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1 Introduction

Chaotic devices have many potential applications in communications systems
as generators of signals with complex waveforms. Random or pseudo-random
signals are widely used in communication from the coding of data and wave-
forms for security, error-correcting and avoiding interference, to applications
in communication protocols where random generation of addresses and timing
are necessary. Since chaotic nonlinear devices have the ability to generate a
variety of complicated waveforms, chaotic devices may offer effective alterna-
tives to conventional random and pseudo random signal generation modules,
particularly as the demand increases for signal generators which are more
compact and which can operate at higher speeds.

This paper is concerned with generation of laser light signals with complex
waveforms for applications in communication systems. There are two ap-
proaches to generating laser light signals with complex waveforms. One is
to generate a modulation pattern electronically and use it to modulate a laser
source. The other is to use dynamics within a laser light source or circuit to
generate the waveform directly. In this paper, we deal with the latter approach.
We present some recent results concerning generation and control of signals in
a particular class of laser systems with delayed feedback. These systems have
in common that they can be modeled by delay-differential equations. We pro-
pose that laser device and systems that can be modeled by delay-differential
equations are promising as signal generators in the sense of being able to gen-

0362-546X/01/$ - see front matter © 2001 Published by Elsevier Science Ltd.
PII: S0362-546X(01)00716-7



5730 Third World Congress of Nonlinear Analysts 47 (2001) 5729-5739

multi-bit binary
modulated signal
output

coupler

-

Fig. 1. Laser with nonlinear intensity modulation driven by delayed-feedback. LD:
Laser Diode, EOM: electro-optic intensity modulator. PD: photodiode, T,: delay
time in fiber delay line. The shaded part could in principle be replaced by an
all-optical nonlinear intensity modulator.

erate a variety of robust signals and also being amenable to systematic design
and control.

2 Laser intensity-modulated by delayed feedback

The first system we consider is the system shown schematically in Fig. 1. This
system has been extensively studied in numerical and physical experiments
by the authors from the point of view of application as a signal generator
[1-11]. In this system, signals are generated by intensity modulation of light
from a laser source using an electro-optic modulation device. The modulation
device is driven by delayed feedback from the output of the modulator. Fig.
2 shows an example from one of the many different classes of signals that can
be generated in this way. The signals in this class have a binary modulation
of peak height, corresponding to arbitrary n-bit sequences.

The system can be modeled with a delay-differential equation as follows,

rdX (8)/dt = —X(t) + Y (£), (1)
Y () = F(X(t — T)). (2)

The variable X represents the intensity of the light output. It tends to relax
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with time 7 toward a level Y which is a nonlinear function of X at a time
T, earlier. For an electro-optic intensity modulator (EOM), this nonlinear
feedback function takes the following form

F(X)=acos(X +0b) +c (3)

where a,b and c are constants or control parameters.

It was known from the work of Ikeda and co-workers ([12] and references
therein) that in systems of the type described by Eqns (1-3), when the re-
sponse time 7 is short compared to the delay time T;., a huge variety of signals
can be generated just by changing initial conditions. The longer the delay,
the greater the variety. Many different types of attractors had been found and
charted through numerical experiments. Moreover, a systematic hierarchical
structure to the waveforms and their bifurcations had been elucidated. Ref-
erences to more recent work on properties of delay-differential equations and
corresponding difference equations can be found in [13].

In a focus on applications for optical signal generators in an optical communi-
cations context, we were looking for a reasonable combination of properties of
variety, robustness, and controllability [1,2]. We focused on the particular class
of oscillations of the type shown in Fig. 2 and proposed methods for stably and
controllably generating signals corresponding to arbitrary binary sequences.
These oscillations have a binary modulation of peak height, corresponding to
arbitrary n-bit sequences. The oscillations form a complete set which can all
be stable at the same parameter values. Pairs of peaks and valleys separated
in time by 7, are roughly related by the corresponding difference equation

X(t) = F(X(t - T,)) (4)

with the levels corresponding to the period-4 solutions of this difference equa-
tion. The complete set is obtained by the 2™ different ways to select the levels
of the n successive peaks and valleys in a delay interval T,.. The bit num-
ber n can be systematically increased by selecting higher harmonics of the
fundamental oscillation at 47;.. The frequency of the highest harmonic is con-
strained by the response frequency 1/7, and the highest harmonic number is
constrained by the ratio 7, /7.

