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The Dirac equation describing pair production in a heavy-ion collision is expressed
in a light-fronts representation, and hence in a simplified form appropriate to ultra-
relativistic energies. In this limit, an exact solution for the Dirac equation is
obtained describing free electron-positron pair-production in the collider frame for
small impact parameters. Our non-perturbative result reproduces the results of
lowest-order perturbation theory in the small charge limit, while non-perturbative
effects arise for realistic charges.

1 Introduction

In ultra-relativistic heavy-ion collisions, the high charge of the ions and the
Lorentz contraction combine to form strong electromagnetic fields!?, and large
cross sections for electro-magnetic pair production in these collisions were the-
oretically predicted? and experimentally observed®*. Interesting experimental
results have been obtained, and theoretical predictions are generally within a
factor of two of the experiments?. For the highest energies considered experi-
mentally, significant deviations from lowest-order perturbation theory, such as
multiple-pair production, have not vet been observed*. In the near future,
colliding-beam accelerators, such as RHIC and possibly LHC, a new range
of larger ultra-relativistic energies will be available and the non-perturbative
effects may become important.

In the ultra-relativistic limit, the ions are practically moving at the speed
of light. Jackiw et al. studied the classical electromagnetic field of a mass-
less charged particle ?. They have shown that it can be described by pure
gauge potentials, with different gauges in different regions of space-time, and
reproduced the eikonal approximation from an exact solution of a quantum-
mechanical equation in this field. A similar approach was recently used in
target-frame calculations of bound-free pair production”.

In this work, a gauge transformation is used to obtain the solution of the
two-center Dirac equation describing an electron during a relativistic heavy-ion
collision, and a closed form expression for the pair-production amplitudes in
the ultra-relativistic limit. This is facilitated by introducing the light-fronts
representation of the time-dependent Dirac equation. Some details and appli-
cations are omitted for brevity, and will be presented elsewhere?.



2 An ultra-relativistic limit for the time-dependent Dirac equation

Consider a collision between two ions with charges Z, and Zp and velocities 32
and —3zZ, respectively, moving parallel to each other at an impact parameter
of 2b. An external-field approach to the influence of these ions on the vacuum
is appropriate for peripheral impact parameters (i.e. b > Ryuc), heavy ions,
and ultra-relativistic energies, when to a very good approximation, the ions
continue intact on their parallel, straight-line trajectories. The two-center
Dirac equation for an electron in the field of these ions is given by:

i%kl)(f‘, 1) = [I:Io + Halt) +I:IB(t)} |2(7. 1)), (1)

where |®(7, t)) is the Dirac spinor wave function of the electron, Hy is the free
Dirac Hamiltonian and H 4(t) and Hp(t) are each the interaction with one ion,
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We are using natural units, and applying the conventional notation; 5 = v/c,
v=1/4y/1— 32, «is the fine-structure constant, & and §* are Dirac matrices
in the Dirac representation; & are the Pauli matrices; and I, 09, I4, and 04 are

(2)

the 2-dimensional and 4-dimensional unit and zero matrices.

We would like to consider the ultra-relativistic limit in which g — 1, and
7 > b,ri. Eq. (1) does not simplify in this limit because, the long-range
behavior of the interaction terms H 4 and a p is independent of ras 7 — Foo
(see Fig. 1). Removing this long-range tail of the interaction by applying a
gauge transformation |¥(7, t)) = U(z, t)|®(7, 1)), where

U(z,t) =exp {iZAa In [—’y(t —-z2)+ \/m}
+iZpaln [-1-7'(75 +2)+ /D22t + 2)2} } (3)

results in a simple ultra-relativistic limit. The Dirac equation for |¥(7,t)) is
obtained from Eq. (1),
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Figure 1 demonstrates the short-range character of this gauge-transformed
interaction. Similar gauges have been used >® which reduce in the limit 3 — 1
to Eq. (3). Unlike Eq. (1), the gauge-transformed equation, Eq. (4), has a
t 9. In the limits of large v, small r, and small
impact parameter b, Wa ( I/i”'B) has a sharp, delta-function dependence on ¢ — z
(t+2)7, ie.
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The interaction has zero range in the projectile’s direction and a logarithmic
behavior in the transverse direction, similar to the potential of a line of charge.

