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Abstract

In a number of distributed computing applications, messages must be transmitted on demand
between processes running at different locations on the Internet. The end-to-end delays experi-
enced by the messages have a significant “random” component due to the complicated nature
of network traffic. We propose a method based on delay-regression estimation to achieve low
end-to-end delays for message transmissions in distributed computing applications. Two-paths
are realized between various communicating processes in a transparent manner. Our scheme is
implemented over the Internet by a network of NetLets, which communicate with one another
to maintain an accurate “state” of delay-regressions in the network. NetLets handle all network
traffic between the processes and also perform routing at a certain level depending on the un-
derlying network. We present experimental results to illustrate that NetLets provide a viable
and practical means for achieving low end-to-end delays for distributed computing applications
over the Internet.

1 Introduction

Several distributed computing processes require the massive computational power and/or diversity
of capabilities distributed over a network, which can be the Internet or a dedicated wide-area
sensor network. Such processes may range from distributed software sensors that collect network
data (e.g. as network flows, delays, etc.) to hardware systems consisting of geographically dispersed
remote imaging or visual sensors. These applications require on-demand communication between
various processes distributed over the network. In general, both the nature and volume of data
that needs to be communicated could be quite varied among the applications as well as within a
single application. Typically, the synchronization messages could be small whereas data transfers
could be quite voluminous. In most existing solutions, the messages are typically sent as single
TCP streams. Such solutions do not in general exploit the network to provide the best possible
end-to-end delay.

In the present networks, such as the current Internet, the messages are decomposed into data-
grams and sent via various routers as per the IP paradigm. At the routers the incoming datagrams
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from all sources are serviced in a best-effort paradigm. The datagrams can be delayed or alto-
gether dropped at the routers. Consequently, the end-to-end delay of a message transmission can
be highly unpredictable, especially if the datagrams are routed through high-traffic regions. While
such unpredictability can be tolerated in services such as email, it can cause severe problems in
several applications such as data transfers to and from supercomputers, instrument control, and
distributed simulation.

We propose NetLets that perform delay estimation and two-path computation. Depending on
the underlying network, various levels of routing are also performed by NetLets. For the Internet,
NetLets perform source-based routing via the other NetLets. NetLets run as daemon processes
and exchange measurements among themselves. Data to be transmitted over the network will be
handed over to the local NetLets by the computation process. In a nutshell, NetLets perform all
the networking work needed to achieve the end-to-end performance, and thereby relieve the user
from having to explicitly account for networking. Our main emphasis is on two-paths which provide
several advantages compared to single paths.

NetLets provide networking performance and/or guarantees beyond any of the currently avail-
able mechanisms. A number of QoS projects [12], in particular the Detour project [11], propose
concepts similar to ours. But, our system differs in a number of ways: (i) our solution is based on
explicitly realizing two-paths for data transmission, (ii) our method is analytically justified under
very general conditions (Section 3.2), and (iii) preliminary working implementations of NetLets on
the Internet (Section 4), local area networks [8], and simulation [5] show very promising results.
Compared to an earlier implementation [8], the present work provides stronger analytical guaran-
tees based on more refined measurements and estimation. Another related work is the parallel TCP
streams for large memory transfers [10, 4], or web traffic [1], wherein the objective is to achieve
high “effective” bandwidth data transfers. Our work differs in providing analytical guarantees, and
our streams, routed via other NetLets, achieve more spread-out traffic compared to parallel TCP
streams.

The concept of NetLets is described in Section 2. Theoretical results that underpin NetLets for
two-paths are described in Section 3. Experimental results based on NetLets implementation on
the Internet are presented in Section 4.

2 NetLets and Applications

The NetLets are designed to perform all the network related activities in a manner that relieves the
communicating processes from accounting for the details of the network. NetLets run as daemons
at the processing nodes and communicate over the network to perform three main functions shown
in Figure 1: (a) measurement and state estimation (b) path computation for message transmission,
and (c) routing at a suitable level. The actual realization of the computed paths in a network
depends on the exact details of the application as well as the type of routing provided by the
underlying network. At present, the routing paths for datagrams in IP networks are decided by the
best effort method. Very little support for source-based routing is provided by the Internet routers,
which are controlled by service providers. In our scheme, the messages between the NetLets are
source-routed via the other Netlets !.

Consider a simple scenario of distributed computing over the Internet, where a computational
task is distributed over several nodes. Messages are communicated between the nodes as per the
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task structure as in Figure 2(a). For example, the communication between the processes P; and
P, could be handled by a process-to-process TCP connection. In the present methods, the same
TCP stream is utilized to send all the messages between them — the individual datagrams, however,
could travel via different physical paths. If this connection happens to have high traffic so that
delay or the packet loss is high, no rerouting action is taken by TCP.

