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Abstract

This paper describes an application of nonlinear decentralized robust control (Guo, Jiang & Hill, 1998) to large-scale power
systems. Decentralized power controllers are designed explicitly to maintain transient stable closed-loop systems. For the "rst time,
nonlinear bounds of generator interconnections are used which achieves less-conservative control gains. The proposed controllers are
robust with regard to uncertain network parameters and attenuate the persistent disturbances in the sense that the ¸

2
-gain from the

disturbance to the power frequency is reduced to a certain level. Simulations on a two-generator in"nite bus power system exhibit
enhancement of system transient stability at di!erent conditions of operation points, fault locations and network para-
meters. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Power systems are modelled as large nonlinear highly
structured systems. Conventional linear control is limited
since it can only deal with small disturbances about an
operating point. Since di!erential geometric tools were
introduced to nonlinear control systems design (Isidori,
1995), various stabilizing control results based on nonlin-
ear power system models have been obtained (Mark,
1992; Wang, Xie, Hill & Middleton, 1992) for single-
machine systems and (Chapman, Ilic, King, Eng & Kauf-
man, 1993; King, Chapman & Ilic, 1994; Wang, Guo
& Hill, 1997; Jain & Khorrami, 1997b) for multimachine
systems. Two important issues for power systems control
are robustness and a decentralized structure. The robust-
ness issue arises to deal with sources of uncertainties
which mainly come from the varying network topology
and the dynamic variation of the load. Since physical

limitation on the system structure makes information
transfer among subsystems unfeasible, decentralized
controllers for multimachine systems must be used.

There have been numerous results on decentralized
robust control of power systems. Among the decentra-
lized excitation control works (Wang et al., 1997; Chap-
man et al., 1993; King et al., 1994; Lu, Sun, Xu
& Mochizuki, 1996; Sun, Zhao, Sun & Lu, 1996; Jain,
Khorrami & Fardanesh, 1994), we consider the approach
in Wang et al. (1997) which applies the direct feedback
linearization to transfer a nonlinear multimachine power
system model to a linear one; then robust decentralized
control is applied. Solving a set of algebraic Riccati
equations gives controllers which guarantee the overall
stability of the excitation system. Among the decentra-
lized turbine-governor control works (Wang, Hill &
Guo, 1998; Lu & Sun, 1989; Jiang, Cai, Dorsey & Qu,
1997; Jain & Khorrami, 1997b), we consider Jain
& Khorrami (1997b) where use of adaptive backstepping
is made to design output feedback controllers which
maintain the closed-loop stability and reject bounded
disturbances. Although the essential interconnections in
the large-scale power systems are nonlinear (sinuous
functions of machine angles), all the above results man-
age the interconnections with linear bounds which may
cause conservatism of the control gains for nonlocal
behaviour.
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Nomenclature

d
i

the power angle of the ith generator, in rad
u

i
the relative speed of the ith generator, in rad/s

P
.i

the mechanical input power, in p.u.
P
%i

the electrical power, in p.u.
u

0
the synchronous machine speed, in rad/s

D
i

the per unit damping constant
H

i
the inertia constant, in s

E@
qi

the transient EMF in the quadrature axis, in p.u.
E
qi

the EMF in the quadrature axis, in p.u.
E
fi

the equivalent EMF in the excitation coil, in p.u.
¹@

doi
the direct axis transient short-circuit time con-
stant, in s

x
di

the direct axis reactance, in p.u.
x@
di

the direct axis transient reactance, in p.u.
B
ij

the ith row and jth column element of nodal
susceptance matrix at the internal nodes after
eliminating all physical buses, in p.u.

Q
%i

the reactive power, in p.u.
I
fi

the excitation current, in p.u.
I
di

the direct axis current, in p.u.

I
qi

the quadrature axis current, in p.u.
k
ci

the gain of the excitation ampli"er, in p.u.
u
fi

the input of the SCR ampli"er, in p.u.
x
adi

the mutual reactance between the excitation coil
and the stator coil, in p.u.

x
Ti

the transformer reactance, in p.u.
x
ij

the transmission line reactance between the ith
generator and the jth generator, in p.u.

<
5i

the terminal voltage of the ith generator, in
p.u.

X
%i

the steam valve openning of the ith generator, in
p.u.

P
#i

the power control input of the ith generator, in
p.u.

¹
.i

the time constant of the ith machine's turbine, in
s

K
.i

the gain of the ith machine's turbine
¹

%i
the time constant of the ith machine's speed
governor, in s

K
%i

the gain of the ith machine's speed governor
R

i
the regulation constant of the ith machine, in
p.u.

Recently, in a general nonlinear decentralized control
result, Guo et al. (1998) extend the result of Jain & Khor-
rami (1997a) by allowing general nonlinear bounds of
interconnections. Robust backstepping and the central-
ized H

=
almost disturbance decoupling method have

been combined with nonlinear decentralized design.
Since a signi"cant application of decentralized robust
control is in large-scale power systems, in this paper we
apply the nonlinear decentralized control scheme de-
veloped in Guo et al. (1998) to this problem. We design
both excitation control and steam valve control to en-
hance the transient stability. Lower-triangular structured
models are used, interconnections among subsystems are
nonlinear, and persistent disturbances (arising from per-
manent faults, load change, etc.) enter the system without
matching conditions. The decentralized controllers are
designed explicitly and the resulting closed-loop systems
are transiently stable and attenuate the e!ect of persistent
disturbances. The bounds of disturbances are not known
a priori in the design. The proposed controllers are
simulated on a two-generator in"nite bus power system
where the saturation e!ects of magnetizing inductances
are also considered. The simulation results exhibit the
e!ectiveness of the designed controllers, both of excitors
and steam valve controllers, in the sense that the transi-
ent stability of the system is enhanced in the presence of
variation of operation points, fault location and network
parameters.

