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Abstract. Revolutionary advances in computing, communication, detection, and sensing using nanoscale 
devices subsume a profound understanding of the complex dynamics of small arrays of quantum 
structures. Such arrays produce bi-stable and multi-stable robust behavior, which can be harnessed for 
unconventional, yet powerful computational concepts. In this paper, we propose a novel approach to 
signal pattern analysis using an array of quantum dots (QD). Our methodology combines an ultrafast 
neuromorphic learning algorithm with photon-assisted tunneling in the QD array. The latter enables 
emulation of the plasticity of neural synapses.  

 
 
Introduction 
Recent developments in nanoscale science and technology have opened exciting 
opportunities for revolutionary advances in nanoscale computing, communication, 
detection, and sensing. To fully exploit this emerging potential subsumes a profound 
understanding of the complex dynamics and properties of small arrays of quantum 
structures, including quantum dots (QD), ultrasmall Josephson junctions, quantum-dot 
lasers, and others. Such arrays produce robust bi-stable and multi-stable behavior, which 
can be harnessed for unconventional, yet powerful computational concepts, and in 
particular for neuromorphic computing.  
Obtaining lattice architectures of sufficient size and regularity to perform actual 
computations at room temperature has been a formidable challenge, unsurmounted by the 
scientific community to date. To address this challenge, we have been exploring innovative 
biophysical assembly techniques to direct appropriately derivatized and passivated gold 
clusters (i.e., "QD") to preselected locations along stretched strands of engineered DNA 
sequences. Our goal is to produce an operational device by controlling the placement of 
the clusters with subnanometer precision. This will enable the electron-transport properties 
of the array to be engineered precisely through the size and placement of the gold clusters. 
Our progress, to date, has included the actual synthesis of quantum dots approximately 2 
nm in size, the engineering of one-dimensional DNA templates, and elements of device 
simulation. This progress is discussed in a companion paper [1]. 



The purpose of this paper is to address the issue of complex information processing by a 
quantum dot array. In particular, we are interested in demonstrating a capability for 
pattern classification using neuromorphic algorithms.  

 
 

Single-Electron Tunneling in Quantum-Dot Arrays 
Consider a one-dimensional array of N tunnel junctions constructed from metallic source 
and drain electrodes weakly coupled to a linear array of N - 1 metal clusters. We review 
the results of the “orthodox theory” of single-electron tunneling [1] to describe the charge 
transport through the array under small, but finite, bias voltage.  (We are interested in 
nanometer-sized metal clusters in which the Coulomb blockade of conductance may be 
observed at room temperature, but for simplicity here we neglect any discreteness in the 
density of electronic states in the cluster resulting from their small size.)  The vector n

r  
defines the state of our system, ( )1 1, , , ,i Nn n n n −≡

r L L , where in  is the number of excess 
electrons accommodated by the thi quantum dot. The Gibbs free energy ( , )E n V

r  describing 
the electrostatic energy of the array of quantum dots and its interaction with the external 
voltage is 
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where ij jiC C=  is the mutual capacitance between conductors i and j , and iφ  is the 
electrical potential of cluster i  measured with respect to the substrate. The source and 
drain electrodes are enumerated as 0i = and i N= , respectively. The source potential is 

0 / 2sV Vφ = = , and the drain potential is / 2N dV Vφ = = − . V is the transport voltage across the 
array.  The charge on the source electrode is ( )01 0 1 ,s sQ C enφ φ= − + and the charge on the drain 
electrode is ( )1, 1d N N N N dQ C enφ φ− −= − + , where ( )s dn n is the number of electrons that has 
tunneled from the source (drain) electrode through the first (last) junction. 
To determine the free energy, the potentials ( )1 1, , Nφ φ φ −=

r
L  must be determined from the 

static charge configuration. Using the charge conservation law, the total charge on island 
i can be written in terms of the potentials, 
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The background charges 0,/ 2 / 2ie q e− < < +  are due to incompletely screened charges in the 
environment of the islands.  Equation (2) can be written in matrix form Q Cφ=

r r
, where the 

generalized capacitance matrix elements are defined 
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and the augmented charge vector is defined as 0 0i i i iN NQ q C Cφ φ≡ + + . The generalized 
capacitance matrix can be inverted to obtain the potential distribution given any charge 
distribution.  For convenience, we rewrite the free energy of the array using matrix 
notation as 

( ) 11
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r rr .  

In describing the electron transport through the array, we neglect here the effects of co-
tunneling, and consider only single-electron tunneling between nearest neighbors in the 
array. That is, the final state m

r of the tunneling differs from the initial state n
r  by the 

transfer of a single electron though the thk  junction, e.g., ˆkm n u= ± ∆
r r , where 1ˆ ˆ ˆk k ku u u −∆ ≡ −  

and ˆku is a unit vector for the thk quantum dot. The ± sign gives the direction of tunneling 
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through the junction. If the transition rates Γ are sufficiently small, one can perform a 
calculation using Fermi’s Golden Rule to obtain [1] 
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where ( ) ( ) ( ), , ,k kE n V E n u V E n V±∆ ≡ ± ∆ −
r r r is the change in the free energy of the system due to the 

tunneling, kR  is the effective resistance of the tunnel junction, 0e > is the fundamental unit 
of charge, and the thermal energy is Bk T . One can use probability conservation to write the 
corresponding master equation describing the time evolution of the probability ( , )P n t

r of 
finding the circuit in the state n

r  
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Practical approaches to solving the master equation are described in Refs. [3-4].  Given 
the solution, the average tunneling current is given by computing the net flow through any 
junction k  in the array: 
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Since the summation is performed over the charge states, the current is a function of the 
transport voltage. 
 