Consider that NetLets are executed at each of the processes as shown in Figure 2(b). The
processes communicate with others through the NetLets which compute the best path for a message
of given size. NetLets maintain peer-to-peer connection among themselves as shown in Figure 2(b).
Furthermore, each NetLet maintains estimates of various delays as regression functions of the
message size. If the IP connection between P; and P via the routers Ry and Ro has high delays,
then the NetLet at P, uses its regression to compute an alternate path such as R;-R3-Ro, which is
utilized by sending the message to the NetLet at R3 instead of Ry. Furthermore, if a large message
has to be sent, a two-path consisting of Ry — R4 — Re, and R1 — R3 — Ro, may be utilized in parallel.

3 Networks of NetLets

In this section, we provide an analytical justification for the design of the NetLets in terms of per-
formance guarantees and design of two-paths. Detailed derivations for the performance guarantees
can be found in [5].

3.1 Network Model

A network of NetLets is represented by a graph G = (V, E) with n nodes and m edges or links.
Here each node represents a NetLet and link represents a communication channel such as TCP
connection (as in the previous section). It is important to note that a node does not necessarily
correspond to an Internet router but a host where NetLet daemon can be run. A message of size
r must be transmitted from a source node s to a destination node d. A message incurs three types
of delays:

(a) Link Delay: For each link e = (v1,vs), there is a link-delay d(e) > 0 such that the leading
edge of a message sent via e from node v; at time ¢ will arrive at node vy at time t + d(e).

(b) Bandwidth Constrained Delay: Each link e € E has a deterministic “effective” bandwidth
b(e) > 0. Once initiated, a message of r units can be sent along link e in g(r,b(e)) + d(e)
time, where g(r,b) is non-decreasing in r and non-increasing in b. For a simple bandwidth
constraint, we have g(r,b(e)) = r/b(e).

(c) A message of size R arrives at the source s according to an unknown distribution Pr. At
any node v, @, and R, are the random variables denoting the queuing delay and message
size distributed according to unknown distributions Pg, and Pg,, respectively. Let Pg,,
denote the joint distribution of Q,,...,Qy, for all v;...v, € V. For any given message
size R, = r, let g,(r) denote the regression of @, onto R such that g,(r) = E[Q|R, = r].
No information about the distributions of R and Q,, v € V, is available. Instead, the
measurements (Qu;1, Ry;1), (Qui2s Ru2), - - -5 (Quyt, Roy) that are independently and identically
distributed (iid) according to the distribution Pg, gr,, are known at each node v € V.

We performed end-to-end delay measurements using NetLets distributed on the Internet. In
Figure 3, the measurements are based on sending small messages. The lower plot represents a TCP
connection between between Oak Ridge National Laboratory (ORNL) and University of Tennessee



(UTK), and the top plot corresponds to a connection between ORNL and Old Dominion University
(ODU). The physical distance between sites for first and second connections are approximately 20
and 500 miles, respectively. In Figure 4, we consider messages with widely ranging sizes between
ORNL and University of Oklahoma (OU) in the left figure, and ORNL and University of California
at Riverside (UCR) in the right figure. In terms of physical distance, the sites of first and second
pairs are approximately 1000 and 2500 miles apart, respectively. Although the mode and type of
communication is quite different in the above cases, our model captures the essence: in each plot,
the “ slope” corresponds to the bandwidth and the additional variation corresponds to @,.

3.2 Performance Guarantees

Consider a path P, from source s = vy to destination d = vy, given by (vg,v1), (v1,v2), ...,
(vg—1,vg), where (vj,vj41) € E, for j = 0,1,...,(k —1). The bandwidth of this path is b(P) =
k—1
mig b(e;), and the delay due to bandwidth is given by g(r,b(P)). The end-to-end delay of path P
‘7:

in transmitting a message of size R is
k—1
j=0

where @, g is the conditional delay at node v; given that a message of size R arrived at the node.
The exzpected delay of path P for the given message size R is given by

k—1
T(P,R) = g(R.b(P)) +d(P) + Y [ QudPa,, r. (3:2)
j=0

which is a random variable (of R) for a fixed path P. Let P denote the set of all paths from s to d.
Let Pp denote a path with the minimum expected end-to-end delay for the given message size R
such that T'(Py, R) = lr_peig T(P, R). If the error distributions are known, P}, can be computed using

deterministic optimization methods. Such an approach is infeasible here since the distributions are
not known. We compute an estimator Pg of Pj using a regression estimator such that

P {Ba[T(R, Pr) - T(R, Pp)] 2 cf <5, (3.3)

for a sufficiently large sample size, which depends on ¢, §, n, and a suitably chosen function family
Q, that contains the regression ¢,. Informally, this condition guarantees that: the expected delay
of Pg is within € of that of Py, with probability 1 — 4, irrespective of the distributions Pr and Pg,, .

