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ABSTRACT

This paper reports progress in the development of a quantum-dot array that can
be operated at room temperature for carrying out nontrivial and innovative computations.
We discuss the actual fabrication of 2-nm metal clusters to serve as the quantum dots,
device architecture, device simulation, and the development of a computational model.
Innovative and unconventional paradigms underlie the different stages of this work.  For
example, regular array geometry is achieved by directing appropriately derivatized metal
clusters to preselected locations along a stretched strand of an engineered DNA sequence.
The proposed applications include the implementation of neuromorphic algorithms for
pattern recognition.

INTRODUCTION

Emerging revolutionary advances in nanoscale computing, communication, detection, and
sensing, subsume a profound understanding of the complex dynamics and properties of small arrays of
quantum structures, including quantum dots (QD), ultrasmall Josephson junctions, quantum-dot lasers,
and others. Such arrays produce robust bi-stable and multi-stable behavior, which can be exploited for
unconventional, yet powerful computational concepts, e.g., neuromorphic computing. Obtaining lattice
architectures of sufficient size and regularity to perform actual computations at room temperature has
been a formidable challenge, unsurmounted to date. Our objective here is to apply innovative biophysical
assembly techniques to overcome this challenge. In particular, appropriately derivatized and passivated
gold clusters (i.e., "quantum dots") can be directed to preselected locations along stretched strands of
engineered DNA sequences to produce an operational device. Our effort includes the actual synthesis of
2-nm quantum dots, directed self-assembly of a 1D quantum-dot array via DNA templates, device
simulation, and development of a computational model.



Figure 1. Polyammido dendrimers are centro-
symmetric polymers that act as a “nanoreactor”
in confining metal ions in cluster symthesis.

SYNTHESIS OF GOLD CLUSTERS

We have carried out the synthesis of colloidal gold clusters of core size less than 3-nm by a
variety of strategies with appropriate organic coatings.  A passivating coating provides a dual function. It
provides a barrier for cluster growth as well as functional chemical groups for attachment to DNA
nucleotides. This designed propensity for the functionalized gold cluster to bind with a nucleotide is used
to assemble the nanoparticle at prescribed locations along an engineered DNA strand. Nanometer-sized
metal clusters are a leading candidate for the implementation of single-electron devices at room
temperature.

The strategy described here for attaching the cluster to a DNA molecule involves synthesizing
gold clusters coated in hydrocarbons terminated with carboxylic-acid functionality. The carboxylic acid is
made to react with thymine bases modified with amino groups (see below).  Specifically, we have
prepared gold colloids, which are thiol-bound to 12-carbon aliphatic hydrocarbons. This was
accomplished by a procedure that involves the use of polyamido dendrimers [1], (see Fig.1).  These
centro-symmetric polymers act as a “nanoreactor” to
confine metal ions in the cavity of the polymer.  The
complexed metal ions are then reduced to the charge-
neutral state by means of a chemical reductant such as
borohydride.  In this particular case, an intermediate
step is required because the dendrimer has
insufficient affinity for gold ions.  This step involves
complexation of copper ions, which are then reduced
to the metal and subjected to electroless displacement
with gold ions.  This displacement is feasible because
gold is more noble than copper.  At this point, the
gold cluster must be functionalized with the
carboxylic acid and the dendrimer eliminated. This is
accomplished by treating an aqueous/tetrahydrofuran
solution of the gold-dendrimer complex with 12-
mercaptododecanoic acid and subjecting the resulting
suspension to solvent extraction with toluene.  The
desired product, free of dendrimer, is isolated at the
interface as an insoluble film, which can be
solubilized in dimethylformamide. By this procedure,
we have implemented the synthesis and
electrophoretic separation of passivated gold clusters.
Initial measurements of the cluster size distribution
show a mean diameter of approximately 2 nm with a
standard deviation of 30%.