The layout of the paper is as follows. In Section 2 we
give the dynamic model of power systems, in which

excitation control loop and steam valve control loop
models are represented, respectively. In Section 3,
the theory background of the nonlinear decentralized
control scheme is stated brie#y. Then in Section 4, excita-
tion control and steam valve control are designed using
the above-mentioned scheme. In Section 5, simulation
results for both excitation and steam valve control
performance are given to support the theoretical claims.
And "nally, the paper is concluded by brief remarks in
Section 6.

The notation used in this paper is standard. D ) D denotes
the usual Euclidean norm for vectors. We say that
z : (0,¹)PRk is in ¸

2
(0,¹) if :T

0
Dz(t)D2dt(R. A continu-

ous function / : R
`
PR

`
is said to be of class K

=
if it is

strictly increasing and satis"es /(0)"0, and /(s)PR as
sPR. j

.!9
(P) and j

.*/
(P) denote the maximum and the

minimum eigenvalue of any square matrix P.

2. Power system dynamic model

For a large-scale power system consisting of n gener-
ators interconnected through a transmission network, we
apply the classic dynamic model (Bergen, 1986; Kundur,
1994). A model for each generator with both excitation
and power control can be written as follows:

Mechanical equations:

dQ
i
"u

i
, (1)
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u5
i
"!

D
i

2H
i

u
i
#

u
0

2H
i

(P
.i
!P

%i
)#d

i
. (2)

Generator electrical dynamics:

EQ @
qi
"

1

¹@
doi

(E
fi
!E

qi
). (3)

Turbine dynamics:

PQ
.i
"!

1

¹
.i

P
.i
#

K
.i

¹
.i

X
%i
. (4)

Turbine valve control:

XQ
%i
"!

K
%i

¹
%i
R

i
u

0

u
i
!

1

¹
%i

X
%i
#

1

¹
%i

P
#i
. (5)

Electrical equations:

E
qi
"E@

qi
#(x

di
!x@

di
)I

di
, (6)

E
fi
"k

#i
u
fi

, (7)

P
%i
"

n
+
j/1

E@
qi
E@
qj

B
ij

sin(d
i
!d

j
), (8)

Q
%i
"!

n
+
j/1

E@
qi
E@
qj

B
ij

cos(d
i
!d

j
), (9)

I
di
"!

n
+
j/1

E@
qj

B
ij

cos(d
i
!d

j
), (10)

I
qi
"

n
+
j/1

E@
qj

B
ij

sin(d
i
!d

j
), (11)

E
qi
"x

adi
I
fi

, (12)

<
ti
"J(E@

qi
!x@

di
I
di
)2#(x@

di
I
qi
)2. (13)

The notation for the multimachine power system
model is given in the Nomenclature. Disturbance d

i
is the

persistent disturbance which could be, for example,
a consistent load change, or increase of the mechanical
input power. We concern the disturbance e!ect on the
power system frequency, i.e. f

i
"(1/2p)u

i
.

2.1. Excitation control loop

Since we only consider the excitation loop, P
.i
"P

.i0
is a constant, and the plant can be modelled by (1)}(3). By
applying direct feedback linearization compensation to
(1)}(3) * see Wang et al. (1997) for details, we obtain

dQ
i
"u

i
,

u5
i
"!

D
i

2H
i

u
i
!

u
0

2H
i

nP
%i
#d

i
,

nPQ
%i
"!

1

¹@
doi

nP
%i
#

1

¹@
doi

v
fi
#c

i
(d,u), (14)

where

nP
%i
"P

%i
!P

.i0
, (15)

c
i
(d,u)"E@

qi

n
+
j/1

EQ @
qj

B
ij

sin(d
i
!d

j
)

!E@
qi

n
+
j/1

E@
qj

B
ij

cos(d
i
!d

j
)u

j
, (16)

v
fi
"I

qi
k
#i
u
fi
!(x

di
!x@

di
)I

qi
I
di
!P

.i0
!¹@

d0i
Q

%i
u

i
.

(17)

Now we seek the bound of the interconnection term
c
i
(d,u). Since the electrical power P

%i
and the reactive

power Q
%i

of each generator and the electrical power #ow
through each transmission line are all bounded, and the
excitation voltage E

fi
may raise by up to 5 times of the

E
qi

when there is no load in the system, we have

DE@
qi
E@

qj
B
ij
D4DP

%i
D
.!9

, (18)

DEQ @
qj

D4K
1

¹@
doj

[E
fj
!E

qj
]K
.!9

44DE
qj

D
.!9

1

D¹@
doj

D
.in

(19)

which is followed by

Dc
i
(d,u)D4

n
+

j/1,jEi

4

D¹@
doj

D
.in

DP
%i
D
.!9

Dsin(d
i
!d

j
)D

#

n
+
j/1

DQ
%i
D
.!9

Du
j
D

4

n
+

j/1,jEi

4p
1ij

D¹@
doj

D
.in

DP
%i
D
.!9

(Dsin d
i
D#Dsind

j
D)

#

n
+
j/1

p
2ij

DQ
%i
D
.!9

Du
j
D

"

n
+
j/1

(c
i1j

Dsind
j
D#c

i2
Du

j
D), (20)

where

c
i1j
OG

+n
j/1,jEi

4p
1ij

D¹@
doj

D
.in

DP
%i
D
.!9

when j"i,

4p
1ij

D¹@
doj

D
.in

DP
%i
D
.!9

when jOi,

c
i2
Op

2ij
DQ

%i
D
.!9

. (21)

and p
1ij

, p
2ij

are constants with values either 1 or 0. (If
they are 0, it means that jth subsystem has no connection
with the ith subsystem.)
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2.2. Steam valve control loop

The steam valve control loop can be modeled by
(1), (2), (4), (5), i.e.

dQ
i
"u

i
,

u5
i
"!

D
i

2H
i

u
i
#

u
0

2H
i

[P
.i
!g

i
(d)]#d

i
,

PQ
.i
"!

1

¹
.i

P
.i
#

K
.i

¹
.i

X
%i

XQ
%i
"!

