
Quantum dots in magnetic �elds: thermal response of broken symmetry phases

D.J. Dean1;2, M.R. Strayer1;2, and J.C. Wells1;3
1Center for Engineering Science Advanced Research

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA

3Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge Tennessee 37831 USA

We investigate the thermal properties of circular semicon-
ductor quantum dots in high magnetic �elds using �nite tem-
perature Hartree-Fock techniques. We demonstrate that for a
given magnetic �eld strength quantum dots undergo various
shape phase transitions as a function of temperature, and we
outline possible observable consequences.

The quantum mechanical characteristics (i.e. ground-
and excited-state energy levels) of semiconductor quan-
tum dots were recently investigated as a function of
increasing magnetic �eld and electron number [1,2].
Unique structures that break rotational symmetry within
a quantum dot and develop as a function of increasing
magnetic �eld were also reported in theoretical investiga-
tions [3] and associated with experimental observations of
charge-density redistribution [3,4]. In this Letter, we ex-
plore the thermal characteristics of the broken-symmetry
phase of the charge-density distribution, showing that
temperature can be used to induce transitions between
phases of di�ering spatial symmetry.
Thermal properties of, and transitions in, strongly cor-

related quantum mechanical systems have been stud-
ied in various contexts. Perhaps the most obvious are
the normal-conducting to super-conducting transitions
in condensed matter systems. Many nuclear systems
exhibit an intrinsic deformation in their ground states,
and deformed-to-spherical transitions have been studied
in many models (see for example Refs. [5{7]). As a result,
observable consequences, such as enhanced moments of
inertia, decreasing quadrupole transition moments, and
decreasing correlated pair-transfer amplitudes may be in-
vestigated.
In studies of many-body phenomena in quantum dots,

experimental e�orts have focused on mapping the mag-
netic �eld dependence of their ground-state structure by
measuring the chemical potential via capacitance spec-
troscopy [8]. Cusps and steps in the chemical potential
were found to clearly separate di�erent ranges of mag-
netic �elds [8,4]. These features were identi�ed with
phase transitions in the charge density of the quantum
dot. At magnetic �eld strengths on the order of a few
tesla, all electrons become spin-polarized initiating the
maximum density droplet (MDD) phase [8], in which the
density is constant and homogeneous at the maximum

value that can be reached in the lowest Landau level.
The stability of the MDD is determined by a compe-
tition among the kinetic energy, external con�nement,
the Coulomb repulsion between electrons, and the at-
traction created by the Coulomb exchange term. For
increasing magnetic �eld, the charge-density distribution
of the droplet reconstructs [9] with a ring of electrons
breaking o� from the MDD phase. This edge reconstruc-
tion has been shown via mean-�eld [10] and density func-
tional theory [3] calculations to result from a rotational
symmetry-breaking phase transition from the MDD to a
Wigner molecule or Wigner crystal phase. These calcu-
lations are in good qualitative agreement with recent ex-
perimental results where instabilities of the MDD state
and other transitions in the high magnetic �eld region
were accompanied by a redistribution of the charge den-
sity [4].
Most of the experimental investigation of many-body

phenomena in quantum dots was performed at very low
temperatures on the order of 100 mK and focused on the
evolution of the ground state of the quantum dot as a
function of increasing magnetic �eld and electron num-
ber [11,12]. The thermal characteristics of these systems
are largely unexplored, especially for large values of the
magnetic �eld. We explore the thermal response of the
broken-symmetry phase at constant magnetic �eld and
electron number and demonstrate that transitions among
a number of distinct, broken-symmetry phases occur as
the temperature is increased.
In describing the ground-state and low-lying (intra-

band) excitations of the N -electron semiconductor
nanostructures, it is often suÆcient to restrict consid-
eration to the conduction band using the e�ective-mass
approximation [13]. We consider the problem of N elec-
trons of e�ective mass m� in a plane, (x; y), con�ned
by an external parabolic potential, V (r) = 1
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and subject to a strong magnetic �eld ~B = B0~ez. We
consider the Zeeman splitting but neglect the spin-orbit
interaction. The Hamiltonian for such a system is
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where the vector potential is ~A(~ri) = (B0=2)(�yi; xi; 0),
g� = 0:54, " = 12:9, m� = 0:067me, and �h!0 = 3 meV.
We solve this equation at the �nite-temperature

