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Abstract

An independent and identically distributed sample of an unknown function generated
according to an unknown distribution is given. Several function estimators are computed
based on the sample by minimizing the empirical error over function families. These estima-
tors provide performance guarantees based on best available cover sizes for the respective
function families. Traditionally, the estimator that performs the best on the training data
or provides the best performance guarantee is often selected and others are discarded when
no other information — such as additional examples — is available. We consider a fuser
trained with the outputs of the individual estimators by minimizing empirical error over a
fuser class. If the fuser class satisfies a simple isolation property and has a smaller cover size
compared to individual estimators, we show that the performance guarantee of the fuser
is at least as good as that of the empirical best estimator. Several well-known fusers such
as linear combinations, special potential functions, and certain feedforward piecewise-linear
networks satisfy the isolation property. In the first two cases the fuser class forms a vector
space for which we derive more detailed conditions. We also derive conditions in terms
of the natural parameters when the estimators are feedforward sigmoidal networks with
bounded weights. We present simulation results to show the effectiveness of the fuser.
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1 Introduction

Function estimation problems based on empirical data arise in a number of disciplines. Some
of the widely-used methods for function estimation are from the areas of statistics [30], systems
theory [24], and more recently from computer science [16]. In general, the performance of the
function estimators from the statistics and system theory literature is characterized in terms of
asymptotic convergence results, whereas many of the results from computer science literature
are in terms of finite sample guarantees. Furthermore, the results from the former are typically
stated in terms of smoothness properties whereas those from the latter are typically stated in
terms of combinatorial parameters. The performance conditions in either case could be quite
involved and beyond the expertise of an average applications person [40, 41]. At present, a
practitioner is provided a wide variety of function estimators, each of which is characterized
by (a) empirical performance based on a sample, and (b) performance guarantees provided
through analysis. In terms of finite sample results, the available guarantees are in terms of the
best available upperbounds, which are often utilized in comparing the estimators. Nevertheless,
several of these estimators are based on considerable practical and theoretical insights, and it
would be most desirable to retain some of their strengths. This paper is an attempt at such
approach. Informally speaking, we show that the various estimators can be fused without
loosing the performance guarantee of the best individual estimator, and this can be done
without the knowledge of the relative performances of the estimators. For the practitioner
our results suggest a simple recipe: utilize available methods to compute a number of function
estimators, and then combine them using a fuser from a class that satisfies the isolation property
and has small cover size. These properties are satisfied by linear combinations and certain
feedforward networks, and are fairly easy to verify in general.

Problems dealing with multiple methods for solving a problem have been studied as early
as 1818 by Laplace [10] (see [26] for a brief historical account of information/decision fusion
methods). In engineering systems, von Neumann [42] showed that unreliable components
can be combined to produce a more reliable computer. In a ground-breaking paper in the
area of forecasting, Bates and Granger [5] showed that “better” forecasts can be produced
by (linearly) combining several different forecast modules. Throughout the long history of
the problems of this nature, it is generally accepted that “better” results can be produced
by “suitably” combining the methods rather than picking the best based on the test data.
Roughly speaking, we show that such result holds for function estimation problems within the
Probably Approximately Correct (PAC) framework of Valiant [38] under fairly mild conditions.
Such problems are being extensively studied by the PAC learning community [43, 13, 7]; we
subsequently discuss the relationship between our formulation and the existing ones.

We are required to estimate a function f : R¢ +— [0,1], based on a sample (X1, f(X1)),
(Xo, f(X2)), ..., (X5, f(X;)), where X1, X5,...,X; ! is independently and identically dis-
tributed (iid) according to an unknown distribution Px defined on R¢. For an estimator f

!Throughout the paper random variables are denoted by upper case letters, e.g. X, Y, etc., and their
deterministic versions are denoted by the corresponding lower case letters, e.g. z, y, etc.



of f we consider the ezpected square error given by 2
1) = [ (10 = f(x0)dpy.

