local maxima.

As discussed in Barhen et al. (1997), Trust finds the global
maximum by executing a series of cycles of ascent and shooting
(descent and tunneling for a global minimum). Beginning at
point x;, we ascend to the first local maximum f;. We shoot
(move in the positive x-direction) until we find a point with

a value larger than f;, and then we ascend to the next local
maximum. We continue to shoot and ascend until we reach
the upper bound on X. The highest value we find is the global
maximum.

A rigorous proof (Cetin et al., 1993) shows that Trust will
find the global maximum for the 1-D case. If we approximate
an N-dimensional problem by a 1-D curve that covers the
N-dimensional region P (or by a regular grid), we can formally
solve all global optimization problems. However, this method
is impractical for large problems because the number of func-
tion evaluations increases exponentially with the number of
dimensions (the number of evaluations is MN, where M is the
number of function evaluations in each dimension).

Since the number of parameters is very large for the stack
energy function, we cannot search a regular grid with MN points
in region P. Fortunately, we have had good success using 1-D
paths to search for the global maximum of the stack energy [we
have worked on another global optimization problem (protein
folding) that requires an exhaustive search of an MN grid].
From a local maximum, we use a 1-D algorithm to explore each
N-dimension of the problem, one at a time (the effort increases
linearly with N rather than exponentially). When we find a
point where the energy function has a higher value than the
previous local maximum, we ascend to the next local maximum.
If we explore all N directions and do not find a higher value,
we stop the algorithm. The choice of the dimension to search
next can be numerical order or random.

We have developed SPT (stochastic Pijavskij tunneling), a
new algorithm that greatly speeds up the 1-D shooting phase
(tunneling for minimization). The algorithm is stochastic be-
cause the function is evaluated at random points rather than
at every point on a grid. The algorithm uses Pijavskij cones to
eliminate regions of the 1-D space [for a discussion of Pijavskij’s
algorithm, see Oblow (1999)]. Before we use Figure 1 to dis-
cuss SPT, we will discuss two features of the algorithm: ascent
to a local maximum and the Lipschitz constant.

For the residual statics optimization problem, calculating the
stack energy function [ f (x)] is expensive (requires many float-
ing point operations) and the calculation of the derivatives of
the function with respect to each of the components of the

f3
7] E—

f(x)
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X X4 X5

Fic. 1. Finding the global maximum for a 1-D example using
the SPT algorithm.
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parameter vector (x) is much more expensive. During the as-
cent phase of the algorithm, derivatives are required to find a
local maximum. While finding a local maximum is relatively
expensive, the benefit is large. When we perform a search and
find a higher value than the previous local maximum, we know
that we are in the hill of attraction of a new local maximum
that will be higher than the previous local maximum. Thus, we
continually ascend toward the global maximum. An algorithm
that ascends from many random starting points can repeat-
edly ascend into a previously identified local maximum. By
searching for a higher value than the previous local maximum,
we gain two benefits: We do not need to calculate derivatives
while searching, and we calculate derivatives only when they
will guide us to a new and higher local maximum.

The key parameter in the SPT algorithm is a pseudo-
Lipschitz constant (Lps) that is used to define unpromising
regions in the search space that do not need to be explored.
For the 1-D case (where the parameter vector is a scalar), the
Lipschitz constant (L) is an upper bound on the rate of change
of the objective function [ f (x)]:

df

— | <L. 1
x| = (18)

The pseudo-Lipschitz constant (L ps) is the largest slope of any
line drawn from the global maximum that is tangent to the
curve that defines the hill of attraction for the global maximum
(see Figure 1). In general, the pseudo-Lipschitz constant is less
than the Lipschitz constant. For a square well (a function that
is constant before point a increases to a higher value at point a
and remains at the higher value until point b, where it returns
to the original value), the Lipschitz constant is infinity while
the pseudo-Lipschitz constant is finite (if we assume that the
location of the global maximum is the midpoint between a
and b).

