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Abstract

A new methodology is developed for the prediction of material behavior, such as aging processes, by utilizing a
combination of domain models and nonlinear estimators including neural networks and nearest neighbor regressions.
This methodology is applied to the problem of predicting embrittilement levels in light-water reactors by combining the
existing models with the conventional nonlinear estimators. The Power Reactor Embrittlement Database is used in this
study. The results indicate that the combined embrittlement predictor achieved about 56.5% and 32.8% reductions in
the uncertainties for General Electric Boiling Water Reactor plate and weld data compared to Regulatory Guide 1.99,
Revision 2, respectively. The implications of irradiation temperature effect to the development of radiation embrit-

tlement model are then discussed. © 2002 Published by Elsevier Science B.V.
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1. Introduction

As we face the increasing electricity demand world-
wide and increasing concern about atmospheric emis-
sions, nuclear energy will be an important option within
a broad energy portfolio for industrialized and devel-
oping nations. The success of reactor technology de-
pends critically on the effective surveillance program to
monitor the degradation of irradiated materials during
service. The aging and degradation of light-water reac-
tor pressure vessels (RPVs) are of particular concern
because the magnitude of the radiation embrittlement is
extremely important to the plant’s safety and operating
cost. Property changes in materials due to neutron-in-
duced displacement damage are a function of neutron
flux, neutron energy, and temperature, as well as the pre-
irradiation material history, material chemical compo-
sition and microstructure, since each of these influence
radiation-induced microstructural evolution. These fac-

tors must be considered to reliably predict RPV em-
brittlement and to ensure the structural integrity of the
RPYV. Based on the embrittlement predictions, decisions
must be made concerning operating parameters, low-
leakage-fuel management, possible life extension, and
the potential role of pressure vessel annealing. There-
fore, the development of embrittlement prediction
models for nuclear power plants (NPPs) is a very im-
portant issue for the nuclear industry regarding the
safety and lifetime extension of aging commercial NPPs.

Service failures due to inaccurate characterization of
material aging responses could result in potentially
costly repairs or premature component replacements,
and in a worst-case could result in a catastrophic failure
and loss of life. The general degradation mechanisms of
the material aging behavior can be quite complicates
and include: microstructure and compositional changes,
time-dependent deformation and resultant damage ac-
cumulation, environmental attack and the accelerating
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effects of elevated temperature, and synergistic effects of
all the above. These complex nonlinear dependencies
make the modeling of aging material behaviors a diffi-
cult task.

There have been several domain models that capture
various aspects for the material behavior; these models
are designed by the domain experts to capture various
critical relationships. At the same time, conventional
nonlinear estimators—while requiring very limited do-
main expertise—can model relationships that are not
readily apparent. Consequently, there has been a pro-
fusion of methods with complementary performance
with no single method proven to be always better than
all others. Our goal is to develop an effective method-
ology by combining the domain models with the non-
linear estimators including, neural networks and nearest
neighbor regressions (NNRs) to exploit their comple-
mentary strengths. We have previously developed a
large Power Reactor Embrittlement Database (PR-
EDB) [1] for US NPPs. Subsequently in cooperation
with the Electric Power Research Institute, additional
verification and quality assurance of the data were per-
formed by the US reactor vendors. PR-EDB is used in
this study to predict the embrittlement levels in light
water RPVs. The results indicate that our combined
predictor achieved about 56.5% and 32.8% reductions in
the embrittlement uncertainties for General Electric
(GE) Boiling Water Reactor (BWE) plate and weld data
compared to Regulatory Guide 1.99, Revision 2, re-
spectively.

More generally, this methodology offers a potential
for a new research field in material science for the de-
velopment of advanced materials through an under-
standing and/or modeling of the underlying mechanisms
of material aging. In particular, this approach holds a
promise for advances in material damage prediction of
structural components as, for example, in the develop-
ment of regulatory guidelines for managing surveillance
programs regarding the integrity of nuclear reactor
components.

In Section 2, we provide the background for the
proposed methodology. The objectives are presented in
Section 3. Various embrittlement models are briefly de-
scribed in Section 4. The fusion method is described in
Section 5, and the performance results are discussed in
Section 6.