Typically f is chosen from a function class F, e. g. a feedforward sigmoid networks of certain
architecture [35], potential functions [25], or radial basis functions [21]. A precise estimation
of f* € F that minimizes the expected error over the function class is not possible since Px
is unknown. We adopt the popular PAC framework [38] in quantifying the generalization
property in terms of I(.). Given a sufficiently large sample, we require that

PII(f) = I(f) > ¢ <

for e > 0, 0 < § < 1, where the sample size is a function of ¢, §, and certain parameters of
the function class. As per the convention, P = P denotes the distribution of X1, Xs,..., X},
and € and § denote precision and confidence, respectively. Note that if the function class
contains f then I(f*) = 0. The main attraction of this paradigm is that the sample size can
be specified entirely in terms of €, § and the function class F. In particular, no knowledge of
the distributions is needed.

We are given N function estimators each of which is obtained by deterministically selecting
a function that minimizes the empirical error over a class of functions. Let Fi, Fo, ..., Fn
correspond to the function classes of the estimators (each function class contains functions of the
form h : R% — [0, 1]). For example, f1, fo, and f3 could be a neural network, a potential function
and a linear estimator, respectively. The performance bounds of these estimators are specified
in terms of their corresponding parameters. For the ith estimator, let I(f) = fl_Tél;_l I(f;) and

3 ?

I(f;) = mi}__l I(f;), where the empirical error I(.) is given by
i€Fi

i) =1

I
(X)) — F(Xa))2
=1

If F; satisfies certain properties, e. g. finiteness of psuedo-dimension [16] or scale sensitive
dimension [3], we have P[I(f;) — I(ff) > €] < d;, where §; depends on the sample size, € and
the parameters of F;. For each estimator the best available bound for §; is utilized here, which
may or may not be the best possible one. The weakest characterization of F; for which such
results are established is the finiteness of scale-sensitive dimension [3]. There are a number
of stronger characterization such as the finiteness of Li-cover [39], pseudo-dimension [29], and
capacity [40] that are sufficient to yield such results (see [16] for a comprehensive treatment).
The actual characterization is not very critical for the discussion of our results, and we choose
to present our results in terms of Lo~ or Li-cover for ease of presentation. These cover sizes
are utilized in providing finite sample performance bounds for a number of practical methods
such as potential functions and neural networks (Sections 3 and 4).

We address the question of choosing the “best” estimator versus “fusing” the estimators
under the conditions that no additional examples are available. We consider that each fAZ is

2Certain measurability properties are assumed to be satisfied for the existence of various expected errors in
this paper (see [28] for details).



computed as a deterministic function of the sample. In terms of finite sample guarantees,
we show that the fuser is at least as efficient as the empirical best estimator (in a precise
sense defined in the next section) if the function class of the fuser: (a) satisfies a simple
isolation property (defined in Section 2), and (b) has the cover size smaller than the sum of
the cover sizes of individual estimators. The isolation property is satisfied for feedforward
piecewise-linear networks, special potential functions, and linear combinations. When function
estimators are based on the popular feedforward sigmoid feedforward networks, and potential
function methods, we derive more detailed conditions in terms of the natural parameters.

We then consider the case where the fuser function class forms a vector space of which the
linear combinations are a special case. In this case, the computation of fuser can be performed
in polynomial (in /) time using well-known least square methods. Our result provides an
analytical justification for the success of linear combination fusers in a number of areas such
as forecasting [5], neural networks [15], regression estimation [?], and pattern recognition.

There are a large number of fusion methods studied in various disciplines — the analytical
results concerning the fuser are rather specific to the individual areas. Within the framework
of PAC learning, there are a number of works dealing with “combining learners” (for example
see [19, 12, 6]). The most distinguishing features of our framework include: (a) fixed set of
potentially different estimators, (b) fixed iid sample, and (c) off-line learning formulation. This
framework is motivated by the applications areas of automatic target detection [9], and sensor-
based robotics [1]. In these applications, the sample is expensive to collect and is typically
gathered in a batch mode, for example, by flying an airplane to collect data corresponding to
known targets or by conducting indoor mobile robot experiments. Also, several domain-specific
learning methods have been developed based on different approaches which are very difficult
to compare (not unlike in the area of forecasting [11]) mainly due to the technical conditions
under which their performance is characterized.