We use Figure 1 to discuss a simple version of the SPT algo-
rithm for the 1-D case. We evaluate the function at point 1 (X;).
From x;, we ascend to the local maximum ( f;). The local max-
imum is our best candidate for the global maximum: f* = f;.
From Xx,, we draw a line (half of a Pijavskij cone) that has the
same slope as the pseudo-Lipschitz line. The intersection of the
line from X, and the line (y = f;) determines a small region of
the x-axis (the left shaded region on line f; in Figure 1) that
cannot have a higher value than the current maximum value
(f1).

Rather than performing cycles of ascent and shooting, we
randomly choose a second point in the available portion of
the x-axis (x;) and evaluate the function. If f(x) < f*, we are
shooting; if f(x)> f*, we ascend to a local maximum. Since
f(x) < f*, we are shooting. From X,, we draw a Pijavskij
cone (the magnitudes of the slopes of the two lines are equal to
the slope for the pseudo-Lipschitz line). The intersection of the
cone from X, and line f; excludes a small region of the X-axis.

We randomly choose a third point in the available portion
of the x-axis (x;) and evaluate the function. Since f(xz) > f*,
we are in the hill of attraction of a new local maximum. From
X3, we ascend to the local maximum ( f;) and set f* = f,. From
X3, we draw a Pijavskij cone. Since the current local maximum
is much higher than f;, the three Pijavskij cones now exclude
much more of the x-axis. We choose a fourth point in the avail-
able portion of the x-axis (X4) and evaluate the function. Since

f(x4) < f*, we are shooting. From X4, we draw a Pijavskij cone
that excludes a large region of the x-axis. We choose a fifth
point in the available portion of the x-axis (Xs) and evaluate
the function. Since f(xs)> f*, we are in the hill of attraction
of a new local maximum. From X5, we ascend to the local max-
imum ( f3) and set f* = f;. We evaluate the function at a few
more points and conclude that f3 is the global maximum for
the example in Figure 1.

The Pijavskij cones exclude more of the X-axis as f* in-
creases. We can improve the efficiency of the SPT algorithm
by adding a second parameter: a close upper bound for the
global maximum ( f ©) and using the maximum of f*and f© to
define the cones. In the early stages of the algorithm, f € will in-
crease the region on the x-axis that is excluded by the Pijavskij
cones. At the later stages of the algorithm, the current candi-
date for the global maximum, f*, may become higher than f©
and the parameter will have no impact. After several attempts
at finding the global maximum, we can use the best value found
to date as an estimate of fC.

We define the resolution as the width of the smallest hill of
attraction that can be detected. For the searches that we discuss
in the results section, we assume the range of each component
of x is £50 ms (for a total range of 100 ms). Since we use a
resolution that allows 100000 points in the range, our resolu-
tion is 1 us. For a comparison, Rothman (1986) had a range of
4160 ms and a resolution of 8 ms, while DuBose (1993) had
arange of £50 ms and a resolution of 2 ms. While our resolu-
tion is apparently more than three orders of magnitude tighter
than the previous work, there is no physical justification for
having a resolution that is greater than a few samples within
one cycle of the highest frequency in the data set. If the highest
frequency is 60 Hz, 2 ms is a reasonable resolution. The SPT
method allows us to work at a much higher resolution than can
be justified by the experimental details without a significant in-
crease in computational cost. In the worst case there is a high
penalty for high resolution. We can imagine an objective func-
tion that is constant except for randomly distributed square
wells of varying height that are 1 s wide. For this function, the
Pijavskij cones would not eliminate any regions of the x-axis,
and we would need to evaluate the objective function 100 000
times to find the global maximum. The stack energy problem
is much better than the worst case: the Pijavskij cones quickly
eliminate all of the x-axis, and we usually evaluate the function
about 10 times to achieve a resolution of 100000 points in the
parameter range. Thus, we do not pay a penalty for working at
high resolution.

We can use two complementary methods to estimate the
pseudo-Lipschitz constant (L ps)s: measure derivatives and set
resolution. As we perform searches and descents, we calculate
the function and the derivatives of the function with respect
to each component of x. We can monitor the derivatives and
determine the largest values. The pseudo-Lipschitz constant
should be larger than any measured value.