K
%i

¹
%i
R

i
u

0

u
i
!

1

¹
%i

X
%i
#

1

¹
%i

u
i
, (22)

where

g
i
(d)"

n
+
j/1

E@
qi
E@
qj

B
ij

sin(d
i
!d

j
), (23)

u
i
"P

#i
. (24)

Because of (18), we can bound the interconnection term
g
i
(d) as the following nonlinear function regardless of

uncertain E@
qi
, E@

qj
and network parameters:

Dg
i
(d)D4

n
+

j/1, jEi

DP
%i
D
.!9

Dsin (d
i
!d

j
)D

4

n
+

j/1, jEi

p
1ij

DP
%i
D
.!9

(Dsin d
i
D#Dsin d

j1
D)

4

n
+
j/1

g
ij
Dsinx

j1
D, (25)

where

g
ij
OG

+n
j/1,jEi

p
1ij

DP
%i
D
.!9

when j"i,

p
1ij

DP
%i
D
.!9

when jOi,
(26)

and p
1ij

is as de"ned in (21).

2.3. Control task

We consider the transient stability of the power con-
trol system, i.e. the ability of the system to preserve
synchronism after sudden severe disturbances. The fault
we consider in this paper is a symmetrical three-phase
short circuit on one of the transmission lines. We test the
transient stability of the power control system under the
following temporary fault sequence:

Stage 1: The system is in a prefault steady state.
Stage 2: A fault occurs at t"t

0
.

Stage 3: The fault is removed by opening the breakers
of the faulted line at t"t

1
.

Stage 4: The transmission lines are restored at t"t
2
.

Stage 5: The system is in a postfault state.

The control task we address in this paper is as follows:
Design decentralized nonlinear feedback control law

u
fi

and u
i
(i"1, 2,2, n) for the excitation control loop

and steam valve control loop respectively, such that the
resulting closed-loop systems are transiently stable when
a major fault occurs; furthermore, the e!ect of the persist-
ent disturbance on the system frequency is reduced to
a certain level.

3. Nonlinear decentralized control scheme

In this section, we brie#y state the results of Guo et al.
(1998) as the background for the decentralized controller
design in the next section. The class of large-scale nonlin-
ear systems S considered are composed of the single-
input single-output (SISO) subsystems S

i
(14i4N):

C
z5
i1
F

z5
i,i~1
z5
ii
D"C

0 1 0

}

0 0 1

0 0 2 0DC
z
i1
F

z
i,i~1
z
ii
D

#C
0

F

0

1DMmi1#c
i0

(t, z)#p
i0

(t, z)u
i
N

OA
i
z
i
#B

i
[m

i1
#c

i0
(t, z)#p

i0
(t, z)u

i
],

mQ
i1
"m

i2
#c

i1
(t, z, m

i1
)#p

i1
(t, z, m

i1
)u

i
,

mQ
i2
"m

i3
#c

i2
(t, z, m

i1
,m

i2
)#p

i2
(t, z, m

i1
, m

i2
)u

i
,

F

mQ
i,n~i"u

i
#c

i,n~i(t, z,mi )#p
i,n~i (t, z, mi

)u
i
,

y
i
"z

i1
, (27)

where

z
i
"(z

i1
,2, z

ii)3Ri, z"(zT
1
,2, zT

N
)T,

m
i
"(m

i1
,2,m

i,n~i )3Rn~i, and m"(mT
1
,2,mT

N
)T,

z and m are the state vectors, u
i
3R is the control input,

u
i
3Rmi is the disturbance input, y

i
3R is the to-

be-controlled output; the unknown functions
c
il
, p

il
, 04l4n!i are locally Lipschitz in states and

piecewise continuous in t, and c
il

(t,0,0,2,0)"0.
Both parametric and dynamic uncertainties are con-

sidered in the terms c
ij
, p

ij
. We allow general nonlinear

interconnections among subsystems whose bounds are
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given by:

Dc
il
(t, z, m

i1
,2, m

il
)!c

il
(t,0,m

i1
,2, m

il
)D

4

N
+
j/1

a
ilj

(m
i1

,2, m
il
)u

ilj
(Dz

j
D), (28)

Dp
il
(t, z, m

i1
,2, m

il
)!p

il
(t,0,m

i1
,2, m

il
)D

4

N
+
j/1

b
ilj

(m
i1

,2, m
il
)'

ilj
(Dz

j
D); (29)

and the time-varying local terms satisfy

Dc
il
(t, 0, m

i1
,2, m

il
)D4t

il
(D(m

i1
,2, m

il
)D), (30)

Dp
il
(t, 0, m

i1
,2, m

il
)D4(

il
(D(m

i1
,2, m

il
)D), (31)

where a
ilj

( ) ), b
ilj

( ) ), u
ilj

( ) ), '
ilj

( ) ),t
il
( ) ), (

il
( ) ) are

smooth known functions, with u
ilj

(0)"'
ilj

(0)"0,
t
il
(0)"0, 04l4n!k.
The following theorem states the main result for dis-

turbance attenuation:

Theorem 1. Decentralized smooth state feedback control-
lers u

i
"u

i
(z

i
,m

i
) can be found for system (27), such that, for

any given positive constant k, the closed-loop interconnec-
ted system satisxes the following dissipation inequality:

P
T

0

DyD2 dt4kP
T

0

DwD2dt#l(z(0), m(0))

∀u3¸
2
(0,¹), ∀¹50 (32)

where l is a positive-semidexnite function and (z(0), m(0))
is the initial condition. Furthermore, the origin is globally
uniformly asymptotically stable (GUAS) if w"0.

The proof of Theorem 1 uses a combination of cen-
tralized H

=
almost disturbance decoupling method

(Marino, Respondek, van der Schaft & Tomei, 1994), its
robust version (Jiang & Jiang, 1997) and decentralized
designs (Han & Chen, 1995; Jain & Khorrami, 1997a).
A stepwise procedure is presented by application of
robust backstepping to the large-scale system (27) in
Guo et al. (1998), where a detailed proof of Theorem 1
can be found.