3 Asymptotic solutions and transition amplitudes

A complete set of solutions is given by the Dirac plane waves; {|x,(7, 1))}
Each plane wave is characterized by three continuous and two discrete quantum
numbers; namely, the three components of the momentum, 7, the sign of the
energy, (A, = 0 for positive energy electrons, A, = 1 for negative energy
electrons,) and the spin, (|s,) = |+) for spin up and |s,,) = |-} for spin down,)
p =47, Ap, s, }. The plane waves satisfy,

Hy

Xp(7) = EpXp (7)), [xp(7, 1)) = exp(—=iE,t)|X, (7). (7)

Ep = (_1>>\p&-[).’ Ep = V PQ + 1 (8>

We define the solution |¢)(7, 1)) of Eq. (1) by the initial condition,

lim |q')(j)(f’,ti)>: X (7. 15)). 9)
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The asymptotic transition amplitude S,E,j ) is then given by
3 . s v
¢ = lim (el 1p)|0D (7. 1), (10)
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where the bra-ket stands, as usual in non-relativistic and non-covariant nota-
tion. for integration over all space 7 at a given time. Likewise, [¢/()(7, t)) is
defined as the solution of Eq. (4) with the initial condition,
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and the asymptotic transition amplitude 453 ) is given by
AP = Tim (7 ) [E9 (7 ). (12)
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The initial condition for Eq. (1), Eq. (9), and the initial condition for Eq.
(4), Eq. (11), correspond to different initial physical states, as they are not
related by the gauge transformation in Eq. (3). In general, S,E,J ) and 453 ) are
completely different amplitudes. They are related to each other by the gauge
transformation of Eq. (3) in the following way,

S = 3w F AU () (7)) A (g (7 [T (2. 1)\ (7 1)) (13)
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A relation like Eq. (13) holds between any two amplitudes which are related by
a gauge transformation. The specific gauge transformation used here, Eq. (3),
has an additional property which relates S,(j ) and 4&’ ) in a more useful way.
For symmetric collisions, with Z4 = Zp, at the limits ¢y — oo and t; — —oc,
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Séj) can be expressed as a series expansion in z/t whose first term is A(PJ )5,

4 The sharp Dirac equation in the light-fronts representation

In this section, Eq. (4), with the limiting form of the interaction in Eq. (6), will
be further simplified by changing into light-front variables and by introducing
a new representation for the Dirac spinors, the light-fronts representation. In
terms of light-front variables, space-time and energy-momentum are described
by the 4-vectors (71, 74, 7—) and (F1, p+,p-), where 74 = (t£2)/2, px = E, £

p-, and pyp_ = 1+ p7 . The interaction is block-diagonalized by introducing
the light-fronts representation for the Dirac matrices,
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With this notation, the gauge-transformed two-center Dirac equation in
the sharp ultra-relativistic limit in the light-fronts representation is
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where |G4) and |G_) are the upper and lower bi-spinor components of the
Dirac wave function in the light-fronts representation, and hg = Iy — il - jf L
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The upper and lower bi-spinors are coupled by the free Hamiltonian. Each
interacts directly with the external field of one ion and feels the field of the
other ion through its coupling to the other bi-spinor.

Equation (17) has no discontinuities in the transverse direction. It is there-
fore useful to Fourier transform its solution with respect to 7;. Two mixed
g4 (q1; T4, 7)), are then defined by

bi-spinors wave-functions,

|G (FL. 7)) = / dqLe™ T gu (G177, (19)

lg+) and |g-), like |G4) and |G_), are coupled by the free Hamiltonian.

Off the light fronts, i.e. for 74 # 0 and 7_ # 0, the wave function satisfies
the free Dirac equation and Eq. (17) reduces to two coupled equations for the
mixed bi-spinors |g4(@1; T4, 7).
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A solution to Egs. (20) is given by the Dirac plane waves, which in the
light-fronts representation are

( {%; ) = Al (7). |FR) = / dque™ | fL (G o), (20)

[2(qLs 7y, 7)) = 8(qL — Fu)e™ TP FTPNG ), (22)
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It is standard procedure in wave-mechanics to form piece-wise solutions

where the bi-spinors, [['4), satisfy the simple relation |I'%)

by satisfying continuity relations at the boundaries between free regions. A
S-function singular interaction at a light front results in a discontinuity in the
electron wave function which is given by a space-dependent phase shift . For
our case of Eq. (17), the discontinuity is given by

(G (ry = 07)) = e B D |Gy (74 = 07)), (23)
G_(r— = 0%)) = e 40D G_(r_ = 07)). (24)

o]



Due to this space dependent phase-shift, the transverse momentuin is not con-
served and the Fourier components of Eq. (19) are mixed when the singularities
at the light fronts are crossed,

lg+(qL:me = 01)) = / AF1Q7,,, (FL — qL. FD)|gx(Frsme =07)).  (25)

where
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Continuity is recovered in the limit Z — 0, as Qz(&, b) — 6(R). The properties
of the distribution Qz(7,b) for finite charge will be considered elsewhere?.