We now briefly summarize the existing formulations from PAC learning literature that are
very closely related to ours. The methods of Freund [12] and Schapire [37] rely on utilizing
different sets of examples to generate a large number of hypotheses using a single learner.
In the method of Kearns and Seung [19], the number of hypotheses is a variable, and the
hypotheses are chosen to be independent to meet the performance criterion. In spirit, our
formulation is the closest to that of combining experts to achieve the performance of the best
expert. The literature on this problem is rather extensive (see for example Cesa-Bianchi et al
[7, 6], Haussler et al [17], Littlestone and Warmuth [23], Vovk [43], for more details), but the
most of these results deal with on-line framework. In addition to a less stringent requirement
due to off-line criterion, we deal with function estimation; most results on combining experts
deal with indicators functions, with the exceptions such as the works of Kivinen and Warmuth
[20], and Freund and Schapire [13].

The organization of the paper is as follows. In Section 2 we show that the isolation property
and smaller cover size of the fuser class are sufficient to ensure that the fuser performs at least
as efficiently as the best of the estimators. In Section 3, we show an implementation of a
fuser for a set of sigmoid neural networks with bounded weights. In Section 4, we discuss the
vector space fusers which include the popular linear combination fusers and special potential
functions. We describe a simulation example in Section 5.



2 Fused System Versus Best Estimator

Given the set of N estimators, for the ithe estimator, we have

P |sup |I(g) — I(g)] > ¢/2| < &,
9cF;

which implies X
PI(fi) = I(f7) > €] < i,

where §; can be specified in terms of a “suitable” cover size of F; (see Appendix). Recall that

~ N . .
we utilize the best available value for §;. Let fu, = arg mi{l I(f;) denote the empirical best
1=

N
estimator, and f*. = arg mi{l I(f}) denote the ezpected best estimator. Then with probability
1=

1— (6, +...+6x) we have I(f;) — I(f}) < e for all i = 1,2, ..., N, which implies I(fmi,) —
I(fr;,) < € or equivalently

PlI(fin) — I(fin) > €] < 81 4 ... + On. (2.1)

This condition specifies the performance guarantees that can be provided if the empirical best
estimator is chosen, compared to the best possible estimator from F; UJF U...U Fn.

The following definition 3 enables us to compare two estimators in terms of the performance
guarantees.

Definition 2.1 Consider two function estimates g1 and gz, for a function g such that
PlI(g1) — I(g) > €] < d1(e,1)

P[I(g2) — I(g) > €] < d2(€,1).

The performance guarantee of the estimate g1 is at least as good as that of go with respect to
function g, if §1(¢,1) < da(€,1), for all €.

The motivation of this definition is pragmatic: it relates what is known about the perfor-
mance guarantees rather than the inherent properties of the estimators, and thus, enables us
to compare estimators in practical scenarios. A definition based on actual values of §;’s might
be more satisfying from a mathematical perspective, but, on the other hand, will not be of
much practical value (since such values are known only in very limited cases).

The outputs of thei estimators on the sample are utilized to compute the fuser as follows.

A

Given the estimators f1, f2,. .., fn, the fuser is computed based on the sample (f(X1), f(X1)),

~ ~ ~

(f(X2), f(X2)), .-, (f(X1), f(Xi)), generated from the original sample such that f(X;) =

(f1(X5),..., fn(X5)), by choosing a function from the fuser class Fr = {fr : [0,1] + [0,1]}.
The expected and empirical errors of the fuser are given by

1i(fr) = [1£X) = fi( U0, (X, f (X)) 2dPy.

3This definition may not yield yes/no answer for certain pairs of estimators if §1 < &2 is not satisfied for the
entire range of e. This can be modified to be sensitive to certain range of values of e.
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l
r(fr) = 3 YUFKD) = Fr( (), o6, I,
i=1

respectively. Let f7 and fp minimize Ir(.) and I r(.) over Fp, respectively. To compare the
fused system with the best of the individual estimators, we use the following obvious extension
of Definition 2.1.

Definition 2.2 Consider the system of N estimators and the fuser such that
P[I(fmin) - I(f;:'xm) > 6] < 51(611) +oo+ 5N(6al)

P[IF(fF) = I(fmin) > €] < dr(e1).

The performance guarantee of the fuser fF is at least as good as that of the empirical best
learner fumin if for all € we have

or(e,l) < d1(e,l) + ...+ 0n(e ).