We wish to emphasize here that this guarantee is possible because the measurements correspond
to the actual delays experienced by the messages — stated otherwise, the measurement mechanism is
same as the one used for actually sending the messages. Traditionally, mechanisms such as ping and
traceroute are used to collect measurements, and it is unclear if end-to-end guarantees such as in Eq
(3.3) can be provided based on such data. The difficulty here is that the communication mechanism
used by the distributed processes can be quite different from that used in ping or traceroute, and
there is no simple way of relating the two. Also note that due to firewalls, in some cases ping and
traceroute responses may be disabled, controlled (e. g. ICMP rate control), or deliberately set to
incorrect values.

The expected end-to-end delay of Eq (3.2) for the message size R can be written as

k—1
T(P,R) = g(R,b(P)) +d(P) + ) _ ¢, (R),
j=0
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which is a random variable since it is a function of R distributed according to Pg. Let §,(R) € Q,
be an estimator of the regression §,(R) computed using the measurements. Based on the estimator
Gy(.), we consider the empirical end-to-end delay given by

k—1
T(P,R) = g(R,b(P)) + d(P) + >_ 4u; (R). (3.4)
j=0

Let the empirical best path based on the regression estimate be given by Pp = arg }Jni% T(P, R).
€

Since §, is based only on the measurements and P is finite, the best empirical path Pg can be
computed entirely based on the sample.

The performance of Py is related to that of §, in a simple and elegant manner both in terms of
sample and computational complexities [5]: the condition (3.3) can be assured by ensuring

P {ER[QAU(R) - Q’U(R)] > 61} < éy,

for suitably chosen €; and d1, and thus relating the sample complexity of the regression estimator
to that of Pr. The sample complexities for a number of estimators including vector space methods,
feedforward neural networks and monotone regressions are derived in [5].

3.3 Single Path Computation

Given that a suitable regression estimator has been selected, we now present an algorithm [5] to
compute the best empirical path Pr. We define an augmented delay of an edge e = (v1,v2) as
da(e) = d(e) + Gy, (r). Let by, b,...,b. denote the distinct values of the bandwidths b(e), e € E.
Let G(a) = (V, E(a)) denote the subnetwork where e € E(a) if and only if b(e) > a. Let a s — d
shortest path in G(a) denote the shortest augmented delay path based only on the augmented delay
of the edges (i.e. with minimum d4(.) value). Our algorithm Min-Path is based on the algorithm
of [9] which was originally proposed for the special case when ¢,(r) = 0, and g(r,b(P)) = r/b(P).

Let g(P,r) = > Gy(r), which yields d4(P) = d(P) + ¢(P,r).
veP

algorithm Min-Path(r)

1. for j =1,2,...,c, compute s — d shortest path P; in G(b;);

2. compute index k£ which minimizes {g(r,b(P;)) + d(P;) + §(Pj,7)|7 = 1,2,...,c};
3. return Py as the path with the minimum end-to-end delay;

Algorithm 1. Computation of best empirical path Pp.

The complexity of this algorithm is O(m? + mnlogn + nf(l)), where f(I) is the complexity of
computing §(r) at a given value r. Thus, a polynomial-time (in /) regression estimator results in a
polynomial-time (both in n and [) routing method.

3.4 Two-Paths

A two-path from s to d, denoted by M P, consists of two simple paths from s to d. Consider a
network G = (V, E) with zero queuing delays @, = 0 for all v € V and ¢(r,b) = r/b. Now a
message of r units can be sent along the edge P in r/B(P)+ D(P) time. This model is a first order
approximation to the measurements shown in Figures 3 and 4. The end-to-end delay, denoted by
T(MP,r), of a two-path M P from s to d is defined as the time required to send a massage of size
r from s to d, wherein the message is subdivided and transmitted via the constituent paths.



Consider a network consisting of two paths P; and P». Let By = 10 units/sec, By = 20 units/sec,
Dy = 2 sec, and Dy = 12 sec. Consider a message of size r = 100 units. Then T'(P;,100) = 12 and
T(P,,100) = 17. If a single path is to be used, P; will be chosen for this message size. On the other
hand, let us say that 99 units are sent on P; and 1 unit is sent on P; the corresponding delays are
given by 99/10 + 2 = 11.9 sec and 1/20 + 12 = 12.05 sec respectively, resulting in an end-to-end
delay of 12.05 seconds. Clearly, it is advantageous not to use the two-path {P;, P>} for this message
size. Now consider a message of size r = 1000 units. The end-to-end delays of individual paths P;
and P, are 102 sec and 62 sec, respectively. Thus if a single path is to be used, then P, will be
chosen. More generally we have: for r > 200, P, is the choice; for r < 200, P; is the choice; and for
r = 200 either can be chosen. Consider using a two-path {P;, P,} for r = 1000 such that 400 and
600 units are sent via P; and P, respectively, resulting in the individual delays of 42 sec for each
path; hence the resultant end-to-end delay is 42 sec which is smaller than that of P; or P, (given
by 102 and 62 sec, respectively).