Hartree{Fock level. This is the initial step to account
for electron-electron correlations within the quantum dot
and suÆces for a qualitative discussion of phase transi-
tions and thermal behavior. The equations describing
the static mean �eld (i.e., Hartree-Fock) at �nite tem-
perature for an N -electron system are

[K̂ + Ŵ (�)�E�]j��(�) = 0 (2)

where E� are the single particle energies associated with
the single-particle wave functions ��, and K̂ is the one-
body kinetic-energy operator. The one-body Hartree{
Fock �eld, Ŵ (�), is obtained in terms of the Hamiltonian
(1) and the one-body density matrix, �̂(�) as,

Ŵ (�) = Tr[�̂(�)Ĥ ] : (3)

The single-particle wave functions are denoted as
j��(�)i, and � = 1=kT is the inverse temperature.
The representation of the one-body density is given
in terms of the occupation numbers n�(�), �(�) =P

� n�(�) j ��(�)ih��(�) j, and the Fermi{Dirac oc-
cupation numbers at chemical potential � are n�(�) =
1=
�
e�(E���) + 1

�
. Note that Tamura and Ueda [14]

studied the number 
uctuations h(ÆN)2i of a quantum
dot as a function of N for di�erent �eld strengths and
found that the 
uctuations were rather small (on the or-
der of 0.1) in �nite-temperature Hartree{Fock applica-
tions. We expect qualitative agreement with experiment
as Hartree{Fock is known to overestimate the magnetic
�eld strength at which transitions occur [15,12,3]. How-
ever, for a �xed �eld strength, experimental evidence of
the thermal transitions should still be qualitatively visi-
ble.
We use a Fock{Darwin basis expansion to solve the

�nite-temperature Hartree-Fock equations. Since we use
a high (� 12 T) magnetic �eld, we consider only angu-
lar momentum states with the n = 0 principal quantum
number. The electrons carry spin, and so our states are
labeled by k = flk; skg, where lk is the angular momen-
tum projection of the k-th state and sk is the spin of that
state. We found convergence using �fty states for the
N � 8 systems. We also checked our zero-temperature
results with other publications [10] for various numbers
of electrons in the dot and found satisfactory agreement.
We begin the discussion of our results by investigating

the electron charge, angular momentum, and spin densi-
ties as a function of increasing temperature for the N = 6
system at B0 = 12:15 T. We show densities at represen-
tative temperatures of 3.87 K (the low temperature limit,
� = 6), 11.97 K (before the �rst phase transition, � = 6),
13.65 K (in the second phase, � = 5), and 14.32 K (in the
third phase, � = 4), where � is the number of de�nable
high-density regions (or vortices) in the charge density

plots. The density, shown in Fig. 1a-d, begins as a fairly
well-de�ned Wigner crystal at 3.87 K, which exhibits
some degree of thermal broadening at 11.97 K. The � = 5
and � = 4 phases continue to show a similar amount of
density in the remaining vortices, while the density of
the thermally dissipated vortices have e�ectively spread
through the entire dot. The angular momentum along
the B-�eld direction, shown in Fig. 1e-h, exhibits well-
de�ned structures at low temperatures which tend to de-
crease rapidly as one moves through the various phases.
Although the high charge density regions in the � = 4
phase are still well de�ned, the angular momentum in this
high-temperature phase has nearly washed out. Finally,
we show in Fig. 1i-l the spin density de�ned as �s(x; y) =
[�"(x; y)� �#(x; y)] = [�"(x; y) + �#(x; y)], where �" (�#)
refer to the spin up (down) density. At these temper-
atures, little appreciable spin depolarization occurs and
the spin density remains above 0.8 for the entire region
where there is appreciable charge density.