Informally speaking, the condition requires that the § of the fuser be smaller than that of
the empirical best estimator for the same value of € and [, i.e. fuser has higher confidence of
achieving the same precision as the empirical best estimator for the same sample size.

The following definition specifies a simple but a critical constituent property that yields an
efficient fuser.

Definition 2.3 A function class F = {f : [0,7]¥ +— [0,7]} has the isolation property if it
contains the functions f(y1,v2,---,yx) = yi for alli =1,2,... k.

The isolation property was first proposed in [34, 31] for concept and sensor fusion problems.
If F consists of linear combinations, i. e. f(y1,¥2,--.,Yx) = w1y1+woys+. . .+ wryk, for w; € R,
this property is trivially satisfied. If F consists of the potential functions [2] this property is not
satisfied in general. This property is also not satisfied for feedforward sigmoid networks, but
is satisfied by certain feedforward networks with piecewise linear units (see Section 3). In the
special case of Boolean valued functions, the isolation property is satisfied when F corresponds
to set of all Boolean functions on k variables.

If Fr has isolation property, it is direct to note that Ix(f5) < I(f%;,), and Ip( fr) <
I(fmin). But, for the fuser to be better, Ir(fr) must be better than I(f*, ) as per the Definition
2.2. The other parameters of the fuser must be accounted for to ensure that i < d1+...4+dn-
While such guarantees are not possible in all cases, very general conditions are sufficient. We
now present two such condition in terms of cover sizes, which are used in a number of practical
estimators.

Let S be a set equipped with a pseuodometric p. The covering number N (e, p,S) under
metric p is defined as the smallest number of closed balls of radius €, and centers in S, whose
union covers S. For a set of functions G = {g : ®M + [0, 1]}, we consider two metrics defined

as follows: for g1,90 € G we have

dp(91,92) :/

M |91(Z) - 92(Z)|dP>

6



for the probability distribution P defined on M, and

doo(g1,92) = sup [g1(z) — g2(2)|-
2ERM

This definition is applied to functions defined on A C ®M by extending them to take value 0
on RM \ A.

Theorem 2.1 Given N function estimators such that ith estimator is chosen to minimize
empirical error over the class F; = {f; : R¢ +— [0,1]}. If the fuser class Fr = {fr : [0,1]V
[0,1]} has the isolation property, the performance guarantee of the fuser is at least as good as
that of the empirical best estimator under the condition

N(e,Fr) < N(e,F1)+ ...+ N(¢,Fn)

for the cases: (i) N(e,G) = N(€,do,G) for G = Fi,...,Fn,Fr, and
(ii) N(¢,G) = N(e,dp,G), for G =F1,...,Fn,Fr such that the bound N(e,dp,G) is valid for
all distributions P.

Proof: Since Ir(f}) < I(f};,), we have

Py [Tr(Fr) = T(fin) > €] < Pk [Ie(fr) — Tn(fi) > €]

For X = {X1,X2,...,Xi}, let & denote the function (defined on set of all X and taking values
in ;) correspondlng to the ith estimator such that &(X) = fi. Thus, there exists a function
€ such that £(X) = f= (fl,fg, ..,fN) For fr € Fp, and estimator f, we define fp o f such

that (fro f)(X) = fr(f(X)), for f(X) = (fi(X), fo(X),-.., fw(X)). Then, the cost functions
realized by all possible fr o f is given by

Gr = {(f — fro f)?|fr € Fr, and all corresponding f} .
By noting that f is fixed for any given X = {X, X5,...,X;}, we decompose G such that

gFZU{(f—g(X))ZifFEfF}ZU{(f—fFOf)QIfFGfF},
x f

where £(X)(X) = (fr o f)(X) for all X. From Vapnik [39] we have

P [Ip(fr) = Ir(fi) > €| < P | sup [Pag — Pg| > ¢/2

geGr

where Pg = [g(X)dPx, Pg = Z g(X;). Based on Pollard [28] (see Lemma 6.1 of the

Append1x Wthh states the formulatlon from [25]), the right hand side is upperbounded by
4E[N(e/32,d],GF)]e —ne’/512  where d} is defined as: for any ¢',¢” € Gp, and X

1 l
atlg',g") = 7 2l (X:) - g"(X:)



which is a random variable.