DNA TEMPLATES

The need to produce regular arrangements of nanoparticles led to the idea of using DNA as a
scaffold or template for assembly of nanoscale arrays.  Beginning in the 1980’s, Seeman and coworkers
experimented with combining DNA fragments to produce regular geometrical shapes.  To date they have
succeeded in producing a variety of DNA structures, including cubes [2], triangles [3], and truncated
octahedrons [4].  They have also produced two-dimensional arrays [5,6] and various forms of DNA knots
[7,8]. Using DNA as a structural or template molecule has the following advantages. DNA can be
synthesized using any sequence and in any length from one to several hundred nucleotides. (The length
along the DNA molecule of a single nucleotide is 0.34 nm.)  DNA can be joined end to end to produce
longer linear molecules or more complex shapes. It can be modified at predetermined sites to allow for



Figure 2. AFM image of gold clusters.

the attachment of other molecules in a specific
manner with subnanometer resolution.  It can be
cut at specific sequences and can be easily
degraded when its role in assembly is complete.

Taking advantage of these properties of
DNA, we have created linear arrays of DNA with
binding sites located at periodic intervals for
functionalized gold clusters.  As a first step, we
designed a single stranded DNA template with
modified thymines located every 11 bases.  These
thymines, modified with amino groups, allow
attachment of the nanoparticles at specific sites
along the DNA strand through peptide bonds with
carboxylic-acid functionalities (see previous
section).  The complementary DNA strand was
synthesized and annealed to the modified strand to
produce a double-stranded DNA molecule.  The
double-stranded DNA was then ligated to produce
DNA of various lengths.  Strands of the desired
length can be isolated using gel electrophoresis to
use for specific purposes.  After ligation, the
carboxyl-acid functionalized gold was bound to the
amino groups on the thymine bases using 1-ethyl-
3-(3-dimethylaminopropyl)carbodiimide and N-
hydroxysuccinimide [9]. The DNA-gold complex
was precipitated and washed, releasing the free gold.  We analyzed the products using gel electrophoresis
with staining for gold and using transmission electron microscopy (pictures?).  In summary, we have
engineered and produced DNA templates up to 200 nm long containing about 60 binding sites for gold
clusters. (picture?)  We are refining our procedures to ensure that every binding site along the strand is
occupied with a gold cluster and that each cluster is bound to only one DNA strand.  Future work will
involve the extraction of a single strand of DNA with the gold and attachment to electrodes for
measurements of the current-voltage (i.e., ( )I V ) characteristics of the array.

ELECTRODE CONSTRUCTION

Operating the QD array as an electronic device requires placing the QDs between two electrodes.
This alone is a challenging task, as the electrodes are the objects that made the connection between the
nanoscopic and macroscopic worlds. Using our currently available facilities, electrodes can be fabricated
with separation of approximately 20 nm using a focused ion beam (FIB).  In the near future, we anticipate
having available an electron-beam facility for the fabrication of electrodes.

The modified DNA molecules can be stretched between the electrodes to provide electrical
connectivity to the quantum-dot array [10].  A thiol group will modify one end of the DNA.  A drop of
DNA in solution can be placed between the electrodes using a micro-positioner. The drop size will be
much larger than the gap width of the electrodes.  Since the electrodes are made of gold, the thiol-
modified end of DNA will attach to both gold electrodes.  These anchored DNA molecules can be
stretched under DNA buffer solution using hydrodynamic forces. It is also possible to use an electric field
to achieve orientation of the DNA molecules between electrodes. Drying the DNA molecules can cause
alterations in structure and orientation due to a variety of effects. Using the technique of critical point
drying [11,12] can preserve the geometry of the stretched DNA.  The resulting QD structures can be



visualized using an AFM.  If more than one DNA strand is stretched between the electrodes, the AFM can
be used to selectively dissect unwanted DNA strands.

The DNA strand may act as conduit for leakage currents, and should be removed, but without
removing or modifying the gold clusters.  One might consider heat treatment for this task, but heat
treatment is likely to result in rearrangement of the quantum-dot-array geometry, and can also affect the
electrodes due to diffusion.   We will utilize a novel UV-Ozone technique that will chip away the DNA
molecules without affecting the position of the electrodes or the clusters.  The UV-Ozone technique
involves exposing organic molecules (such as DNA) to 180-nm UV light. The UV light creates ozone
from oxygen, which oxidizes the carbon containing molecules to carbon monoxide, which readily leaves
the surface.