Remark 1. The necessary and su$cient geometric condi-
tions to characterize a subclass of system (27) can be
found in Jain and Khorrami (1997a). Nonlinear gain
bounds on the interconnections are motivated by ideas
used in Mareels and Hill (1992), Jiang, Teel and Praly
(1994). The idea of dominance which appeared in early
decentralized work (M-matrix design) (Moylan & Hill,
1978) is implemented in this nonlinear systems design.

In the next section the nonlinear decentralized control
scheme will be applied to the multimachine power sys-
tems, where design procedures are stated in detail with
decentralized controllers constructed explicitly.

4. Decentralized robust controller design

4.1. Excitation control

De"ning the states as [z
i1

, z
i2

, m
i
]"[d

i
, u

i
, nP

%i
], we

represent the excitation system model after coordinate
transformation in state space:

z5
i1
"z

i2
,

z5
i2
"!

D
i

2H
i

z
i2
!

u
0

2H
i

m
i
#d

i
,

mQ
i
"!

1

¹@
doi

m
i
#

1

¹@
doi

v
fi
#c

i
(z), (33)

where d
i

is the disturbance, v
fi

is the to-be-designed
input, and

Dc
i
(z)D4

n
+
j/1

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D). (34)

c
i1j

, c
i2

are as de"ned in (21).
The to-be-controlled output (power system frequency)

is de"ned as

y
i
"

1

2p
z
i2

. (35)

It is clear that (33) exhibits a lower-triangular depend-
ence on the local coordinates, the disturbance enters the
system without matching conditions, and the intercon-
nection among subsystems is bounded by a nonlinear
function. The nonlinear decentralized control scheme of
Section 3 is applicable.

Step 1: Considering the z
i
"(z

i1
, z

i2
)-subsystem, and

seeing m
i
as the virtual control, we have

z5
i
"A

i
z
i
#B

i
(m

i
#k

i
d
i
), (36)

where

A
i
"C

0 1

0 ! Di

2Hi
D, B

i
"C

0

! u0

2Hi
D, k

i
"!

2H
i

u
0

. (37)

Choose the Lyapunov function candidate:

<
i
(z

i
)"/

i
(<

i0
(z

i
)), (38)

where /
i
is a smooth K

=
function which will be de"ned

in the last step of the design, and <
i0
"zT

i
P
i
z
i

with
P
i
'0 solving the algebraic Riccati equation:

AT
i
P
i
#P

i
A

i
!2e

i
P

i
B
i
BT

i
P
i
#Q

i
"0 (39)

with e
i
'0, and Q

i
'0.
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Di!erentiating (38) along the solution of z
i
-subsystem,

we have

<Q
i
"

L/
i

L<
i0

2zT
i
P
i
[A

i
z
i
#B

i
(m

i
#k

i
d
i
)]. (40)

Notice that

L/
i

L<
i0

2zT
i
P
i
B

i
k
i
d
i
4

1

q
i
A

L/
i

L<
i0
B
2
(zT

i
P
i
B
i
k
i
)2#q

i
Dd

i
D2. (41)

Choosing the virtual control m
i
"mH

i
as

mH
i
"!GeiBT

i
P
i
z
i
#0.5

1

q
i

L/
i

L<
i0

(zT
i
P
i
B
i
)k2

i H, (42)

we have the dissipation inequality

<Q
i
4!

L/
i

L<
i0

(zT
i
Q

i
z
i
)#q

i
Dd

i
D2. (43)

Step 2: Augment the z
i
-subsystem with the m

i
-subsys-

tem, and choose a Lyapunov function as

=
i
(z

i
,m

i
)"<

i
(z

i
)#(m

i
!mH

i
)2. (44)

Note that

mQ H
i
"

LmH
i1

Lz
i

(A
i
z
i
#B

i
m
i
#B

i
k
i
d
i
)

O0
i
(z

i
, m

i
)#p

i
(z

i
)d

i
. (45)

Di!erentiating =
i1

along the solutions of the (z
i
, m

i
)-

subsystem yields

=Q
i
4G!

L/
i

L<
i0

(zT
i
Q

i
z
i
)#q

i
Dd

i
D2H

#2mI
iG

L/
i

L<
i0

zT
i
P
i
B

i
!

1

¹@
doi

m
i

#

1

¹@
doi

v
fi
#c

i
(z)!0

i
!p

i
(z

i
)d

iH, (46)

where mI
i
"m

i
!mH

i
.

For the interconnected term in (46), we have

2mI
i
c
i
(z)4DmI

i
D2

n
+
j/1

.
j
#

n
+
j/1

.~1
j

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D)2.

(47)

For the disturbance term in (46), we have

2mI
i
[!p

i
(z

i
)d

i
]4

1

q
i

mI 2
i
p2
i
(z

i
)#q

i
Dd

i
D2. (48)

Choosing the true control as

v
fi
"!¹@

doiGcimI i#
L/

i
L<

i0

zT
i
P

i
B
i
!

1

¹@
doi

m
i
!0

i

#0.5DmI
i
D

n
+
j/1

.
j
#0.5

1

q
i

mI
i
p2
i
(z

i
)H (49)

we have the dissipation inequality

=Q
i
4!

L/
i

L<
i0

(zT
i
Q

i
z
i
)!c

i
mI 2
i
#2q

i
Dd

i
D2

#

n
+
j/1

. ~1
j

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D)2. (50)

Step 3: We construct the K
=

function /
i
in this step.

De"ne the Lyapunov function for the whole intercon-
nected system as

=(z, m)"
n
+
i/1

=
i
"

n
+
i/1

M/
i
(<

i0
(z

i
))#(m

i
!mH

i
)2N. (51)

From (50), we obtain

=Q (z,m)4
n
+
i/1
G!