We now bound E[N(e/32,d],Gr)] by using the bounds corresponding to the simpler family
Fr. Consider Part (i). For any fixed X1, Xo,..., X, and any ¢, ¢"” € GF, there exists a single
f,and f'p, f"w € Fp such that ¢" = (f — f'po f)? and ¢" = (f — " o f)2. Then, for this
sample X', we have

a(g.g") = %i_ilm'(Xi)—g"(Xin
< lg'(Xi) — g" (Xa))
< s [If'r(FX0) = 1o (FXNI2] = 1'e(FOD) = 1" p (X))
< s 2070 = 1R ()

< 281;P|fIF(y))— "r(y)|

where the third inequality follows since each fr € Fr maps to [0,1] and f : ®¢ +— [0,1]. This
condition implies df (¢, ") < 2doo(f'p, f" ), which in turn implies

N(e/32,d],Gr) < N(e/64,dso, Fr)
for all X. Furthermore, since d, is independent of X1, X, ..., X;, we have
E [N(e/32,d],Gr)| X1, X2,...,X;] < N(e/64,dw, Fr).
Thus, applying Lemma 6.1 of Appendix to individual estimators, we have
§; = AN (¢/64, doo, Fi)e ™ /512,

For the fuser, we have

E[N(6/32,dzq,gp):| = /E[N(€/32,d2q,gp)|X1,X2,...,Xl] dPdePXg---dPXl
< /E[N(e/64, doo, Fr)| X1, Xo,...,X;]dPx,dPx, ...dPx,
< / N(e/64,dw, Fr)dPx,dPx, ...dPx,

< N(6/64, doo,]:F),

and thus we have dp = 4N(e/64,ds, Fr)e ™ /512, Then, the condition in Definition 2.2 is
satisfied if
N(€,doo, Fr) < N(€,doo, F1) + ...+ N(€,doo, Fn),

which proves Part (i).
For Part (ii), we first note that for any X7, Xo, ..., X;, we have

N(e/32,d],Gr) < N(e/64, Fr)



since the bound is valid for the particular distribution generated by f(X1), f(X2),..., f(X)).
Furthermore, different samples correspond to different distributions, but the same bound is
valid for all cases. Thus, E [N(€/32,d],Gr)] < N(¢/64,Fr). The rest of the proof is identical
to Part (i). o

This theorem specifies a simple recipe for the fuser design: choose a fuser class with the
isolation property and a small cover size. In particular, linear combinations are a good choice
if the number of estimators is small (see Section 4).

In essence, this theorem enables us to conclude the performance guarantee of the fuser by
simply examining the cover sizes. The condition of Theorem 2.1 is trivially satisfied if the
fuser has a smaller cover size compared to the minimum cover size among the estimators. In
general, this condition can be expressed to that in terms of other parameters in specific cases.
Such parameters include the basis size of the potential function method, number of terms in
the linear combination fusers, and the number of nodes or bounds on the weights . Such
derivations are illustrated in the next two sections.

3 Feedforward Networks

In this section, we consider the cases where sigmoid feedforward networks are employed as
estimators. We show that in these cases the fuser design based on Theorem 2.1 is particularly
simple, such as specifying a bound on the weights of a linearized class of networks.

We now consider a class of feedforward neural networks with a single hidden layer of h
nodes and a single output node. The output of the network corresponding to input z € R¢ is

h
given by fu,(z) = > aja(bjrx +t;) where w = (w1, ws, ..., Wpay2)) is the weight vector of the
Jj=1
network consisting of a1, ag, ..., ap, 11,012, .., 01455 bp1,- .-, bpqg and t1,to,..., 1y, and o(.)

is a given function. We denote the set of sigmoidal networks with bounded weights by
-7:SB = {fw Tw e [_BaB]h(d+2)aU(z) = ta‘nh_l('yz)},

where v > 0 is called the gain parameter. The sigmoidal neural networks are very popular and
are extensively applied in function estimation problems [36, 22]. Since the sigmoidal neural
networks do not have the isolation property, they do not readily yield a fuser specified by
Theorem 2.1. They, however, form good candidates for the individual function estimators. We
now consider that different network classes are used for the individual function estimators by
specifying different values for h, v and B.