2. Background

The complex nonlinear dependencies observed in
typical material embrittlement data, as well as the exis-
tence of large uncertainties and data scatter, make the
modeling of material behavior (such as embrittlement
prediction) a difficult task. The conventional statistical
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and deterministic approaches have proven to result in
large uncertainties, in part because they do not fully
exploit the domain specific knowledge. The domain
models built by researchers in the field, on the other
hand, are not able to fully exploit the statistical and
information content of the data. As evidenced in previ-
ous studies, it is unlikely that a single method, whether it
is statistical, nonlinear or domain model will outperform
all others. Considering the complexity of the problem, it
is more likely that certain methods will perform best
under certain conditions. In this paper, we propose to
combine a number of methods such as domain models,
neural networks, and NNRs. The combined system has
the potential to perform at least as well as the best of the
constituents by exploiting the regions where the indi-
vidual methods are superior. Such combination methods
became possible due to recent developments in the
measurement-based optimal fusers [2-4] in the area of
information fusion.

The problem of estimating nonlinear relationships
from noisy data has been well studied in the area of
statistical estimation [5]. The nonlinear statistical esti-
mators such as the Nadaraya-Watson estimator and
regressograms [6] essentially rely on the properties of
regressions. While neural networks and statistical esti-
mators are general, the domain models developed by the
material scientists specifically capture the critical rela-
tionships in the data that are not easily amenable to
general methods. Such models are typically based on a
combination of linear and nonlinear models, which are
carefully chosen through an understanding of experi-
mental data.

Particularly among the models developed for em-
brittlement data, there is unlikely to be a single winner,
and different models perform well under different con-
ditions. By discarding one or more models, one stands
the risk of not characterizing certain critical perfor-
mance. We propose to combine various methods using
isolation fusers [5]. The most important part of these
fusers is that the combined system can be guaranteed to
be at least as good as the best individual estimator with a
specified probability. Furthermore, fusion of no proper
subset of the models performs better than the fused
system based on all models. This way the positive as-
pects of all individual estimators can be exploited
without discarding any single estimator.

We now briefly illustrate the overall fusion method to
highlight the underlying principle. Consider the follow-
ing target function, wherein the objective it to model this
function using the training data points obtained by
knowing the function values at certain values of x. The
prediction of each model is then tested using test data
points that are different from the training points. We
consider different estimators based on artificial neural
networks (ANN), where each estimator has a different
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Fig. 1. Six ANN prediction models trained with backpropagation algorithm with different learning rates randomly chosen.

number of hidden nodes and different learning rate for
the backpropagation training algorithm.

F(x) =0.02(12 + 3x — 3.5x% + 7.2x%)(1 4 cos 4nx)

x (1 4 0.08 sin 37x) (1)

Consider that we obtain six different neural network
estimators for the target function by randomly choosing
the number of hidden nodes and the learning rate pa-
rameters for the backpropagation algorithm. Each
neural network is trained with the same set of sample
points and tested on set of test points. The predictions of
the networks on the test data points are shown in Fig. 1.
The solid lines represent the actual function values, and
predictions by different neural networks are shown by
various other symbols. It is of interest to note that
network 4 appears to be a linear fit and the worst fit
among all networks. But, it is the only network that is
able to accurately model the function f(x) at the
neighborhood of x = 0.4. We now combine the results
using linear and projective fusers, both of which are
special cases of the isolation fusers; their performance is
shown in Fig. 2. The linear fuser’s output is shown in
dotted lines and the output of projective fuser is denoted
by +. Compared to the actual function values (test
data), both fusers perform similarly except around
x = 0.4. The projective fuser identified that one of the
neural network 4 performs better than other in this re-
gions and utilized to predict the function. Note that this
is the only region that this neural network performed
well, and projective fuser is able to exploit its superior
performance in this localized region. In terms of test

error, the linear fusers is 31.15 times better than best
ANN estimator and the projective fuser is 1.3 times
better than linear fuser. The summary of these results is
presented in Table 1, which shows that carefully chosen
fusers can achieve performance significantly better than
the individual estimators. In essence, both fusers are able
to achieve performance superior to the individual esti-
mators by ‘exploiting’ the performances of the individ-
ual estimators. In particular, both fusers are shown to
perform at least as good as the best of the estimators (in
terms of the test error).

For the embrittlement problem, the deployment of
these fusers on various models will ensure that the fused
model is at least as good as the best of the individual
models, irrespective of their individual performances.
However, the general results on fusers do not specify the
actual performance gains that may be achieved in a
particular application. We show here that significant
performance improvements are indeed obtained by em-
ploying fusers to combine various embrittlement mod-
els.