SINGLE-ELECTRON TUNNELING IN QUANTUM-DOT ARRAYS

Consider a one-dimensional array of N tunnel junctions constructed from metallic source and
drain electrodes weakly coupled to a linear array of N-1 metal clusters. We review the results of the
“orthodox theory” of single-electron tunneling [13] to describe the charge transport through the array
under small, but finite, bias voltage.  (We are interested in nanometer-sized metal clusters in which the
Coulomb blockade of conductance may be observed at room temperature, but for simplicity here we
neglect any discreteness in the density of electronic states in the cluster resulting from their small size.)
The vector n
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where ij jiC C=  is the mutual capacitance between conductors i and j , iφ  is the electrical potential of
cluster i measured with respect to the substrate. The source and drain electrodes are enumerated 0i = and
i N= , respectively. The source potential is 0 / 2sV Vφ = = , and the drain potential is / 2N dV Vφ = = − . V is
the transport voltage across the array.  The charge on the source electrode is ( )01 0 1 ,s sQ C enφ φ= − + and the
charge on the drain electrode is ( )1, 1d N N N N dQ C enφ φ− −= − + , where ( )s dn n is the number of electrons that has
tunneled from the source (drain) electrode through the first (last) junction.

To determine the free energy, the potentials ( )1 1, , Nφ φ φ −=
r L must be determined from the

static charge configuration. Using the charge conservation law, the total charge on island i can be written
in terms of the potentials,
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The background charges 0,/ 2 / 2ie q e− < < +  are due to incompletely screened charges in the environment of
the islands.  Equation (1.2) can be written in matrix form Q Cφ=

r r
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0

;
N

ii ij ij ij
j

C C C C
=

≡ = −∑ , (1.3)

and the augmented charge vector is defined 0 0i i i iN NQ q C Cφ φ≡ + + .  The generalized capacitance matrix can
be inverted to obtain the potential distribution given any charge distribution.  For convenience, we rewrite
the free energy of the array using the matrix notation

( ) 11
,

2
T
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r rr (1.4)

In describing the electron transport through the array, we neglect here the effects of co-tunneling,
and consider only single-electron tunneling between nearest neighbors in the array. That is, the final state
m
r of the tunneling differs from the initial state n

r  by the transfer of a single electron though the thk
junction, e.g., ˆkm n u= ± ∆r r , where 1ˆ ˆ ˆk k ku u u −∆ ≡ −  and ˆku is a unit vector for the thk quantum dot. The ± sign



gives the direction of tunneling through the junction. If the transition rates are sufficiently small one can
perform a calculation using Fermi’s Golden Rule to obtain [13]
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where ( ) ( ) ( ), , ,k kE n V E n u V E n V±∆ ≡ ± ∆ −r r r is the change in the Gibbs free energy of the system due to the
tunneling, kR  is the effective resistance of the tunnel junction, 0e > is the fundamental unit of charge, and
the thermal energy is Bk T .  One can use probability conservation to write the corresponding master
equation describing the time evolution of the probability ( , )P n t
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Practical approaches to solving the master equation are described in Refs. [14-15].  Given the solution,
the average tunneling current is given by the net flow through any junction k  in the array:
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n

I V I V e P n n n+ − = = Γ − Γ ∑r
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Since the charge states are averaged over, the current is a function of the transport voltage.

NEUROMORPHIC ALGORITHMS FOR COMPLEX INFORMATION PROCESSING

Quantum dot nanoelectronic devices represent a promising hardware technology that offers both
conceptual opportunities and engineering challenges for complex information processing applications.
One such application, pattern recognition, is of considerable interest to the development of modern
intelligent systems and will be considered here. In recent years, the quest for innovative approaches to
machine intelligence has received considerable attention. The proven ability of neuromorphic algorithms
to deal with uncertain information and to interact with dynamic environments is therefore providing a
strong incentive to explore the feasibility of their implementation on arrays of quantum dots. However, in
contrast to conventional hardware approaches, we must develop here computational paradigms that
exploit from the onset not only the concept of massive parallelism but also, and most importantly, the
physics of the underlying device.