To use the resolution, we consider a 1-D search. The pseudo-
Lipschitz constant is the ratio of a change in f (X) to a change in
X [see equation (18)]. The change in f is the difference between
the current value of f and our close upper bound for the global
maximum ( f ), while the change in X is one-half the resolu-
tion. Thus, our second parameter ( f®) and the resolution can
be used to estimate the first parameter (the pseudo-Lipschitz
constant). Since our resolution is very small, we calculate much
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higher values for the pseudo-Lipschitz constant than we obtain
by measuring derivatives.

We will describe the SPT algorithm for the general case
where x is an N-dimensional vector.

1) Select a starting point. The values of the components of x
could be all zero, read from a file, or random numbers. The
input file could be the inverse map for the disaggregated
problems [from equation (15)].

2) Use an ascent algorithm to find a local maximum.

3) Begin the outer loop.

4) Begin a loop over the N-components of x. For each loop,
randomly choose an integer (n) in the range 1 to N.

5) Evaluate a fixed number of random points xn; for x. If
Xnr is in the available portion of X,, evaluate the function.
Save the value for X, that gives the highest value for f (x).

6) If the search finds a point on a new hill of attraction,
ascend to the next local maximum.

7) End of the loop that began in step 4.

8) End of the outer loop.

APPLICATIONS

We have applied our global optimization method to a syn-
thetic data set that was created by adding disrupting statics to
measured seismic data. The data set has 316 parameters (100
shots and 216 receivers), 4776 traces, and 423 CMPs. Using 118
Fourier components for the data, the stack energy at the initial
point (x = 0) was 882 and the upper bound on the stack energy
[G, see equation (9)] was G= ), Gy =6589.

We applied our global optimization method to the 423 CMP
stack energy problems. Most of the best values for the coher-
ence factor were much less than one. The total energy for the
423 CMP problems (°G) was 2706. Using equation (15), the
4776 v-coordinates were mapped back to the 316 x-coordinates
to determine an initial point (xq) for the 316-parameter global
optimization problem. The initial value for the energy was 1035.
The first local maximum was 2183. Using our SPT method, we
found many points with high values of stack energy.

In this section, we compare the seismic image we were given
with the image after applying residual statics corrections. We
discuss both the coherence and convergence factors for our
best solution and compare our best estimates for the statics
with the disrupting statics used to create the data sets.

We begin with three seismic images: before disruption, dis-
rupted, and after correction. The original seismic image before
applying disrupting statics is displayed in Figure 2. The dis-
rupted seismic image is plotted in Figure 3, while the image
after the static corrections is shown in Figure 4. The seismic re-
flections are well defined in Figuers 2 and 4 and are not defined
in Figure 3.

Comparison of the original (Figure 2) image with the SPT
(Figure 4) image demonstrates that both methods for calcu-
lating statics yield similar results. The reflections sequence at
1.7-1.8 s differsin at least two regards on the two images: (1) the
reflections have slightly higher amplitude and perhaps more
lateral continuity on the SPT image and (2) there is a marked
difference in the stacked images between CDPs 100 and 200.
In the original image, the reflection at about 1.76 s is continu-
ous across the section. Reflections above and below the 1.76-s
reflection have lower amplitude and are less continuous. In the
SPT section, there is an apparent offset in the 1.76-s reflection

at about CMP 160. The offset appears to propagate upward and
downward in the section, with a moderately steep dip toward
the right side of the image. Reflections above 1.76 s appear
to be more continuous in the SPT image than in the original
image. This is also true of reflections between 1.76 and 1.85 s,
but both images show more complicated structures at greater
depths. At 1.9-2.0 s between CMPs 50 and 200, the images
again differ significantly from one another. Here, the original
image appears to indicate two closed cells, while the SPT image
shows only one of these (centered at CMP 100, 1.94 s). In this
portion of the record, it is difficult to select the better image.
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FIG.2. The seismicimage before the application of the disrupt-
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Recall that when all of the traces in a stack are in phase, the
coherence factor (Qg = Ex/Gy) is one. The best value that we
have found for the stack energy is 2441. Since the upper bound
on the stack energy is 6589, the weighted average value for the
coherence factors is 0.370. Thus, most of the traces are not in
phase. We have solved the global optimization problems to find
the maximum stack energy for each CMP: PGy. Using PGy, we
can define a best (close upper bound for the) coherence factor
(see Figure 5). Most of the values for the best coherence factor
range from 30-50%.