For the fuser, we employ feedforward piecewise linear networks where o(z) is given by

z ifz €[0,7]
o (z)=¢ 7 ifz>71
0 ifz<0

“Similar results can be derived for the case of unbounded weights based on the VC dimension bounds of
Karpinski and Macintyre [18]. In all our motivating practical examples, the neural networks have bounded
weights, for which simpler arguments yield the required cover sizes for function estimation problems [25, 4, 35,
32, 33].



for some bounded 7 > 1. We denote the set of these piecewise linear networks with bounded

weights by FLp. These networks satisfy the isolation property since f* in Definition 2.3 can

be realized by choosing: a; = 1, aj =0 for j # 4; t; = 0, for all j; bjy = 1, for j =i and k = 1,

and b;; = 0, otherwise. More general networks of this type have been studied by a number of

researchers ( for example, see [14]).

Consider that sth estimator minimizes empirical error over FSp,, and let hmin be the

N

minimum number of hidden nodes among all estimators with bound B = mi? B;. Let the fuser
1=

be chosen from the class of piecewise linear networks with hpyi, hidden nodes. For v = 1, the

fuser class can be obtained by computing the single parameter Br as follows. From [25] we

have

€

_ \ h(2d+3)+1
N(e, dp,FSp) < (4e(hmm + Dhmm) )

The same bound applies to FLp with d and B replaced by N and By, respectively (since o7 is
a nondecreasing function with bounded variation; see [25, 27] for details). Then the condition
in Theorem 2.1 can be satisfied by ensuring N (e, FLp,) < N(¢, FSp) which specifies By as
follows

4e(hmin + 1)) Frmmin N T3+ B:;“f&(fﬁ?)fl .

BFS(
€

Thus the fuser design simply involves satisfying a bound on the weights of the fuser class F Lp,.
We now consider a more restrictive case when X is chosen from [0, 1)¢. Similar computation
can be carried out by using the bound [35], for X € [0, 1]¢,

oo {02
N(e,doo, FSE) < '76 el ° ‘ ,

and the bound for N(e,dwo, FLB,) is obtained by using d = N, v = 1, and B = Bp in the
above expression. The condition in this case can be shown to be

Br < {ﬁB, 6/hma)(("}’maax - 1)(d_1)/(N_1)} .
For X € [0,1]¢, we have another bound given by

N(e,ds, FSB) < L%(d+2)(1/e)h(d+2),

N
where Lp = max(1,Bv%/4) [32]. As in the previous case let yB = mi{l’iji. By us-
1=

ing estimators such that v > 2/v/B, we have Ly = By?/4. Then for the fuser, we have
N(€,doo, FSB) < (Bp/e)tmax(N+2) " Then the condition of Theorem 2.1 is satisfied by the
following condition

Br < (By/4) % (1)) 795,

Since € < 1, if d > N, this condition is implied by the simpler condition Br < (B~y/4) w5

10



4 Vector Space Methods and Linear Combinations

The potential functions are extensively applied in the function estimation problems [2]. We
can employ them as individual function estimators here, where each estimation is of the form
widr(z) + ... + wsps(z), for w; € N, z € R, ¢ : R — R, corresponding to the basis
{#1,...,ds}. Different estimators can be obtained by varying the basis functions as well as the
basis size. In each case, the estimator fz corresponds to the weight vector (wq,...,ws) that
minimizes the empirical error. One of the attractive features of this method is that F; forms
a vector space of dimensionality s, which yields a simple bound N(e,dp, F;) < 2 (2?6 In %e)s
(see Lemma 2 of Appendix, and also see [25]) which makes it very convenient to check the
conditions of Theorem 2.1.

The general potential functions do not satisfy the isolation property, but a suitable fuser
class can be obtained by choosing functions of the form wi¢q (b1 y) + ... + wyén (bLy), for
w; ER,y € [O,T]N ,7 > 1, and b; € Y. We choose piecewise linear version of ¢;’s along the
lines of o7 (.) of the last section. Another way is to augment the basis of the potential functions
with N additional linear functions, which ensures the isolation property at the cost of adding
a factor of N to the dimensionality.