5 A piece-wise solution to the sharp Dirac equation

The trajectories of the ions cut space-time along the light fronts into four re-
glons. A piece-wisesolution is defined in each of these regions by |g+(qL; 74, 7-))
= |g$)(q']_; T4,7=)), where (i)=Ifor 74 < 0and 7— <0, ()= Il for 74 > 0 and
7 <0, (i)= I for 7y < 0 and 7— > 0, and (i)= IV for 74 > 0 and 7_ > 0.
In each region, the wave function is continuous and solves the local free Dirac

equation. At any time, except for + — Foo, the wave function extends in space
through three (or two, at ¢t = 0) of these regions.

Consider the initial condition, Eq. (11), of a single plane wave with the
quantum numbers j, expressed in light-front variables as j = {j L J+.J= St

with the constraint jyj_ = 1+ j3. The continuity off the light fronts gives
the solution in region I,
g% (71)) = 8(jL — Gu)e ™ =TIy ). (27)

The solution in regions IT and III is obtained by applying Eqgs. (25) for the
discontinuities across 7+ = 0 and then solving the coupled equations (20)
inside each of the intermediate space-time regions. We cross from regions II
and IIT into region IV by applying Eq. (25) again for the discontinuities across
7+ = 0 to obtain on the hyper-surfaces adjacent to the light fronts,
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The transition amplitudes 453 ) were defined in Eq. (12),
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The integrand is a component of a 4-vector current density, which is a conserved
5 - Pt
quantity >. This transition current, (J, Jo), is defined by Jo = X () and

= P
J = X‘Pc?'g’;“ ). An equivalent form for the transition current in terms of light-
fronts representation wave-functions includes

Jr=Jo+J. = 2 F{' Gy, (31)

It is now possible to use Gauss’ theorem on the hyper-surface of the inner
border of region IV to show that?®

A(kj) = 2/(11‘]_/ dr_ Jy(ry =07) —2/(1’7_‘]_/ dry J_(r— =0%). (32)
o+ 0+

The amplitudes are finally obtained by integrating over r; and 74, resulting
in the ezxact solution of the sharp Dirac equation
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where 1 is an infinitesimal small constant, which can be omitted for pair-
production amplitudes corresponding to E; < 0 and Ej, > 0, i.e. jrhks < 0.
The small-charge perturbative-limit of the pair-production amplitude has
been previously calculated®. To leading order in oZ, the amplitude is given by
a sum over two Feynman diagrams, where each diagram describes a two-photon

.
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exchange process. This second-order perturbation-theory result, S,f m, for the
transition amplitude between an initial negative-energy state j and a final
positive-energy state k is available in the literature®. In the ultra-relativistic
limit, 3 — 1 and v > 1, this perturbative result reduces to

SZ @ = /dﬁl cxp[—il_;- (20, — ji— ]?J_)]
i8 (aZa)(Zp)  (TE|1—id-FL|0.)
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A transformation to the light-fronts representation was used here to obtain
bi-spinor bra-kets from the 4-spinor bra-kets previously used ®.

It is interesting to compare the perturbative result of Eq. (34) to our non-
perturbative result of Eq. (33). In the small-charge limit of oZ — 0, the
leading-order perturbative limit for )z can be used?,

> oz 1
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Direct substitution shows that in this limit the nonperturbative result of Eq. (33)
exactly reproduces the perturbative result of Eq. (34).

6 Conclusions and Outlook

We have used a gauge transformation to obtain a useful ultra-relativistic limit
for the two-center Dirac equation, which allows for an exact solution off the
light fronts, i.e. away from the ions. The amplitudes were calculated here in
the ultra-relativistic limit, assuming v to be large. No assumption was made
on the value of the charge times the fine-structure constant Za«. When taking
the limit of small Z«, we are able to show a complete agreement with the
ultra-relativistic limit of the expression obtained from standard second-order
perturbation theory 8.

In second-order perturbation theory, pair production is described as a
two-photon exchange process in which each ion exchanges one photon with
a negative-energy electron. The negative energy electron is kicked off its en-
ergy shell by the first interaction and then kicked back to the energy shell by
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the second ion, but this time with a positive energy. The two diagrams that
contribute to the amplitude differ in the time order of these photon exchanges,
or ‘kicks’. In our work, a very similar physical picture of the pair production as
a ‘two-kicks’ process is obtained in the ultra-relativistic limit within a rather
different, and completely non-perturbative approach.

Higher order terms in the series expansion relating the amplitudes in the
gauge-transformed problem to the physical amplitudes, the relation of our
results to perturbation theory, the non-perturbative effects, differential cross
sections, and applications to multiple pair production will be further discussed
and considered in future work.
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Figure 1: Plotted is (a) the scalar component of the Lorentz-gauge interaction, V°, and (b)

the scalar component of the gauge-transformed interaction, W0, for two different energies;

~ =10 (CERN-SPS energies), and v = 100 (RHIC energies), as a function of a narrow range
of the z-coordinate for t = 0, b= (1,0), and 7, = (2,0).
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