L/
i

L<
i0

(zT
i
Q

i
z
i
)!c

i
mI 2
i
#2q

i
Dd

i
D2

#

n
+
j/1

.~1
j

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D)2H. (52)

Notice that

n
+
i/1

n
+
j/1

. ~1
j

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D)2

"

n
+
i/1

n
+
j/1

. ~1
i

(c
j1i

Dsin z
i1

D#c
j2

Dz
i2

D)2. (53)

Construct the derivative of /
i
as

L/
i

L(<
i0

)
"l

i
#

1

j
.*/

(Q
i
)

N
+
j/1

.~1
i

maxMc2
j1i

,c2
j2

N (54)

which ensures that /
i
is a smooth K

=
function, and

n
+
i/1

L/
i

L<
i0

(zT
i
Q

i
z
i
)5

n
+
i/1

l
i
j
.*/

(Q
i
)Dz

i
D2

#

n
+
i/1

n
+
j/1

. ~1
j

(c
i1j

Dsin z
j1

D#c
i2

Dz
j2

D)2. (55)

So we have

=Q (z, m)4
n
+
i/1

M!l
i
j
.*/

(Q
i
)Dz

i
D2!c

i
mI 2
i
#2q

i
Dd

i
D2N. (56)
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Remark 2. The design procedure of excitation control
involves an application of robust backstepping. A stor-
age function=

i
is built up and associated control v

fi
is

constructed iterately. The dissipation inequality (50) is
obtained for the ith isolated subsystem. Then we choose
storage function= for the interconnected system (33) to
be the sum of all subsystem storage functions
=

i
, i"1,2, n (see (51)). To get net energy dissipation

for the system, we dominate other subsystem interactions
by the subsystem stability margins. This is done by care-
fully choosing the storage function /

i
of (38). For this

case, the function /
i
turns out to be linear. This can be

explained from (34) that the least conservative bound of
Dc
i
(z)D in terms of Dz

j
D is linear.

The properties of the above designed control law can
be summarized in the following theorem:

Theorem 2. The decentralized control (49) globally stabil-
izes the excitation control system (33), with all admissible
uncertainties in the interconnections which satisfy (34); and
the ¸

2
gain from the persistent disturbance to the power

system frequency can be reduced to a given level.

Proof. With the decentralized control law (49), in the
absence of the disturbance (i.e. d

i
"0), from (56) we

obtain

=Q (z, m)4
n
+
i/1

M!l
i
j
.*/

(Q
i
)Dz

i
D2!c

i
mI 2
i
N

O!=
a
(z, m)40. (57)

From (51),=(z, m) is a continuously di!erentiable, posit-
ive de"nite and radially unbounded function and its
derivative is negative de"nite. Hence we obtain the
GUAS of the closed-loop system when d

i
"0.

When d
i
is not zero, from (56), we have

=Q (z, m)4
n
+
i/1

M!l
i
j
.*/

(Q
i
)Dz

i2
D2#2q

i
Dd

i
D2N. (58)

Taking the integral of (58) along time t, and by (35), the
¸
2
-gain from d to y of the closed-loop system is obtained

as

P
T

0

DyD2 dt4kP
T

0

DdD2 dt#l(z(0), m(0)), (59)

where

k" min
1yiyn

M2q
i
NNA2p max

1yiyn

Ml
i
j
.*/

(Q
i
)NB, (60)

l(z(0),m(0))"=(z(0), m(0))NA2p max
1yiyn

Ml
i
j
.*/

(Q
i
)NB. (61)

It is easy to see that the ¸
2

gain k can be designed
arbitrarily by appropriately choosing parameters, which
also provides the tradeo! with control e!ort.

Remark 3. Since the coordinate transformation between
(1)}(3) and (33) is a di!eomorphism, the control task
de"ned in Section 2 is achieved for the excitation control
system (1)}(3). The excitation control input u

fi
can be

obtained by an inverse transform of (17) which gives

u
fi
"

1

k
ci
I
qi

Mv
fi
#P

.i0
#(x

di
!x@

di
)I

qi
I
di
#¹@

d0i
Q

%i
u

i
N.

(62)

Note that u
fi

is well-de"ned since I
qi
"0 is not in the

normal working region for a generator.

Remark 4. In power systems, P
%i
, Q

%i
and I

fi
are readily

measurable variables. From (8)}(11), we can obtain

P
%i
"E@

qi
I
qi
, Q

%i
"!E@

qi
I
di
.

And from (6) and (12), we know that I
di

and I
qi

can be
calculated using these available variables. Since u

i
is also

measurable and the method for measuring the power
angle d

i
can be found in de Mello (1994), the compensat-

ing law (62) is practically realizable using only local
measurements.

4.2. Steam valve control

De"ning the states as [z
i1

, z
i2

, m
i1

, m
i2

]"
[d

i
,u

i
,P

.i
, X

%i
], the state-space representation of the

steam valve control is as follows:

z5
i1
"z

i2
,

z5
i2
"!

D
i

2H
i

z
i2
#

u
0

2H
i

[m
i1
!g

i
(z)]#d

i
,

mQ
i1
"!

1

¹
.i

m
i1
#

K
.i

¹
.i

m
i2

,

mQ
i2
"!

K
%i

¹
%i
R

i
u

0

z
i2
!

1

¹
%i

m
i2
#

1

¹
%i

u
i
, (63)

where d
i
is the disturbance, u

i
is the input, and

Dg
i
(z)D4

n
+
j/1

g
ij
Dsin z

j1
D. (64)

g
ij

is as de"ned as in (26). The to-be-controlled output
(power system frequency) is

y
i
"

1

2p
z
i2

. (65)
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The model (63) also exhibits a lower-triangular structure,
the disturbance enters the system without a matching
condition, and interconnections are bounded by nonlin-
ear functions. The stepwise controller design is as follows.