FIG. 1. Panels a-d, the charge density; panels e-h, the an-
gular momentum density (in the z-direction); panels i-l, the
spin density. In each panel, �8 nm� x; y � 8 nm.

The suddenness of the phase transitions seen in Fig. 1
become quite evident when the internal energy of the
quantum dot is plotted as a function of the temperature.
We show the three phases of the dot in Fig. 2a. Note that
the � = 6 phase exists as an excited con�guration when
the most probable Hartree{Fock solution is the � = 5
phase. Similarly, the � = 4 con�guration exists as a pos-
sible excited con�guration of the system even at fairly low
temperatures. The speci�c heat, Cv = dhHi=dT (with T
in units of eV), is shown in Fig. 2b. Clearly, when the
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energy undergoes a phase transition, the speci�c heat
shows a sharp structure. This occurs since the energy is
piece-wise continuous along the three phases.
These calculations suggest that the quantum dot ex-

hibits a band structure of many-body levels. The low-
temperature states all have the same intrinsic shape char-
acteristic (the same vortex structure). As we increase the
temperature, other � phases become accessible. At the
point when two bands of di�erent intrinsic character cross
in energy, we �nd a phase transition. Similar phenomena
are found in nuclear physics, where at higher nuclear ex-
citation energies the eigenstates of the system may be of
a di�erent intrinsic deformation when compared to states
of the ground-state band [16].
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FIG. 2. a) Expectation value of the energy as a function of
temperature showing the three phases as discussed in the text.
b) The speci�c heat for the lowest-energy con�guration of the
quantum dot as a function of temperature. c) Occupation of
the Fock{Darwin states. d) Occupation of the Hartree{Fock
states.

We also �nd generally that the exchange energy de-
creases as a function of increasing temperature but with
di�ering slopes in the di�erent phases. In the region of
phase transitions, the ratio of the exchange energy to the
direct energy decreases from 0.38 (at 11.5 K)to 0.32 (at
13 K) in the � = 6 phase. In the � = 5 phase, this ratio
decreases from 0.32 at T = 13 K to 0.28 at T = 13:8 K,
and from 0.28 at T = 13:8 K to 0.26 at T = 14:5 K in
the � = 4 phase. The slopes of the decreasing ratio are
di�erent across the three phases, with � = 6; 5 being the
largest and � = 4 more gradual.
The occupation probabilities of the Fock{Darwin

states, nFD, for the temperature conditions of Fig. 1 are
shown in Fig. 2c. In the low-temperature phase (3.9 K,
solid line), the l = 0 state is occupied, while an edge
reconstruction has occurred for the remaining �ve elec-
trons. As we increase the temperature to 12 K (dotted
line), we see a spreading of the occupations in both the

low and high angular momentum channels with about 0.8
particles in the l = 0 state. The � = 5 phase brings a
dramatic decrease of occupation in the l = 0 state and a
shift to lower angular momentum for the reconstructed
edge. This trend continues after the � = 4 transition.
Signatures of the density transitions that we have seen

also appear in the Hartree{Fock occupations nHF as
shown in Fig. 2d. At low temperatures (3.9 K) the fa-
miliar step-function behavior is evident from the �gure.
At 12 K in the � = 6 phase, we see a decrease of occupa-
tion to roughly 0.8 in the lowest six Hartree{Fock levels
and a spreading to higher energy states. As the sys-
tem undergoes the transition to � = 5, we see only �ve
Hartree{Fock levels signi�cantly �lled (with nHF > 0:7),
and �nally in the � = 4 phase, only four Hartree-Fock
levels are signi�cantly �lled. The occupation number-
spreading, which is due to thermal excitation of the sys-
tem, is enhanced signi�cantly when the system undergoes
a phase transition.
The phase transitions that we have shown in the pre-