In 1988, Aida designed and built a system of this type that generated signals at
bit rates of up to 20MHz. This was used for various subsequent switching and
control experiments [3-5,8,10,11], and is still functioning today with the orig-
inal laser, modulator and fiber components. Later, a faster version was built
to generate optical control sequences in an all-optical gate-control experiment
which operated at up to 2GHz [7]. If we replace the nonlinear intensity modu-
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Fig. 2. Self-oscillating laser signal with n-bit binary peak modulation. The intensity
of the laser signal output from the EOM in Fig. 1 is self-modulated to repeatedly
generate a series of peak levels which correspond to an n-bit sequence. The n-bit
pattern is inverted in every 27, interval. Signals corresponding to any arbitrary
n-hit sequence can be generated by this system. These are one of many types of
attracting solutions of Egs. (1-3).

lation with an optical mechanism [1,25], then all-optical sequence generation
would be possible, at even higher speeds.

Experiments first confirmed the effectiveness of two proposed practical ways
to switch. The first way is by input of a specific control signal, such as a
binary or quaternary sequence over one or two round-trip times, which selects
a specific targeted pattern [3,4]. The second way to switch is by a longer pulse,
of the order of multiple round trip times, which results in a random choice of
a new pattern [4,5,8,10,11].

Let us describe this second method in more detail. Let us start with the pa-
rameter set at the value P~ for stable modes. Let P* be the parameter value
for chaotic mode hopping. Set P* for time T, then set P~ for time 7~. In
the sense of the difference equation, Eq. (4), this corresponds to a temporary
switch between period-4 regime and the period-2 chaos regime. During the
pulse of length T, the oscillations go chaotic, resulting in mode hopping, or
chaotic itinerancy. Now, in order to get n new random bits, we need to take
T+ large enough for sufficient randomization of the hop position, typically up
to 107... In practice, we also need to take T~ large enough for re-stabilization
of the waveform, typically a few T,.. These times together with the value of
n determine the maximum rate of truly random bit generation. In the first
implemented version, the rate was 2 Mbps [4]. In the second implemented ver-
sion, the rate was 200 Mbps [7]. Another key point to note is that regardless
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Fig. 3. Delayed feedback via optical filter to tunable laser. DBR LD: Laser Diode
with Distributed Bragg Reflector for selective single mode operation. Injection of
tuning current into DBR allows tuning of wavelength.

of whether the modulation pattern is stable or hopping chaotically, the car-
rier oscillation can be phase-locked to an external clock by injecting a small
periodic signal. This means that the clock reference can be maintained during
the generation of random bit patterns [3-5,10,11].

3 Wavelength-tunable laser modulated by delayed feedback

Next we describe a signal generator which obeys a similar dynamical model,
but which generates not only intensity-hopping signals like the previous sys-
tem, but also wavelength-hopping signals. An example is shown in Fig. 3. The
key new components here are a wavelength-tunable laser, and an optical filter
with a pass-band extending over the tuning range of the laser. The intensity
of the laser light detected after it has passed through the filter is used to drive
the wavelength-tuning of the laser.

Systems of this type have been studied by Liu and co-workers [14-16], and
Goedgebuer and co-workers [17,18]. Depending on the laser and the tuning
method, the tuning may affect power as well as wavelength, but so long as
we can assume the laser state follows rapidly a single, more slowly varying
tuning variable X, such as the tuning current in the DBR section of the
laser, we can include these effects into a single feedback function and write a
dynamical equation similar to the previous case, Eqns. (1-2). In simplest form,
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the nonlinear feedback function now looks like

F(X) o T(MX)) (5)

where A(X) is the laser wavelength tuning characteristic, and T'(\) is the
transmission characteristic of the optical filter, which for an interferometric
optical filter is typically of the form

T(X\) o (1 +asin®(\ — A%)/A)™ (6)

where )¢ is the center wavelength and A is the band-width of the pass-band.