3. Objectives

Our objective is to combine various estimators for
predict the embrittlement behavior of irradiated mate-
rials, and then combine them to exploit their comple-
mentary strengths. We employ neural networks, NNRs,
and domain models, based on the PR-EDB data, to
predict the transition temperature shift of RPV materi-
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Fig. 2. Two information fusion models. In terms of test error, the linear fusers is 31.15 times better than the best ANN, and the

projective fuser is 1.3 times better than the linear fuser.

Table 1

Summary of the simulation results for the information fusion technique

Data size Projective as good®  Other better Performance (times)® Average error
Training Test Linear Best Linear Best

Without noise

10 10 8 1 1 1.009269 10.489711 0.075042
25 25 8 2 0 1.039885 13.426878 0.021926
50 50 10 0 0 1.304039 31.157175 0.013454
75 75 10 0 0 1.530556 §9.050201 0.004725
100 100 10 0 0 1.788104 87.905518 0.003764
With noise

10 10 8 2 0 0.982823 9.205843 0.041874
25 25 8 2 0 1.045973 14.115362 0.026983
50 50 10 0 0 1.293410 19.121033 0.010399
75 75 9 1 0 1.275850 33.192585 0.008435
100 100 10 0 0 1.227069 37.937778 0.007115

#For each dataset size, 10 different samples are utilized.

b Projective fuser outperformed both linear fuser and the best estimators.

als, which is a measure of the material embrittlement.
From the past experience [7], the boiling water has larger
uncertainty compared to the other power reactor data.
In this study, we only focused on the BWR data.

The first task is to create unbiased training and test
sets. The GE BWR surveillance data (listed in PR-EDB)
were pre-processed and streamlined. The final processed
GE BWR data were compared with that of the ASTM
E10.02 subcommittee embrittlement database for con-
sistency in the surveillance information, such as irradi-
ation temperature, chemical composition, Charpy

impact test data fitting methodology, and power time
history, etc. The processed GE BWR data has essentially
the same neutron fluences, chemistry, and irradiation
temperature data compared to that of ASTM E10.02
database, with minor difference of transition tempera-
ture shift (within a few degree F). The GE BWRs data
values were then scaled to the interval [—1,1] using a
Linear Max/Min transformation. This ensures that no
one component in the data dominates the parameter
optimization scheme. Then the data were randomly
partitioned into training and testing sets.
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The second task consists of determining a number of
estimators for this problem. For each method, a criteria
function and optimization routine will be selected that
consistently produces stable results. For statistical esti-
mators, we will follow the procedure described in the
literature. For ANN, one hidden layer and eleven hid-
den nodes were chosen with 2000 epoch iteration. A
random generator was used to generate the initial
weights for ANN modeling. Four sets of ANN models
were tested. We then combine the statistical and deter-
ministic estimators using information fusion techniques.
The combined system is guaranteed to perform at least
as well as the best of the constituents by exploiting the
regions where the individual methods are superior.

A novel methodology is developed here for inferring
nonlinear relationships that are typical in material be-
havior prediction. A tool based on this methodology is
also implemented for the embrittlement prediction of
NPPs. This tool could be expanded and adapted for use
in other areas in which nonlinear material properties are
important, such as failure analysis of highway bridges,
airplane safety analyses, and others.

4. Embrittlement prediction models

In this section we briefly described various models
used for embrittlement prediction, which will be com-
bined in the next section.

4.1. ORNL embrittlement prediction models

The residual defects in materials due to neutron-in-
duced displacement damage are a function of neutron
energy, neutron flux, exposure temperature, and the
material properties that determine how neutrons interact
with atoms and how defects interact within the material
[8]. Thus, temperature, neutron flux, neutron energy
spectrum, and material composition and processing
history all contribute to the radiation embrittlement
process [9]. Insufficient considerations of these factors
may result in misleading correlations and, thus, incor-
rect predictions of material state and material behavior,
as well as incorrect end-of-life determinations.