Step 1: Considering the z
i
-subsystem, seeing m

i1
as the

virtual control, we have

z5
i
"A

i
z
i
#B

i
[m

i1
!g

i
(z)#k

i
d
i
], (66)

where

A
i
"C

0 1

0 !

D
i

2H
i
D, B

i
"C

0
u

0
2H

i
D, k

i
"

2H
i

u
0

. (67)

Choose the Lyapunov function candidate:

<
i
(z

i
)"/

i
(<

i0
(z

i
)), (68)

where /
i
is a K

=
function which will be de"ned in the

last step of the design, and <
i0
"zT

i
P

i
z
i

were P
i
'0

solves algebraic Riccati equation (39) with system matrix
de"ned in (67).

Di!erentiating (68) along the solution of z
i
-subsystem,

we have

<Q
i
"

L/
i

L<
i0

2zT
i
P
i
MA

i
z
i
#B

i
[m

i1
!g

i
(z)#k

i
d
i
]N. (69)

Notice that

L/
i

L<
i0

2zT
i
P
i
B
i
k
i
d
i
4

1

q
i
A

L/
i

L<
i0
B

2
(zT

i
P
i
B
i
k
i
)2#q

i
Dd

i
D2, (70)

L/
i

L<
i0

2zT
i
P
i
B
i
(!g

i
(z))4A

L/
i

L<
i0
B

2
(zT

i
P
i
B
i
)2

n
+
j/1

.
j

#

n
+
j/1

. ~1
j

g2
ij
(sin z

j1
)2. (71)

Choose the virtual control m
i1
"mH

i1
as

mH
i1
"!GeiBT

i
P

i
z
i
#0.5

1

q
i

L/
i

L<
i0

(zT
i
P

i
B
i
)k2

i

#0.5A
L/

i
L<

i0
B(zTi Pi

B
i
)

n
+
j/1

.
jH, (72)

we have the dissipation inequality

<Q
i
4!

L/
i

L<
i0

(zT
i
Q

i
z
i
)#q

i
Dd

i
D2#

n
+
j/1

.~1
j

g2
ij

sin2 z
j1

. (73)

Step 2: Augment the z
i
-subsystem with the m

i1
-subsys-

tem, and choose a Lyapunov function as

=
i1

(z
i
, m

i1
)"<

i
(z

i
)#(m

i1
!mH

i1
)2. (74)

Note that

mQ H
i1
"

LmH
i1

Lz
i

[A
i
z
i
#B

i
m
i1
!B

i
g
i
(z)#B

i
k
i
d
i
]

O0
i1

(z
i
,m

i1
)!p

i
(z

i
)g

i
(z)#p

i
(z

i
)k

i
d
i
. (75)

Di!erentiating along the solutions of the (z
i
,m

i1
)-subsys-

tem yields

=Q
i1
4G!

L/
i

L<
i0

(zT
i
Q

i
z
i
)#q

i
Dd

i
D2#

n
+
j/1

.~1
j

g2
ij
(sin z

j1
)2H

#2mI
i1G

L/
i

L<
i0

zT
i
P
i
B
i
!

1

¹
.i

m
i1
#

K
.i

¹
.i

m
i2

!0
i1

(z
i
,m

i1
)#p

i
(z

i
)g

i
(z)!p

i1
(z

i
)k

i
d
iH, (76)

where mI
i1
"m

i1
!mH

i1
.

Notice that

2mI
i1

p
i1

(z
i
)g

i
(z)4(mI

i1
)2p2

i1
(z

i
)

n
+
j/1

.
j
#

n
+
j/1

.~1
j

g2
ij
(sin z

j1
)2,

(77)

2mI
i1

[!p
i1

(z
i
)k

i
d
i
]4

1

q
i

mI 2
i1

p2
i1

(z
i
)k2

i
#q

i
Dd

i
D2. (78)

Choose the virtual control m
i2
"mH

i2
as

mH
i2
"!

¹
.i

K
.i
Gci1mI

i1
#

L/
i

L<
i0

zT
i
P

i
B
i

!

1

¹
.i

m
i1
!0

i1
(z

i
,m

i1
)

# 0.5(mI
i1

)p2
i1

(z
i
)

n
+
j/1

.
j
#0.5

1

q
i

mI
i1

p2
i1

(z
i
)k2

i H, (79)

then we obtain the dissipation inequality

=Q
i1
4!

L/
i

L<
i0

(zT
i
Q

i
z
i
)!c

i1
mI 2
i1
#2q

i
Dd

i
D2

#

n
+
j/1

2.~1
j

g2
ij

sin2 z
j1

. (80)

Step 3: Augment the (z
i
, m

i1
)-subsystem with m

i2
-sub-

system, and choose a Lyapunov function as

=
i2

(z
i
, m

i1
)"=

i1
(z

i
, m

i1
)#(m

i2
!mH

i2
)2. (81)

Denote that

mQ H
i2
"

LmH
i2

Lz
i

[A
i
z
i
#B

i
m
i1
!B

i
g
i
(z)#B

i
k
i
d
i
]

#

LmH
i2

Lm
i1
A!

1

¹
.i

m
i1
#

K
.i

¹
.i

m
i2B

O0
i2

(z
i
, m

i1
, m

i2
)!p

i2
(z

i
, m

i1
)g

i
(z)#p

i2
(z

i
, m

i1
)k

i
d
i
.

(82)
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Following the similar procedure as stated in Step 2 we
can obtain

=Q
i2
4!

L/
i

L<
i0

(zT
i
Q

i
z
i
)!c

i1
mI 2
i1
!c

i2
mI 2
i2
#3q

i
Dd

i
D2

#

n
+
j/1

3.~1
j

g2
ij

sin2 z
j1

, (83)

and the true control is chosen as

u
i
"!¹

%iGci2mI
i2
#0.5

L=
i1

Lm
i1

K
.i

¹
.i

!

K
%i

¹
%i
R

i
u

0

z
i2

!