The convergence factor compares our current values for the
stack energy to the maximum of the CMP stack energy. In
Figure 6, the convergence factor is plotted for two values of
the stack energy: 882 and 2441. (Recall that 882 is the stack
energy when all of the static corrections are zero.) Most of the
values for the convergence factor are above 80% when the
energy is large (2441).

After developing the SPT version of TRUST, we found many
vectors with high values of stack energy. In Reister et al. (1999),
we use both a modified Euclidean distance norm and an energy
norm to measure the differences between a few (22) of the
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FIG. 4. The seismic image after applying the residual statics
corrections.
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vectors (potential solutions) with stack energy greater than
2365, and we conclude that the 22 points are distinct.

After we solved the problem, we compared our estimates of
the statics with the disrupting statics that had been applied to
the original seismic data (Figure 2) to produce the input data
for this project (Figure 3). The disrupting statics are plotted in
Figure 7 and range from —21 ms to 24 ms. Figure 8 displays
the difference between our estimates of the disrupting statics
for case 2441 and the applied disrupting statics [we plot the
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FiIG. 6. The convergence factor for two cases: no corrections
(882) and best corrections (2441).
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differences for case 2427 in Reister et al. (1999)]. The most
striking result is that five components of x have large differ-
ences (cycle skips) for the two cases and the cycle skips occur
for the same components (83, 160,201,276, and 297). When we
plot the difference between case 2441 and case 2427 (in Reister
et al., 1999), we do not find cycle skips.

When we calculated the stack energy for the applied disrupt-
ing statics in Figure 7, we expected to find a very large value
for the energy and were surprised to find that the energy is
2349, which is lower than for the 22 cases. When we start from
the applied disrupting statics and climb to the top of the first
peak, we reach an energy of 2415 (better than all but three
of our 22 cases). The differences between the statics for the
2415 case and the disrupting statics are plotted in Figure 9.
There are no cycle skips. While the differences are smaller than
the differences between cases 2441 and 2427, the differences
are significant and range from —4 to 8 (thus, the differences are
not from step size or round-off). Many methods can be used
to estimate static corrections. Clearly, the static corrections for
the original seismic image were not estimated by maximizing
stack energy.

CONCLUSIONS

We have developed a new method for global optimization
(SPT) designed to maximize stack energy. In general, we cannot
solve a global optimization problem. We must apply resource
allocation—apply finite resources (function evaluations) in an
efficient way to find the best estimate of the global optimum.
Beginning at an initial point, the SPT method ascends to the
firstlocal maximum. The method finds candidates for the global
maximum by executing a series of cycles of search and ascent.
At the start of each search cycle, we randomly choose one of
the N parameters to be a variable. We evaluate a fixed num-
ber of random values for the variable. We use Pijavskij cones
drawn from points where we have calculated the stack energy
to restrict possible values for the variable. If the random value
is in the acceptable region, we evaluate the stack energy. If (at
the end of the evaluation) the highest value for the stack en-
ergy is higher than the current local maximum, we ascend to a
new local maximum. Finally, we begin a new search cycle. At
the end of the cycles, we would have a new candidate for the
global maximum.
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FIG.9. The difference between the statics for the 2415 case and

the disrupting statics. The units are in milliseconds.
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The key parameter in SPT is the pseudo-Lipschitz constant,
which determines the slope of the two sides of the Pijavskij
cones that are used to exclude regions of the search space.
The SPT method has two other parameters (an estimate of
the global maximum and the resolution) that can be used to
estimate the pseudo-Lipschitz constant. The Pijavskij cones
quickly eliminate most of the search space, and we usually need
to evaluate the function about ten times to exclude all 100 000
of the possible points in the parameter range.

To estimate a close upper bound for the total stack energy, we
sum the best values of the CMP stack energy. The upper bound
helps us estimate the global maximum ( f ©) for the SPT method
and provides a yardstick to measure our progress toward the
global maximum. Since our best estimate (2441) is near the up-
per bound (2706) and the best of a large family of vectors with
high stack energy, we believe we have found a good estimate
for the global maximum. The solution of the CMP problems
also provides a good initial estimate of the static corrections.
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