Artificial neural networks are adaptive systems that process information by means of their
response to discrete or continuous input [16]. Neural networks can provide practical solutions to a variety
of artificial intelligence problems, including pattern recognition [17], autonomous knowledge acquisition
from observations of correlated activities [18], real-time control of complex systems [19], and fast
adaptive optimization [20].  At the heart of such advances lies the development of efficient computational
methodologies for “learning” [21]. The development of neural learning algorithms has generally been
based upon the minimization of an energy-like neuromorphic error function or functional [22].  Gradient-
based techniques have typically provided the main computational mechanism for carrying out the
minimization process, often resulting in excessive training times for the large-scale networks needed to
address real-life applications. Consequently, to date, considerable efforts have been devoted to: (1)
speeding up the rate of convergence [23-25] and (2) designing more efficient methodologies for deriving
the gradients of these functions or functionals with respect to the parameters of the network [26,27].  The
primary focus of such efforts has been on recurrent architectures.  However, the use of gradient methods
presents challenges even for the less demanding multi-layer feed-forward architectures, which naturally
occur in quantum-dot arrays. For instance, entrapment in local minima has remained one of the
fundamental limitations of most currently available learning paradigms.  The recent development of the
innovative global optimization algorithm TRUST [28] has been suggested [29] as a promising new
avenue for addressing such difficulties.

Roychowdhury and his collaborators were the first to propose the implementation of neural
networks in terms of quantum dot arrays [30].  In their Gedankenexperiment a generic array of



nanometer-sized metallic islands would be deposited on a resonant tunneling diode. Furthermore, all
islands would have a direct conductive/capacitive link to their nearest neighbors established, for example
via organic molecular wires.  They considered both continuous and discrete charge networks. The latter
are of interest here. The Roychowdhury team showed that the evolution of an initial charge distribution
toward a stable final equilibrium distribution can be given a neuromorphic interpretation and that this
property emerges purely as a result of the discreteness of the electronic charge [31]. There are several
shortcomings in their proposal. First, they assumed that all inter-island capacitance could be modified
arbitrarily, but offered no mechanism to achieve this essential property. Moreover, their architecture
involved capacitive coupling between all islands, a “floating” plate, and a grounded plate. Tunneling is
assumed to occur only between the islands and the floating plate, but not between islands. Thus, even
though their paradigm would allow some elementary form of combinatorial optimization, it could not be
used for neural learning needed in pattern recognition.

In the previous section we have illustrated the underlying physical concepts of single-electron
transport in arrays of quantum dots. As pointed out by Roychowdhury and coworkers [30-31], there is a
profound similarity between the dynamics of neural networks and that of quantum-dot arrays. In the
latter, the free energy of an array characterized by a distributed charge can be lowered in terms of
tunneling events. For neural networks, on the other hand, Hopfield has shown that the stable states of the
network are the local minima of a bounded Lyapunov function of the net’s output parametrized by the
synaptic interconnection weights.  A careful analysis, however, reveals that this formal similarity is not
adequate for implementing learning algorithms for pattern recognition. By comparing the leading terms of
the free energy in Eq. (1.4), i.e., 11
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r r
 and the Lyapunov function in a Hopfield network, i.e.,

1
2( , ) TL x W x W x= − , we see that the inverse of the augmented capacitance matrix would have to play the role

of the synaptic matrix. However, the elements of ijC  are fixed, and cannot be modified. An alternative
approach for controlling the dynamics of the system has to be found.  In principle, one could manipulate
the free energy of the array via capacitive gating of each of the quantum dots.  However, for an array of
quantum dots 1 to 2 nm in size, which is necessary for room temperature operation, we are not aware of
technology capable of implementing such gating on a nanometer scale.