  
Neuromorphic Algorithms for Complex Information Processing 
Quantum dot nanoelectronic devices represent a promising hardware technology that 
offers both conceptual opportunities and engineering challenges for complex information 
processing applications. One such application, namely pattern recognition, is of 
considerable interest to the development of modern intelligent systems and will be 
considered here. In recent years, the quest for innovative approaches to machine 
intelligence has received considerable attention. The proven ability of neuromorphic 
algorithms to deal with uncertain information and to interact with dynamic environments is 
therefore providing a strong incentive to explore the feasibility of their implementation on 
arrays of quantum dots. However, in contrast to conventional hardware approaches, we 
must develop here computational paradigms that exploit from the onset not only the 
concept of massive parallelism but also, and most importantly, the physics of the 
underlying device. 
Artificial neural networks are adaptive systems that process information by means of their 
response to discrete or continuous input [5]. Neural networks can provide practical 
solutions to a variety of artificial intelligence problems, including pattern recognition [6], 
autonomous knowledge acquisition from observations of correlated activities [7], real-
time control of complex systems [8], and fast adaptive optimization [9].  At the heart of 
such advances lies the development of efficient computational methodologies for 
“learning” [10]. The development of neural learning algorithms has generally been based 
upon the minimization of an energy-like neuromorphic error function or functional [11].  
Gradient-based techniques have typically provided the main computational mechanism for 
carrying out the minimization process, often resulting in excessive training times for the 
large-scale networks needed to address real-life applications. Consequently, to date, 
considerable efforts have been devoted to: (1) speeding up the rate of convergence [12-
14] and (2) designing more efficient methodologies for deriving the gradients of these 
functions or functionals with respect to the parameters of the network [15,16].  The 
primary focus of such efforts has been on recurrent architectures.  However, the use of 
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gradient methods presents challenges even for the less demanding multi-layer feed-forward 
architectures, which naturally occur in QD arrays. For instance, entrapment in local 
minima has remained one of the fundamental limitations of most currently available 
learning paradigms.  The recent development of the innovative global optimization 
algorithm TRUST [17] has been suggested [18] as a promising new avenue for addressing 
such difficulties. 
Roychowdhury and his collaborators were the first to propose the implementation of 
neural networks in terms of QD arrays [19]. In their Gedankenexperiment a generic array 
of nanometer-sized metallic islands would be deposited on a resonant tunneling diode. 
Furthermore, all islands would have a direct conductive/capacitive link to their nearest 
neighbors, established, for example via organic molecular wires. They considered both 
continuous and discrete charge networks. The latter are of particular interest here. The 
Roychowdhury team showed that the evolution of an initial charge distribution toward a 
stable final equilibrium distribution can be given a neuromorphic interpretation and that 
this property emerges purely as a result of the discreteness of the electronic charge [20]. 
There are several shortcomings in their proposal. First, they assumed that all inter-island 
capacitance could be modified arbitrarily, but offered no mechanism to achieve this 
essential property. Moreover, their architecture involved capacitive coupling between all 
islands, a “floating” plate, and a grounded plate. Tunneling was assumed to occur only 
between the islands and the floating plate, but not between islands. Thus, even though 
their paradigm would allow some elementary form of combinatorial optimization, it could 
not be used for neural learning needed in pattern recognition.  
In the previous section we illustrated the underlying physical concepts of single-electron 
transport in arrays of quantum dots. As pointed out by Roychowdhury and coworkers 
[19-20], there is a profound similarity between the dynamics of neural networks and that 
of QD arrays. In the latter, the free energy of an array characterized by a charge 
distribution can be lowered in terms of tunneling events. For neural networks, on the other 
hand, Hopfield has shown that the stable states of the network are the local minima of a 
bounded Lyapunov function of the net’s output parameterized by the synaptic 
interconnection weights.  A careful analysis, however, reveals that this formal similarity is 
not adequate for implementing learning algorithms for pattern recognition. By comparing 
the leading terms of the free energy in Eq. (4), i.e., 11