Linear combinations have been extensively used as fusers in various applications. For
example, recent applications include combining neural network estimators [15], and regression
estimators [?]. Since the linear combinations form a vector space, the bound in Lemma 2 of
Appendix is also applicable here. Thus one of the interesting and useful cases is when individual
estimators form vector spaces, and the fuser is a linear combination. Then the condition of
Theorem 2.1 takes the following form

N N Si
(=02) 5 ()
€ € i—1 € €

where s; is the dimensionality of the ith estimator. Thus we have the following direct but
useful result.

Proposition 4.1 For a linear combination fuser of N vector space estimators, the fuser is at
least as efficient as the empirical best estimator if at least one of the learners has a dimension-
ality N.

5 Simulation Results

We consider the special potential functions of the form

S
{Zaier%i ERbER, z€ §R5}
i=1

to illustrate the performance of the fuser. The training and testing samples are generated by
a particular function f of this type obtained by randomly generating the parameters s, a;’s,
and b;’s from the integer ranges [1,11], [1,1000], and [1,1000], respectively. Then the inputs
X;’s are generated according to a uniform distribution on [0,1]®, and the function values are
generated using f.

11



estimator S; | error on €rror on fuser
training data | testing data | coefficients

Estimator #1 | 11 | 0.008156 0.006913 0.428581
Estimator #2 | 5 | 2.230803 1.958127 0.000937
Estimator #3 | 2 | 179.517059 167.371048 | 0.000003
Estimator #4 | 8 | 0.065237 0.055423 0.032205
Estimator #5 | 7 | 0.851890 0.796250 -0.008831
Estimator #6 | 6 | 0.017759 0.014399 0.547107
Fuser — 1 0.000816 0.001155 -

Table 1: Percentage of data sets on which fuser has lower error than best individual estimator.

A number of estimators based on this special potential functions are computed to estimate
the unknown function. For each individual estimator, s; and b;’s are randomly initialized (using
same ranges as above), and then a;’s are computed using the least squares method based on
the sample. Fuser is a linear combination of the estimators computed using the outputs of the
estimators corresponding to the training sample.

We now describe a simple data set and the corresponding results of our simulation (Table
1). Based on 1000 learning examples, the best estimator (Estimator #1) achieved mean square
training error of 0.008156, and the fuser achieved a lower error given by 0.000816; note that the
error achieved by the worst estimator is 179.517059. Based on 1000 testing examples, the mean
square testing errors are 0.006913 and 0.001155, respectively, for the empirical best estimator
and fuser. It is interesting to note that the magnitude of coefficients of the fuser are larger for
the two of the estimators with low empirical error and lowest for the one with highest empirical
error.

To understand the performance of the fuser at a higher-level we varied the number of
learners and repeated the simulation for a number of data sets. There are 10,000 training
examples and 10,000 testing examples in each data set. There are altogether 20 data sets. For
each data set the errors committed by the fuser and the best individual estimator are computed
based on the test set. The percentage of data sets for which the fuser achieved no more error
than the best estimator is computed (see Table 2) as the number of learners is varied from 2
to 10. The fuser performed at least as good as the best estimator at 100% for N > 6.

Then a second set of individual estimators is obtained such that the basis size for each
estimator is at least as high as the number of estimators, which ensures the condition of
Proposition 4.1. The simulation was repeated on 20 data sets containing 10,000 training ex-
amples and 10,000 testing examples. The corresponding results are shown in Table 3. Notice
the improved performance of the fuser in this case compared to the previous case, namely that
the fuser performed better 100% for N > 4.