To minimize the influences of the uncertainty of the
irradiation temperature, neutron energy spectrum, dis-
placement rate, and plant operation procedures on em-
brittlement models, improved embrittlement models
based on group data that have similar radiation envi-
ronments and reactor design and operation criteria are
examined. The development of new embrittlement pre-
diction equations [7,10] stem from a series of studies on
radiation embrittlement models, such as Guthrie’s
model [11], Odette’s model [12], Fisher’s model [13],
B&W Lowe’s model [14], the French FIM model [15],
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etc., and several other parameter studies on the PR-
EDB. Although the copper-precipitation model has been
extremely successful in explaining many aspects of ir-
radiation embrittlement, it is becoming increasingly ev-
ident that other elements also contribute to the
embrittlement of the RPV steel, such as Ni, P, Mn, Mo,
and S. Theoretically, all the impurities in low alloy steel
are candidates to be included in the modeling. For ex-
ample, C, Si, Mn, Mo, S, etc., were investigated in the
test run, but including or excluding these elements did
not affect the overall outcome of the statistical param-
eters significantly; therefore, these parameters (or ele-
ments) were not incorporated into final governing
equations. Thus, Cu, Ni, and P were tentatively selected
as key elements and were incorporated into the formula
of the new prediction equations. Furthermore, the rea-
son for separating weld and base metals is because the
welds tend to show the enhanced degradation. And the
welding process presents a possible region of physical
and metallurgical discontinuity, and offers added chan-
ces for the introduction of defects and undesirable
components or stresses.

A nonlinear-least-squares fitting Fortran program
was written for this study. The development of the pa-
rameters for this new embrittlement model is based on
statistical formulation chosen by computer iterations.
To some extent, the physical mechanisms are embedded
in the equations, such as the formulation of the fluence
factor (FF). Two new prediction models for GE BWRs
data were developed, where the fluence rate effect was
considered in the second prediction model, and are de-
scribed below:

Model 1

ARTNDT (base) = [~94.8 + 411.9Cu + 247.3v/CuNi
+ 498P/Cu]f0'3216*°-001003 Inf
ARTNDT (weld) = [420.9Cu + 134.6v/CuNi
—_ 25.94P/Cu]f0,2478—0,01475 Inf (2)
Model 2

ARTNDT (base) = [(13.62 +318.1Cu — 58.75V/NiCu
_ 151b4P/Cu)f—044354—0.12851nf]

+ [(18.44 — 49.13v/CuNi — 17.22Cu

— 97.57P/Cu)f( — 8.344

~0.7045In f) In(t; /600000)]
ARTNDT (weld) = 1.075[(1580Cu — 86.06VNiCu

+ 43.SSP/Cu)f0.6523+0.02866]nf]

— 2.23[(4.193Ni — 45.54Cu)f( — 11.63
— 0.45541n.f) In(t;/600000)] 3)
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where ARTNDT is the transition temperature shift in
°F; and neutron fluence fis in unit of 10" n/cm? (£ > 1
MeV), effective full power time, ¢, is in hour, and Cu,
Ni, P are in wt.%.

4.2. Regulatory Guide 1.99, Revision 2’s model

The transition temperature shift of Reg. Guide 1.99,
Rev. 2’s model [16] was also used in this study for
comparison purpose, which is described as below.

ARTNDT — (CF)f(O.ZS—O.lOlogf') (4)

where ARTnpr is the transition temperature shift in °F,
CF (°F) is the chemistry factor (given in the Table 1 and
Table 2 of Reg. Guide 1.99, Revision 2), which is a
function of copper and nickel content, and neutron
fluence £ is in unit of 10" n/cm? (E > 1 MeV).

The residuals, defined as ‘“measured shift minus
predicted shift,” for Reg. Guide 1.99, Rev. 2’s model are
illustrated in Figs. 3 and 4 for base and weld, respec-
tively.

4.3. Eason’s models

The developed embrittlement model by E.D. Eason
et al. (Eason’s model) [17], was used in this study. The
Eason’s trend curve of transition temperature shift was
developed based on the power reactor data, and is de-
scribed below.

AT, = f11(dt) + f12(pt)f (cc)  [°F]
4
fhi(ot) = Aexp {179"()?#7261(?] (1+57.7P) {W

1 log(pt + 5.48 x 10127;) — 18.29
IR =3+5 tanh{ 0.600

ff(cc) = B(Cu — 0.72)"**(1 + 2.56Ni"***)

Pt }

(5)

Table 2
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Fig. 3. Regulatory Guide 1.99, Revision 2’s residual for GE
BWR plate materials.
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Fig. 4. Regulatory Guide 1.99, Revision 2’s residual for GE
BWR weld materials.

where

a = 0.4449 + 0.0597 log [%} . ¢t = fluence

Two-sigma uncertainty of the embrittlement models for GE BWR data

Embrittlement model ~ Parameters Two sigma of residual (°F)