In general, the message size determines if a two-path {P;, P>} achieves a lower delay. We have

T(MP,r) <min{T(P,r),T(Ps,7)}

if and only if D(Py) +7/B(P1) > D(P,) and D(P,) +r/B(P;) > D(P;) [7]. This condition can be
used to check if a two-path is better than a single path for a given message size r.

The two-paths are computed as follows. First the quickest path is computed as in the previous
section, then it is removed from the graph by reducing the appropriate bandwidths of the links.
Then the next quickest path is computed in the residual graph. Then these two paths are combined
using the above equation. While the resultant path (single or two-path) is not guaranteed to be an
optimal two-path in a strict sense, this method yielded very good results in actual implementations
as shown in the next section.

4 Experimental Results

The network shown in Fig. 5 is utilized in our preliminary implementation of NetLets, which
illustrates the practical effectiveness of the proposed method. The delay regression estimation is
based on potential function method as in [6]. We consider two distributed computing scenarios
involving the exchange of: (a) small size messages with a few tens of bytes, and (b) large messages
with widely varying sizes in the range of few bytes to megabytes. The first case is typical in web-
based database query servers and web instrument control, and the second case is typical of remote
visualization and distributed simulations.

For the first case, our results are based on three NetLets system shown in Figure 5(c), where
the server is located at OU and client is located at ORNL. The end-to-end delays incurred in
sending and receiving a number of queries is represented on Y-axis in Figure 6. The upper curve
represents queries processed as a single TCP stream ORNL-OU as is usually done. The lower curve
corresponds to a three NetLets system located at ORNL, ODU and OU, wherein two-paths are
employed, consisting of direct TCP stream ORNL-OU and one via ODU. The messages are divided
into two parts as per the delay curves of both the paths and sent along the respective paths. Note
that the overall the end-to-end delay is much lower when NetLets are employed, except for some
smaller sizes. The two-paths based on NetLets resulted in an average improvement of about 25% in
the end-to-end delay. We believe that more improvements are possible when more than two paths
are considered and NetLets are more customized to the sites.

The second case, corresponds to large memory transfers of randomly generated sizes. In Figure
7, we show the most and least favorable cases we observed in experiments conducted over several



days. In each case the data was collected by executing both the programs (with and without
NetLets) within seconds of each other. Our results are again for transfers between ORNL and OU
as described above. The upper curve corresponds to TCP stream ORNL-OU and the lower curve
corresponds to the two-path via the NetLet at ODU. Notice again that the two-path yielded a
significant reduction in the end-to-end delay. Similar results were obtained for the other cases (b)
and (c) shown in Figure 5, although results were not as significant as in the best case in Fig. 7.
Nevertheless, these results show that NetLets hold a promise for significant performance savings in
Internet implementations.

5 Conclusions

We presented the concept of NetLets that enable efficient communication between distributed com-
puting processes over wide area networks including Internet. NetLets communicate with each other
to compute the delay-regressions of various links, and compute two-paths to send messages. They
also perform routing via other NetLets to realize the two-paths. The computing processes simply
handover the messages to local NetLets which will deliver them to the destination. NetLets are
based on sound finite sample estimation theory in that the paths are computed using measure-
ments without requiring probabilistic traffic models. The end-to-end delays of computed paths
are guaranteed to be close to optimal paths with a specified probability. Note that optimal paths
are computable only under a complete knowledge of delay distributions, which involves a signifi-
cantly more difficult task. Our preliminary implementation of NetLets shows that they are a viable
method for the Internet, and a more extensive implementation of NetLets is currently underway.

NetLets are upward compatible with a number of next generation networking technologies that
are expected to be available in future. At present, there is no easy means of controlling the
route taken by a particular datagram. In the next generation networks that enable dynamic route
specification, NetLets can specify the planned routes along with the messages. Multiple grade
services, such as DiffServe, IntServe, and MPLS [3, 2], are expected to enable messages to be sent
under different priorities, with higher priorities incurring higher costs. NetLets can be configured
to monitor and utilize the delays under different grades of service. Also any improvements in the
underlying TCP implementation, such as auto-tuning, can be transparently exploited by NetLets
by simply replacing the existing implementation with a new one. Active networks enable executable
code to be sent along with the messages. In such networks, NetLet daemons at the source nodes
can send code for routers to collect the measurements and also to assist in routing. In this paper,
we assumed local stationarity of the delay distributions. It would be interesting to design NetLets
for time-varying distributions using martingale or mixingale methods.
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Figure 5: Network of NetLets.
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