6 Conclusions

We considered the problem of fuser design for a set of function estimators each computed by
minimizing empirical error over a sample. We showed that a fuser, trained with the estimator
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number of estimators | percentage
81
72
90
84
100
100
100
100
100

© 00 O Ui W N
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)

Table 2: Percentage of data sets on which fuser has lower error than best individual estimator.

number of estimators | percentage
2 81
3 86
4 100
5 100
6 100
7 100
8 100
9 100
10 100

Table 3: Percentage of data sets on which fuser has lower error than best individual estimator.
Each estimator has at least N basis elements.
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outputs corresponding to the training sample, provides performance guarantee at least as good
as the empirical best estimator, if it possesses isolation property and a smaller cover size. We
derived sufficiency conditions in terms of two types of cover sizes. For the specific cases of
feedforward neural networks, potential functions, and linear combinations, we derived simpler
conditions in terms of the natural parameters such as weight bounds, basis sizes, etc. The
main motivation for this formulation is its occurrence in practical applications in the areas of
automatic target detection and robot sensor fusion.

Consider that we employ a fuser based on linear combinations of the available function
estimators of the type considered here. Then the fused system is guaranteed to be at least as
good as the best of the methods under the conditions considered here. If at a latter point,
another function estimation method is devised, it can be easily integrated into the fused system
by retraining the fuser. As a result, we have a system that whose guarantee is at least as good as
the best available method at all times. Also, the computational problem of updating the fuser
is a simple least squares estimation that can be solved using a number of available methods.

The results of this paper can be extended to the regression estimation problem. The main
ideas of this paper can be applied for characterizations based on scale sensitive dimension, etc.,
which specify weaker conditions for function learning compared to the cover sizes considered
here. The treatment of this paper is valid for deterministic function estimators only. It would be
interesting to see if isolation property can be extended or is sufficient for the case of probabilistic
estimators. It would be also of future interest to see if stronger results than just performing
better than best learner can be shown in the present formulation. Note that here additional
samples required for typical boosting algorithms [13] or the access to the estimator algorithms
5 themselves are not available in our formulation. But methods such as bootstrapping and
cross-validation can be carried out in our formulation. In certain cases, a fuser obtained by
these methods might provide better guarantees compared to our method which just minimizes
empirical error. Other areas of future research include the formulations of sufficient conditions
in terms of properties alternative to the isolation property, and also the necessary conditions
for the fuser to be better than the best estimator.

Appendix

We restate several known results here to facilitate the proof of Theorem 2.1 and discussion in
Section 4.
Let Y1,Ys,...,Y; denote the iid sample such that ¥; € A CRM, and Y = {",Ys,.... Y}
Let F denote a class of functions defined on the domain A. We define F = { (f(Y1), f(Y2),
.oy f(Yn)) : f € F} C[0,1)". Consider the random variable representing the covering number

. . . !
N(e,dy, Fy) where dj : [0,1] x [0,1]" + [0,1] is defined as dy(z,2) = } 3 |z — 2], for z =
i=1

(z1,z2,...,2;) and z = (z1,29,...,2). This covering number plays an in_lportant role in the
convergence of empirical means of functions to their expectations. We now state a result which
is an adaptation of Pollard’s result [28] by Lugosi and Zeger [25].

Lemma 6.1 Let F be a class of measurable functions from A into [0,1], and P be a probability

SWe are only given the function estimates which are outputs of these algorithms.
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measure defined on A. Let Y1,Ys,...,Y; be an iid sample according to P. Then

P {sup \P.f — Pf| > e} < 4E [N(e/16,dy, Fy)| e 112
feF

where Y = {Y1,Ys,....Y;}, Pf = [ f(y)dP and P,f = %Hf(yi).

In deriving finite sample results, one often utilizes a distribution-free bounds on N (e, czl, Fy)-
One such method utilizes a cover size based on dyo; since di(f1, f2) < doo(f1, f1) for any

f1, f2 € F, we have N (e, cil,]-"};) < N(e,dwo, F). A second method utilizes a bound N (e, dp, F)
that is valid for any distribution P on A; since such bound is valid in particular for the specific
distribution that places a mass of 1/l at each of Y;’s, we have N (e, cil,}"?) < N(e,dp, F).

If F forms a vector space of dimensionality d, then its covering number can be upper-

bounded as follows as a direct consequence of results of Cover [8] and Haussler [16].

Lemma 6.2 Let F denote d dimensional vector space of functions defined on A with range
[0,1]. Then for any probability measure P defined on A, we have

2e . 2e\¢ . 2e . 2e\?
—eln—e) and N(e,dl,f?)g(—eln—e) .

N(E,dp,]:) SQ(
€ €

€ €
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