1

¹
%i

m
i2
!0

i2
(z

i
, m

i1
, m

i2
)

#0.5(mI
i2

)p2
i2

n
+
j/1

.
j
#0.5

1

q
i

mI
i2

p2
i2

k2
i H. (84)

Step 4: We construct the K
=

function /
i
in this step.

De"ne a Lyapunov function for the whole interconnected
system as

=(z, m)"
n
+
i/1

=
i2
"

n
+
i/1

M/
i
(<

i0
(z

i
))#(m

i1
!mH

i1
)2

#(m
i2
!mH

i2
)2N. (85)

From (83) we obtain

=Q (z,m)4
n
+
i/1
G!

L/
i

L<
i0

(zT
i
Q

i
z
i
)!c

i1
mI 2
i1
!c

i2
mI 2
i2

#3q
i
Dd

i
D2#

n
+
j/1

3.~1
j

g2
ij

sin2 z
j1H. (86)

We bound the sin( ) ) function as

sin2 Dz
i
D4Dz

i
D2u

i
(Dz

i
D),

where u
i
is a decreasing C function:

u
i
(Dz

i
D)"G

1 when Dz
i
D"0,

4*/
2
@zi @

@zi @
2 when Dz

i
D4p

2
,

1
@zi @

2 when Dz
i
D'p

2
,

(87)

Since

Dz
i
D5S

<
i0

(z
i
)

j
.!9

(P
i
)
Og

i
(<

i0
),

(88)

we obtain

u
i
(Dz

i
D)4u

i
" g

i
(<

i0
). (89)

Construct the derivative of /
i
as

L/
i

L(<
i0

)
"l

i
#

1

j
.*/

(Q
i
)

N
+
j/1

3.~1
i

g2
ji
u

i
" g

i
(<

i0
), (90)

then we have

n
+
i/1
G

L/
i

L<
i0

(zT
i
Q

i
z
i
)H5

n
+
i/1

Ml
i
j
.*/

(Q
i
)Dz

i
D2

#

n
+
j/1

3.~1
j

g2
ij

sin2 z
j1H, (91)

which is followed by

=Q (z,m)4
n
+
i/1

M!l
i
j
.*/

(Q
i
)Dz

i
D2!c

i1
mI 2
i1
!c

i2
mI 2
i2

#3q
i
Dd

i
D2N. (92)

Remark 5. The function /
i
in this case is nonlinear since

the interconnection (64) is bounded by a sin( ) ) function
of Dz

j
D.

Remark 6. To maintain less conservatism of controller
gains, we choose u

i
( ) ) as a decreasing function instead of

nondecreasing one as proposed in Guo et al. (1998); and
correspondingly we use the upper bound of<

i0
as in (88).

Note that <
i0
"0 is not in the normal working region of

power systems which ensures that the derivatives of
g
i
(<

i0
) are well-de"ned. Since u

i
is a C function, u

i
has

a non-continuous point at g
i
(<

i0
)"p/2.

The following theorem summarizes the property of the
above-designed controller:

Theorem 3. The decentralized control (84) globally stabil-
izes the steam valve control system (63), with all admissible
uncertainties in the interconnection which satisxes (64); and
the ¸

2
gain from the persistent disturbance to the power

system frequency can be reduced to a given level.

The proof of Theorem 3 can be obtained similarly as
the proof of Theorem 2.

Remark 7. The decentralized control law (84) employs
feedback of state variables d

i
,u

i
, P

.i
and X

%i
. Since

u
i
,P

.i
, X

%i
are directly measurable variables, and the

power angle d
i
can be found using the method described

in de Mello (1994), (84) is practically realizable.

Remark 8. In this section we designed decentralized con-
trollers for the power excitation and steam valve control
loops respectively. Instead of bounding the interconnec-
tions with "rst-order polynomials (linear), we bound

Y. Guo et al. / Automatica 36 (2000) 1275}1289 1283



Fig. 1. A two-machine in"nite bus power system.

Table 1
System parameters

Generator d1 Generator d2

x
d

(p.u.) 1.863 2.36
x@
d

(p.u.) 0.257 0.319
x
T

(p.u.) 0.129 0.11
x
ad

(p.u.) 1.712 1.712
¹@

d0
(p.u.) 6.9 7.96

H (s) 4 5.1
D (p.u.) 5 3
¹

.
(s) 0.35 0.35

¹
%

(s) 0.1 0.1
R 0.05 0.05
K

.
1.0 1.0

K
%

1.0 1.0
k
c

1 1

x
12

(p.u.) 0.55
x
13

(p.u.) 0.53
x
23

(p.u.) 0.6
u

0
(rad/s) 314.159

them by nonlinear functions, which provides less conser-
vatism of the controller gains. The stepwise design pro-
cedure involves choosing nonlinear storage functions
which achieve net energy dissipation along the closed-
loop system trajectories. There are always di!erent kinds
of persistent disturbances entering power systems which
cause unexpected e!ects on the power frequency. Besides
giving stability, the designed controller also attenuates
the persistent disturbance, in the sense that the ¸

2
-gain

from the disturbance to the power frequency is reduced
to a certain level.

5. Simulation results

The decentralized controller designed above was
simulated on a two-generator in"nite bus power system
which is shown in Fig. 1. The generator and the transmis-
sion line parameters are listed in Table 1. The fault
sequence is as stated in Section 2, where it is chosen that
t
0
"0.1 s, t

1
"0.25 s, t

2
"1 s.

5.1. Excitation control performance

According to Table 1, we have the system data used in
Section 4.1 as

A
1
"C

0 1

0 !0.625D, B
1
"C

0

!39.27D,

A
2
"C

0 1

0 !0.2941D, B
1
"C

0

!30.8D,
c
111

"c
112

"0.7817, c
12

"1.4,

c
211

"c
212

"0.9662, c
22

"1.5. (93)

In the controller design, we choose Q
1
"Q

2
"0.8I,

e
1
"e

2
"14 to get

P
1
"C

0.8043 0.0043

0.0043 0.0043D, P
2
"C

0.8055 0.0055

0.0055 0.0055D,
and other design parameters are chosen as

.
1
".