The DBR laser used in our recent experiments [15,16] lased in single mode,
with mode and wavelength determined by the current injected in to tune the
refractive index in the DBR and only small power dependence on mode. In
the lasing state, the wavelength is fixed so there is a one-to-one and typically
monotonic relationship A(X) between tuning current and wavelength. The
non-monotonic feedback necessary for oscillation and chaos comes from the
convex filter function T'(\).

In this system, solutions of the delay-differential equation of the type shown in
Fig. 4, can correspond to hopping among discrete levels of intensity or discrete
levels of wavelength, depending on where and how the signal is detected. The
signal output of the optical filter shows variations in power and wavelength.
The signal output from the laser shows variations in wavelength but not in
power. This new feature of wavelength hopping could be.very useful for spread-
spectrum and multiplexing in optical networks.

If the laser stays in a single mode over the tuning range, the function A(X) is
a continuous monotonic function and the nonlinear feedback function is a con-
tinuous convex function, so we expect dynamics similar to the previous system
with feedback to an external intensity modulator. Specifically, we should be
able to generate various different sequences of hopping among 4 wavelengths,
and randomly select a sequence by switching for a time into the chaotic mode
hop regime.

In this context, we can propose another simple way to generate a randomly
selected wavelength, as follows. Turn on feedback for chaotic oscillation for
a time, say T , and then turn off the feedback and hold the last value of
tuning current. If 7% is long enough, successive choices of wavelength will
be random. The probability of generating different wavelengths is directly
observable as the long-time optical spectrum (as seen with a standard optical
spectrum analyzer) during the chaotic oscillation. In this regard it would be
an interesting challenge for nonlinear analysts to see how the probability of
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Fig. 4. Chaotic wavelength hopping. The output of the laser in Fig. 3 as detected
by multiple detectors responding to different wavelength bands.

the different wavelengths can be estimated from the invariant density of the
corresponding difference map.

In recent experiments, we used a laser that was tunable over multiple longitu-
dinal modes, and a broad band optical filter, with band-pass range extending
over a large part of the multi-mode tuning range of the laser [15,16]. In this
case, the feedback function F' is a piecewise-continuous function, and we ob-
tained chaotic hopping among discrete wavelength bands corresponding to
the different modes of the laser (Fig. 5). The use of optical filters with vari-
able transmission characteristics offers many new possibilities for design and
control of the dynamics in this system.

4 Synchronization of chaos

Proposed uses of chaotic signals in communications as carriers or modula-
tions for hiding and tagging transmissions typically require transmitter and
receiver to be able to generate the same waveform, and hence require a means
to synchronize them [19-21]. Even though they have a variety of dynamics,
delayed-feedback systems of the type described in this paper are easy to syn-
chronize. It is sufficient to replace some or all of the feedback Y% in the receiver
with a signal Y7 sent from a corresponding part of the circuit of the transmit-
ter [15-18]. Then, the dynamics of the signal Vy in the receiver system become
as,

TdVe/dt = —Va+eYr+(1—e)Yg  (0<e<1) (7)
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Typically there is a threshold value of coupling parameter ¢ above Vg which
converges to the transmitter signal Vp (allowing for time lag due to propa-
gation from transmitter to receiver). Numerical studies have shown that this
scheme is quite robust with respect to noise and small mismatches in param-
eters of the two systems [16].

In the case of the wavelength hopping system, we emphasize that this means
that the chaotic on-off dynamics of each pair of wavelengths in master and
slave will be synchronized [15,16] . In the context of applications for transmit-
ting coded data, this type of synchronized system allows multiple sets of data
to be coded separately in the multiple wavelengths [16] .