Cu Ni ot t T. Base Weld

(64 points) (48 points)

Reg. Guide 1.99, Rev. x X X 55.0 47.9
2
ORNL fuser Model I x X X X X 23.9 322
ORNL fuser Model IT  x X X X 24.6 34.1
ORNL Model 1 X X X 39.6 41.8
ORNL Model 1T X X X X 27.6 38.5
Eason’s model X X X X X 40.9 51.0
K-NNR model X X X X X 39.1 41.4
ANN-4 model X X X X X 56.4 78.8%

#| Residual |> 100 °F are not included in two-sigma uncertainty evaluation.
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Fig. 5. Eason model’s residual for GE BWR plate materials.
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Fig. 6. Eason model’s residual for GE BWR weld materials.

welds: 4 =1.10 x 1077, B =209; plates: 4 =1.24x
1077, B = 172; forgings: 4 = 0.90 x 1077, B = 135; T, is
coolant inlet temperature, °F.

The residual of Eason’s model are illustrated in Figs.
5 and 6 for base and weld, respectively.

4.4. ANN models

An ANN is a parameterized nonlinear mapping from
an input space to an output space [18]. An ANN realizes
mapping from an m-dimensional input space to an »n-
dimensional output space, and will have m nodes in its
input layer and n nodes in its output layer. A multi-layer
ANN (ML-ANN) is the most common architecture.
This architecture has additional layers of nodes between
the input and output layers. The information from each
input-layer node is fanned out to nodes in the layer
hidden between the input and output layers. The infor-
mation entering a node in any hidden or output layer is
the weighted sum of all information leaving the layer
below it in the hierarchy. The node performs a trans-
formation on the weighted information it receives and
fans out the result to all nodes in the layer above it in the
hierarchy (except for the output layer). The weighting
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factors (weights) are free parameters that must be ad-
justed to some chosen criteria function using some op-
timization algorithm. In this way, ANNs are able to
capture many higher-order correlations that may exist in
the data. The relationship between the higher-order
correlations produces a nonlinear mapping. This is the
reason ANNs may offer a more accurate prediction of
material behaviors, embrittlement in this case. With
methods like ANNSs, one has a better tool to extract
nonlinear relationships from embrittlement data to aid
in the development of reliable maintenance and safety
strategies and regulations in the nuclear industry.

The backpropagation algorithm is used to train the
network with the data [18]. The training process deter-
mines the weights of ANN to fit a suitable nonlinear
map. The backpropagation’s flexibility of ANN is why it
does a better job of modeling than linear regression, but
this method has several weaknesses. The backpropaga-
tion algorithm is based on local descent and can get
stuck in local minima, and as a result the predictive
properties can be quite varied. Also, there are a number
of tunable parameters such as starting weights and
learning rates that have a significant effect on the weight
computed by the back propagation algorithm. Thus,
when different ANN models are trained with the same
back propagation algorithm but with different starting
weights and learning rates, the performance can be sig-
nificantly different, as shown in Figs. 1 and 2. These
networks however can be fused to achieve the perfor-
mance of the best ANN [3].

Six independent variables, namely, Cu, Ni, P, fluence,
irradiation temperature, and effective full power time
were used in the ANN models. A program written in C
language was used in this study.

4.5. K-nearest neighbor regression method

The NNR [5] is also chosen to generate an embrit-
tlement model. The algorithm is described below. Let xi,
X2, X3,...,X, be a sequence of n independent measure-
ments with known classifications, and x be the mea-
surement to be classified. Among x|, x5, x3,. . .,X,, let the
measurement with the smallest distance from x be de-
noted as x’. Then the nearest-neighbor decision rule as-
signs the classification of x to that of x. As for K-nearest
neighbor regression (K-NNR), it assigns to an unclas-
sified sample point the class most heavily represented
among its K nearest neighbors to x. In this study we
chose the first three nearest neighbors with properly
weighted function to represent the unclassified sample.

Six independent variables, namely, Cu, Ni, P, fluence,
irradiation temperature, and effective full power time
were used in K-NNR models. A second test K-NNR
model, excluding irradiation temperature from the fit-
ting parameter, generated a nearly identical trend curve
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as that with irradiation temperature. A program written
in C language was used in this study.