2
TQ C Q−

r r  and the Lyapunov function in a 
Hopfield network, i.e., 1

2( , ) TL x W x W x= − , we see that the inverse of the augmented 
capacitance matrix would have to play the role of the synaptic matrix. However, the 
elements of ijC  are fixed, and cannot be modified. An alternative approach for controlling 
the dynamics of the system has to be found.  In principle, one could manipulate the free 
energy of the array via capacitive gating of each of the quantum dots.  However, for an 
array of quantum dots 1-to-2 nm in size, which is necessary for room temperature 
operation, we are not aware of technology capable of implementing such gating on a 
nanometer scale. 
Studies of the dynamics of arrays of QD in the presence of the time-dependent excitation 
(e.g., RF signal [21,22]) reveal a rich structure of dynamical behaviors that offers a 
tremendous potential for performing the computation we need. In particular, a team led by 
Oosterkamp has recently made available an extensive survey of experiments and methods 
for photon-assisted tunneling in QD [23]. In the absence of a time-dependent field, current 
flows through a quantum dot via tunneling when an unoccupied internal energy state is 
aligned to the Fermi energy of the leads. However, as pointed out by Oosterkamp et al 
following seminal work by Likharev et al., if a time-varying AC voltage ( )0 cos 2A tπω  is 
applied, inelastic tunnel events are induced when electrons exchange photons of energy 

νh with the oscillating field. Tien and Gordon first described theoretically this 
phenomenon of multiphoton-assisted tunneling [24]. A direct inclusion of this phenomena 
in a master equation that takes into account Coulomb blockade can be made by writing the 



Figure 1. Two-dimensional QD 
array showing voltages as input 
channels and currents as outputs. 

tunneling rate Γ through each barrier in the presence of an electromagnetic excitation in 
terms of the rates without the external AC field, 
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where Jα  denotes the Bessel function of the first kind and α denoting the number of 
photons exchanged. This generalized master equation is obtained by substituting the rates 
in Eq. (8) into Eq. (6). The current through this device becomes a function of the 
transport voltage V, and the amplitude A0 and frequency ν of the AC field, 

( ) ( ) ( ) ( )0 0 0, , , , , , , ,k k
n

I V A e P n n V A n V Aν ν ν+ − = Γ − Γ ∑r
r r r .  

We consider the transport voltage V as the input variable and the current I as the output 
function in designing the neuromorphic computation. For a two-dimensional QD array 
with K input and K output nodes, we can readily generalize the description given here to 
consider K input voltages Vk and K output currents Ik(Vk,A0,ν) (see Fig. 1). This vector-
valued function IK is controllable through the parameters of the external, alternating field, 
A0 and ν, by minimizing the error function E, defined over the number of L training 
patterns as the squared difference between the l-th observed current, lIK and the target 
currents,  lI *

K (see below), 
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For convenience, matrix and vector dimensions are explicitly indicated as subscripts. If a 
larger number of controls is necessary, then a polychromatic AC field may be considered 
for the global control, rather than a monochromatic field. 
The pattern recognition scheme can now readily be implemented using the following 
method. We will assume that two sets of L vectors are used for training. They are stored 
as rows of two matrices ΩLI and RLO respectively, which represent the input signal 
patterns and the target outputs. We denote the number of columns of each matrix as I for 
input and O for output, without confusion. Since 
typically L >> I, two preprocessing steps are used [25]. 
First, appropriate clustering transforms ΩLI and RLO 
into smaller size matrices Ω∗

KI and R*
KO. Then, two 

successive nonlinear transformations map Ω∗
KI into 

HKK, a nonsingular K x K presynaptic matrix, which 
constitutes the actual input into the quantum-dot array. 
We also decouple the nonlinearity of the transfer 
function, ϕ, at the output layer of the neural net from 
the linear interlayer pattern propagation mediated by the 
synaptic weights WKO . This transformation nominally 
computes the postsynaptic input to the output layer of 
the neural net as a K x O rectangular matrix. Since the 
latter is connected via a bijective sigmoid mapping to 
the output training examples, the synaptic 
interconnection matrices WKO can be determined by solving the linear system HKK WKO =ϕ-

1(R*
KO) using gradient iteration. In simulation on a conventional computer, this can be 

accomplished by exactly solving the system of linear equations using singular-value 
decomposition techniques. On nanoelectronic hardware, the same result canl be achieved 
by directly optimizing the error function in Eq. (10), where the sum is now running from 1 
to K clusters, in terms of the parameters of the external field, A0 and ν.  If the dimension O 
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of the output pattern is smaller than the number K of output nodes of the quantum-dot 
array, the output error is calculated using the Euclidean distance in O dimensions. 
Future efforts in this area will focus on directly accounting for uncertainties when 
attempting to obtain best estimates for the device parameters and responses of interest. 
For example, nominal values for the elements of the capacitance matrix will be computed 
from “first-principles” simulations of the metal clusters and substrate via density-
functional-theory-based molecular dynamics [1], and the current through the device will be 
computed via numerical solutions to the master equation. To obtain best estimates for 
critical parameters (e.g., A0 and ν), we must consistently combine computational results 
and experimental measurements. We will achieve this by optimizing a generalized 
Bayesian loss function that simultaneously minimizes the differences between the best 
estimate responses and the measured responses on one hand, and the best estimate and 
calculated parameters on the other hand. Our optimization process will use the inverse of a 
generalized total covariance matrix as the natural metric of the calculational manifold in 
conjunction with response sensitivities to all parameters [26].  
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