Studies of the dynamics of arrays of quantum dots in the presence of the time dependent
excitation (such as, for example, RF signal [33,34]) reveal a rich structure of dynamical behaviors that
offers a tremendous potential for performing the computation we need. In particular, a team led by
Oosterkamp has recently made available an extensive survey of experiments and methods for photon-
assisted tunneling in quantum dots [21]. In the absence of a time-dependent field, current flows through a
quantum dot via tunneling when an unoccupied internal energy state is aligned to the Fermi energy of the
leads. However, as pointed out by Oosterkamp et al following seminal work by Likharev et al., if a time-
varying AC voltage ( )0 cos 2A tπω  is applied, inelastic tunnel events are induced when electrons exchange
photons of energy νh with the oscillating field. The tunneling rate Γ through each barrier in the presence
of an electromagnetic excitation becomes
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where Γ is the rate in absence of outside excitation, and Jα  denotes the Bessel function of the first kind,
with α denoting the number of photons exchanged and. As a result, the master equation is readily
generalized to the case of external, alternating fields by substituting the rates given in Eq. (1.8) into Eq.
(1.6).  The current through this device can then written as a function of the transport voltage V, and the
amplitude A0 and frequency ν of the AC field,

( ) ( ) ( )( ) ( )( )0 0 0, , , , , , , ,k k k k
n
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We will consider the transport voltage V as the input variable and the current I as the output function in
implementing neuromorphic computation.  For a two-dimensional quantum-dot array with K rows, we
can readily generalize the description given here to consider K input voltages Vk and output currents
Ik(Vk,A0,ν). This function of K inputs and K outputs is controllable through the parameters of the external,



alternating filed, A0 and ν, by minimizing the error function E, defined as the squared difference between
the observed currents, Ik, and the expected currents, Ik*,
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If a larger number of controls are necessary, then a multicomponent AC field may be implemented as the
global control, rather than a monochromatic external-driving field.

The pattern recognition scheme can now readily be implemented using the following method. We
assume that two sets of K vectors are used for training. They are stored as rows of two matrices ΩKI and
RKO respectively, which represent the input signal patterns and the target outputs. For convenience, the
matrix dimensions are explicitly indicated as subscripts. The number of columns of each matrix (I for
input, O for output) equals the number of nodes of the corresponding processing layer in the quantum dot-
array. Since typically K >> I, a preprocessing step is used [10]. Specifically, two successive nonlinear
transformations map ΩKI into HKK, a nonsingular K x K presynaptic matrix, which constitutes the actual
input into the array. We also decouple the nonlinearity of the transfer function at the output layer of the
neural net from the linear interlayer pattern propagation mediated by the synaptic weights WKO . This
transformation is used to compute the postsynaptic input to the output layer of the neural net as a K x O
rectangular matrix. Since the latter is connected via a bijective sigmoid mapping to the output training
examples, the synaptic interconnection matrices WKO can be determined. In simulation on a conventional
computer, this can be done exactly by solving a system of linear equations using singular value
decomposition techniques. On nanoelectronic hardware, this will be achieved by directly optimizing the
error function in Eq. (1.10) in terms of the parameters of the external field, A0 and ν.

In this minimization process, we can directly account for uncertainties to obtain best estimates for
the device parameters and responses of interest. For example, nominal values for the elements of the
capacitance matrix will be computed from “first-principles” simulations of the metal clusters and
substrate via density-functional-theory-based molecular dynamics [36] and the current through the device
will be computed via numerical solutions to the master equation [14,15]. To obtain best estimates for
critical parameters (e.g., A0 and ν), we must consistently combine computational results and experimental
measurements. We achieve this by optimizing a generalized Bayesian loss function that simultaneously
minimizes the differences between the best estimate responses and the measured responses on one hand,
and the best estimate and calculated parameters on the other hand. Our optimization process uses the
inverse of a generalized total covariance matrix as the natural metric of the calculational manifold in
conjunction with response sensitivities to all parameters [37].
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