5. Fusion of embrittlement models

The development of this model consists of identifying
the error profiles of various estimators and the physical
parameters of the underlying problem, and designing the
fusers for combining the individual estimators. Here we
combined the statistical and deterministic estimators
using the linear fuser, which is a special case of the
isolation fusers [19]. The isolation fusers are shown to
perform probabilistically as good as best estimator
[4,19]. Given n estimators, fi(x),...,f,(x), the linear
fuser is given by f(x) = wifi(x) + --- 4+ w,fu(x), where
wi, ..., w, are the weights. We computed the weights for
the fuser by minimizing the error of the fuser for the
training set. The program was written in C where the
solution is based on solving a quadratic programming
problem. In this study, we utilized the linear fuser to
develop the embrittlement models, six parameters,
namely, Cu, Ni, P, fast fluence, irradiation time, and
irradiation temperature, were incorporated into model
development.

5.1. ORNL fuser model 1

Eight different models were investigated including
four neural network models, two ORNL models, one K-
NNR method, and the Eason’s model. The results of the
ORNL linear fuser model indicate that this newly de-
veloped embrittlement model has about 56.5% and
32.8% reductions in uncertainties for GE BWR base and
weld data, respectively, compared to that of Reg. Guide
1.99, Rev. 2. These are significant improvements on the
embrittlement predictions for the RPV steels. The plots
of information model residual and its two-sigma un-
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Fig. 7. ORNL-fuser model I overall residual for GE BWR base
materials.
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Fig. 8. ORNL-fuser model I overall residual for GE BWR weld
materials.

certainties for base and weld materials are illustrated in
Figs. 7 and 8, respectively.

5.2. ORNL fuser model II

Fuser model II is a simplified version of fuser model
I, excluding the irradiation temperature from the fitting
parameter, and excluding the Eason’s model from the
fusion modeling. The data scatter of residuals for fuser
model IT are essentially the same as that of fuser model I.
The results of ORNL fuser model II indicate that it has
about 55.2% and 28.8% reduction in uncertainties for
GE BWR base and weld data, respectively, compared to
that of Reg. Guide 1.99, Rev. 2’s model. This indicates
that fuser model I has marginal improved performance
compared to that of fuser model II. Thus, the impact of
irradiation temperature on embrittlement modeling for
GE BWRs surveillance data can be considered as sec-
ondary.

6. Discussion

The comparison of the performance of the embrit-
tlement models, based on the two-sigma uncertainty of
residual values, is stated in Table 2. the fuser model gave
the best performance among all the embrittlement pre-
diction models. ORNL embrittlement models indicates
that ORNL model II is superior to ORNL model I by
including irradiation time to simulate fluence-rate effect.
Thus, the implication of a flux effect in BWR environ-
ment was revealed in the model development.

Authors would like to point out that the fusion
modeling developed here is based on G.E. BWR data,
including 110 available sample data. Where, Reg. Guide
1.99/R2 and Eason’s model were developed based on
both PWR and BWR surveillance data. Thus, the su-
perior prediction by ORNL fusion model comparing to
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that of Reg. Guide 1.99/R2 and Eason’s models may
also partially due to the subset of power reactor data
used in the model development. However, in the same
token, this study may also demonstrate the superiority
and advantage of using subset data, for example, the
vendor specific data, to develop power reactor embrit-
tlement model. (The reason is explained in the next pa-
ragraph.) In general a large data set with similar
characteristics or controllable parameters will generate a
better trend prediction compared to its subset. But a
misleading trend curve can result from a large data set
built upon different bases and uncontrollable parame-
ters, revealed by its large uncertainty.

The R.G. Guide 1.99/R2 was formulated based on
Guthrie’s model and Odette’s model and no temperature
effect was considered in embrittlement models develop-
ment, where, the FF and plates’ chemistry factor (CF)
are from Guthrie’s model [16]. 177 surveillance data
were used in Guthrie’s model development, however,
only 6 data are from BWR environment. Thus, BWR
surveillance data may not be properly characterized
from Reg. Guide 1.99/2’s model. From ASTM E10.02
database, the mean temperature and one standard de-
viation of BWR and PWR data are 540.3 + 13.6 and
545.7 + 10.4 °F, respectively. Therefore, from the irra-
diation temperature variability point, the sample tem-
perature environment of PWR and BWR are
comparable. Currently, there are four major commercial
power reactor vendors in the US, namely, Westing-
house, General Electric, Babcock & Wilcox, and Com-
bustion Engineering. Each vendor has its unique designs
and specific operating procedures. There are significant
problems associated with insufficient information, such
as the detailed irradiation temperature of surveillance
specimen and the thermal gradient within surveillance
capsules, and the lack of data in particular regions of
interests to characterize the vendor’s service environ-
ments. About 64% of PR-EDB data is from Westing-
house; thus, the trend curve of all the four vendors’ data
will closely resemble the Westinghouse plants’ environ-
ment. Furthermore, B&W surveillance data appears to
experience higher irradiation temperature (based on
capsule melting wire) compared to other vendors, by
combining low and high temperature data may further
embedded bias on top of bias from the modeling point.
For example, from the trend curve of all the vendors’
data, the higher irradiation temperature data shows
negative bias (i.e. prediction model shows over-predic-
tion) and low irradiation data show positive bias.
However, the overall bias (or uncertainty) will cancel
each other resulting in a misleading statistical outcome,
such as its means and uncertainty.