ceding discussion have de�nite observable consequences.
In Fig. 3a we plot the chemical potential, that is, the sep-
aration energy �(N;T ) = EN (T )� EN�1(T ) to remove
a particle from the quantum dot at a given temperature.
Since this is an energy di�erence, �(N;T ) will be in
u-
enced by transitions within both the N = 6 and N = 5
systems, and we expect changes in slope at the transition
points. The � = 5 to � = 4 transition in the N = 5 dot
occurs at roughly 12 K, causing a sharp rise in �(N = 6).
A slope change in �(N = 6) is seen at � 13 K, where the
� = 6 to � = 5 transition occurs in the N = 6 system.
The decrease from 14 � 14:3 K occurs when the N = 6
system makes the transition from � = 5 to � = 4. A �nal
change in slope occurs when the N = 5 dot makes the
transition from � = 4 to � = 3. For the brief temperature
interval when the N = 6 and N = 5 dots are in the same
� phase, we see a decrease in the chemical potential.
We observe similar changes in the inverse compressibil-

ity, �2(N;T ) = EN+1(T ) � 2EN (T ) + EN�1(T ). This
quantity has been measured for quantum dots in low
magnetic �elds [17] and studied in Hartree{Fock the-
ory for ground-state properties [18]. In our case, the
N = 7; 6, and 5 dots participate in the observable. We
again notice strong e�ects as one passes through tran-
sition points in either of the three systems contributing
to the observable. Figure 3b shows �2(N = 6) as a
function of temperature. Before transitions occur, �2

remains fairly constant. A large decrease begins at 12 K,
where the N = 5 system undergoes its �rst transition.
Interestingly, �2 increases signi�cantly when the N = 6
and N = 5 dots are in the � = 4 phase.
In addition to measurements of energy di�erences,

one should be able to experimentally probe the thermal
phase transitions using far-infrared spectroscopy and X-
ray scattering. Far-infrared spectroscopy was used to
investigate the excitations of InAs quantum dots as a
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function of the electron number per dot [19]. Grazing
incidence X-ray scattering was recently used to generate
a full structural characterization of quantum dots [20],
including information on the elastic form factor.
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FIG. 3. a) Chemical potential, � and b) inverse compress-
ibility, �2 for the N = 6 system as a function of the temper-
ature.

While these experiments were carried out at very low
temperatures, it is conceivable that one could study the
thermal response of quantum dots using X-ray or far-
infrared scattering. A Fourier transform of the charge
density produced in our calculations gives the elastic form
factor that can be used to characterize the dot.
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FIG. 4. The form factor in the three phases, � = 6 (11.9
K), � = 5 (13.6 K), and � = 4 (14.3 K).

We show in Fig. 4 the form factor, j �(q) j, as a func-

tion of the momentum transfer vector j q j=
q
q2x + q2y.

A well-de�ned minimum is apparent at approximately
j q j= 0:7ev�1 in all three phases. This �rst minimum is
related to the size of the dot and clearly does not change
in the three phases. This is apparent also from a close
inspection of Fig. 1: while the internal structure changes
signi�cantly as a function of increasing temperature, the
dot size does not change. The height of the second max-
imum slightly increases as in phase � = 5 before de-
creasing in the � = 4 phase. The position of the second
minimum increases as a function of q signi�cantly and
would be a distinguishing feature in X-ray or far-infrared
scattering experiments used to probe the thermal phases
of a quantum dot.
We see in the above calculations that quantum dots

exposed to high magnetic �elds undergo various phase
transitions as the temperature increases. Indeed, we have
followed the N = 6 system through the � = 3 and 2
phases as well. We have also studied these transitions at
various magnetic-�eld strengths, and with di�ering num-
bers of electrons in the dot up to N = 20, with the results
presented here being characteristic of the general behav-
ior. Our purpose in this Letter has been to demonstrate
that thermal excitations of a quantum dot induce phase
transitions within the dot that should have observable
consequences. Thus, we have shown that temperature
may also be used as a control to tune the characteris-
tics of quantum dots. Inclusion of the full many-body
correlations may dampen (or enhance) some of these ef-
fects, but signatures of the phase transitions should still
appear in scattering experiments and measurements of
the inverse compressibility and chemical potential of the
quantum dot.
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