Recently, we found that delay-differential systems allow a peculiar type of dual
synchronization [22] that is possible when the signals from two independent
oscillators are combined and sent to a receiver system containing a correspond-
ing pair of oscillators. By appropriate injection into the receiver oscillators,
we can get them to synchronize to their respective masters, even though they
are receiving only one common signal.

The theoretical model for the two oscillators on the receiver side is as follows,

TdXpi/dt = —Xp;i + Ygi + S0 — Sk (8)

where 7 = 1,2 is the oscillator label. Here St is the superposed transmission
signal received on the receiver side,

St =e1Yr) + €Y7 (9)

and Sy is a similar superposition of the signals from the slave oscillators

Sp=¢e1Yr + &Y (10)

with summation constant coefficients £; and 5. The trick is to make a refer-
ence signal from the outputs of the receiver oscillators combined in the same
way as the sum signal from the transmitters, subtract this from the transmit-
ted signal, and inject the difference into the receiver oscillators. It is obvious
that a dual synchronization state exists for pairs with identical dynamics,
since if they start in a dual synchronized state, then the injected signals will
be zero, and they will continue to follow the same evolution. However, it is not
obvious that this is an attracting state i.e. that it will converge to the dual
synchronization state from arbitrary initial conditions. In numerical simula-
tions of delay-differential systems using various nonlinear feedback functions,
we found robust regimes where chaotic dynamics can indeed be dual synchro-
nized [22].
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In the case of corresponding difference equations defined on discrete time
(such as Eqn. (4)) it is possible to prove explicitly the existence of stable
dual synchronization states for particular pairs of chaotic feedback functions
[22,23]. In the delay-differential systems, under the condition of &7 = €5 = 1/2,
we can show small deviations from the dual synchronized state, t = X1 —Xg1,
y = X719 — Xgo, converge quickly to the line x = —y, where they obey

rdz(t)/dt = —x(t) + 0.5(D1(t — To) + Dot — T))a(t —T,) (1)

Here D, and D, are the derivatives of the nonlinear feedback functions for
the two transmitter oscillators. The deviations will converge to zero if there
is a statistical balance of the positive and negative fluctuations of D; and Dy,
under similar conditions to the difference equations. This is another situation
where properties of difference equations can be used in the design and control
of laser systems obeying delay-differential equations.

5 Adaptive signal generation using chaos

Finally, we mention an adaptive control technique which promises to be useful
for selective generation of signals in a signal generator modeled by a delay-
differential system [2,6,9]. This technique has been demonstrated in experi-
ments on adaptive generation of multi-bit binary sequences [4,10,11]. It has
also been tested in numerical simulations of adaptive wavelength selection in
a multi-mode laser with optical feedback [24].

The key point feature of this technique is that no extra logic or switch con-
trol is needed other than feedback of the scalar response to a single control
parameter. This is possible due to the particular nature of the multi-stability
and chaotic mode hopping that occurs in these delay-differential systems. The
technique assumes that we can switch between a multistable regime and a
chaos mode hopping regime, as we described in Section 2. It also assumes that
the signal generator can receive a scalar external response signal, which tells
it whether its current output signal is satisfactory or not. The technique, de-
scribed simply, is: If the output is not satisfactory, the control parameter is set
to the value for chaotic mode transitions. If it is satisfactory, the parameter is
set to a value for which oscillations are stable. The result is a self-consistent
situation, where the system will continue to hop around until it finds a mode
for which the response is good.
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6 Conclusion

We have described how signal generator modules consisting of laser devices
with delayed feedback, modeled by delay-differential equations can be used to
generate a variety of complex signals in simple and tunable configurations. We
described methods for generating both intensity modulated and wavelength
modulated laser signals. We pointed out that these systems can have a variety
of robust, multi-stable attractors corresponding to different signals or signal
patterns. We emphasized that not only do these systems generate a variety
of robust signals, but this generation is also amenable to systematic design
and control. Finally, we mentioned novel techniques for synchronization and
adaptive control of signal generation, which make use of particular dynamical
properties found in systems modeled by delay-differential equations.
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