Eason’s model covers both PWR and BWR envi-
ronment, where 96 BWR data were included in model
development, and coolant inlet temperatures were in-
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corporated into governing equations to simulate tem-
perature effect. In practice the coolant inlet temperature
is incorporated into the embrittlement model to simulate
the irradiation temperature for a pressurized light-water
reactor. However, a past study [9] showed that a large
bias can still be identified in Eason’s model for surveil-
lance data from a higher irradiation temperature envi-
ronment, and the bias is similar to that of Regulatory
Guide 1.99, Rev. 2. [16]. This may indicate that the
coolant inlet temperature is not equivalent to the irra-
diation temperature experienced by the surveillance
specimens. Furthermore, from this study on fuser
models, neither including coolant inlet temperature or
excluding coolant inlet temperature has a significant
impact on the trend curve, which may further support
the above statement.

It is of interest to note that ORNL model I and K-
NNR model have very similar performance, however,
K-NNR model is generated more straightforward
without major efforts of refinement and reformulation of
the governing equation compared to that of ORNL
Model 1.

For surveillance data, significant deviations of the
measured shift from the trend curve (i.e., more or less
than 34 °F for plate materials) should be considered as a
warning flag pointing to a possible anomalous capsule
environment. The large uncertainties are the result of
errors in the overall environment description. But, limit
attention has been given to characterizing the irradiation
temperature environment of the surveillance specimens.
In general, the neutron environment, fluence and flux,
can be determined fairly accurately, and possible effects
from these sources are relatively small in a power reactor
environment. However, the surveillance capsules’ tem-
perature environments still heavily rely on the melting
wire’s measurement. A more detailed analytical investi-
gation of specimen temperature is needed, based on
detailed neutronic and thermal-mechanical analysis for
specific capsule and specimen loading configuration, to
facilitate the RPV surveillance program in confidence.
Thus, in the current trend curve development, the most
likely reason for deviations from the trend curve is the
specimen temperature.

To develop a global embrittlement model for US
power reactors, an independent investigation of each
subgroup (each vendor) is recommended. Upon com-
pleting the investigations, if substantial improvement is
achieved for each subset based on the proposed meth-
odology, then information fusion technique will be uti-
lized to integrate all the subset models into a global RPV
embrittlement model.
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7. Conclusions

We described an information fusion method for the
embrittlement prediction in light water RPVs, by com-
bining domain models with, neural networks, and
nearest neighbor regressions. Our method resulted in
56.5% and 32.8% reduction in 2-sigma uncertainties
compared to that of the Reg. Guide 1.99, Rev. 2’s
model, for base and weld materials, respectively. This
approach proved better than the ORNL embrittlement
models and other conventional models.

This new approach combines the conventional non-
linear methods and model based methods into an inte-
grated methodology applicable for modeling material
aging processes. This approach can potentially assist the
nuclear industry on the issues regarding safety and life-
time extension of aging commercial NPPs. By using a
wide spectrum of methods, the proposed tool can po-
tentially handle the subtle nonlinearities and imperfec-
tions, and can serve as a calibration and benchmark for
the existing models. The predictions generated by our
system have the potential for providing efficient, reliable,
and fast results, and can be an essential part of the
overall safety assessment of material aging research.

Future improvements of the proposed method can be
made through the development of the projective fusers
[3], which are based on a projective space that depends
on the underlying physical parameters. This class of
fusers is based on the lower envelope of the error re-
gression curves of various estimators such that the esti-
mator that forms the envelope is utilized in that region.
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