2
"0.1, q

1
"q

2
"0.5,

l
1
"l

2
"2, c

1
"c

2
"0.1.

Using the above parameters, the decentralized control-
lers we derived are

v
f1

"19.68(d
1
!d

10
)#20.60u

1
!93.81(P

%1
!P

.10
),

v
f2

"19.69(d
2
!d

20
)#21.45u

2
!73.95(P

%2
!P

.20
),

(94)
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Fig. 2. Responses of excitation control: Case 1.

and the original excitation control for the two-generator
in"nite bus power system are

u
f1

"

1

k
c1

I
q1

Mv
f1

#P
.10

!(x
d1
!x@

d1
)I

q1
I
d1

#¹@
d01

Q
%1

u
1
N,

u
f2

"

1

k
c2

I
q2

Mv
f2

#P
.20

!(x
d2
!x@

d2
)I

q2
I
d2

#¹@
d02

Q
%2

u
2
N. (95)

The deduced ¸
2

gain from the persistent disturbance
to the system frequency is obtained by (60) as k

1
"

k
2
"0.63/(2p)"0.1.
In the simulation, saturation of synchronous machines

is also considered, so (3) becomes

EQ @
qi
"

1

¹@
doi

[E
fi
!E

qi
!(1!k

fi
)E@

qi
], (96)

where

k
fi
"1#

b
i

a
i

(E@
qi
)(ni~1),

with

a
1
"0.95, b

1
"0.051, n

1
"8.727,

a
2
"0.935, b

2
"0.064, n

2
"10.878. (97)

The excitation control input limitations are

!34E
fi
"k

ci
u
fi
46, i"1,2.

We demonstrate the performance of the proposed excita-
tion controller in the following three cases of di!erent
sets of operation points, fault locations and network
parameters. The symmetrical three-phase short circuit
fault occurs on one of the transmission lines between the
generator d1 and the generator d2. The fault location is
indexed by a constant j which is the fraction of the line to
the left of the fault. The persistent disturbance of 30% is
used in the simulation, i.e. d

1
"d

2
"0.3 p.u.

Case 1: The operating points are:

d
10

"60.783, P
.10

"1.10 p.u., <
t10

"1.0 p.u.,

d
20

"60.643, P
.20

"1.01 p.u., <
t20

"1.0 p.u. (98)

The fault location is j"0.2. The corresponding closed-
loop system responses are shown in Fig. 2.

Case 2: The operating points are:

d
10

"30.53, P
.10

"0.57 p.u., <
t10

"1.01 p.u.,

d
20

"32.53, P
.20

"0.56 p.u., <
t20

"1.00 p.u. (99)

The fault location is j"0.05. The corresponding closed-
loop system responses are shown in Fig. 3.
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Fig. 3. Responses of excitation control: Case 2.

Case 3: The transmission line parameters are changed
to

x
12

"x
13

"x
23

"0.7.

The operating points are

d
10

"64.083, P
.10

"0.95 p.u., <
t10

"1.0 p.u.,

d
20

"65.333, P
.20

"0.95 p.u., <
t20

"1.0 p.u. (100)

The fault location is j"0.5. The corresponding closed-
loop system responses are shown in Fig. 4.

From the simulation results we can see that the pro-
posed excitation control enhances the system transient
stability and dampens out the power angle oscillations.
Also the e!ect of a persistent disturbance on the system
frequency is reduced to be quite small.

5.2. Steam valve control performance

According to Table 1, we have the system data used in
Section 4.2 as

A
1
"C

0 1

0 !0.625D, B
1
"C

0

39.27D,

A
2
"C

0 1

0 !0.2941D, B
1
"C

0

30.8D,
c
11

"c
12

"1.4, c
21

"c
22

"1.5. (101)

In the controller design, we choose Q
1
"Q

2
"0.8I,

e
1
"e

2
"20 to get

P
1
"C

0.8036 0.0036

0.0036 0.0036D, P
2
"C

0.8046 0.0046

0.0046 0.0046D,
and other design parameters are chosen as

.
1
".

2
"0.005, q

1
"q

2
"0.5,

l
1
"l

2
"2, c

1
"c

2
"0.01.

The deduced ¸
2

gain from the persistent disturbance to
the system frequency is k

1
"k

2
"0.94/(2p)"0.15. The

persistent disturbance d
1
"d

2
"0.3 p.u. is used in the

simulation.
Case 4: The operating points are same as Case 2, while

the fault location is j"0.05. The corresponding closed-
loop system responses are shown in Fig. 5.

Case 5: The transmission line parameters and the oper-
ating points are the same as in Case 3, while the fault
location is j"0.01. The corresponding closed-loop sys-
tem responses are shown in Fig. 6.
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Fig. 4. Responses of excitation control: Case 3. Fig. 5. Responses of steam valve control: Case 4.

The simulations testify the enhancement of transient
stability of the proposed steam valve controller in face of
di!erent conditions of operation points, fault locations
and network parameters.

6. Conclusions

In this paper we apply the recently developed nonlin-
ear decentralized control scheme (Guo et al., 1998) to
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Fig. 6 . Responses of steam valve control: Case 5.

large-scale power systems. Nonlinear decentralized ro-
bust controllers are designed explicitly for the excitation
model and turbine-governor model, where the intercon-
nections among generators are bounded by nonlinear
functions. Nonlinear storage functions are chosen to
maintain the net energy dissipation of the closed-loop
systems. The proposed controllers guarantee the overall
stability of the large-scale power systems and are robust
with regard to uncertain network parameters. The e!ec-
tiveness of the controller is demonstrated on a two-gener-
ator in"nite bus example system. The simulations show
that the transient stability is greatly enhanced regardless of
di!erent condition of operation points, fault locations and
network parameters, and the e!ect of persistent distur-
bance on system frequency is e!ectively attenuated.
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