Multiple Paths for End-To-End Delay Minimization in Distributed
Computing Over Internet *

Nageswara S. V. Rao
Center for Engineering Science Advanced Research
Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6355
raons@ornl.gov
presented at Supercomputing 2001, Denver, Colorado

Abstract

Messages exchanged between processes distributed over the Internet via the usual TCP
streams are subject to various delays at the routers and hosts. In addition to being limited by
the “effective” bandwidth, the end-to-end delays of the messages have a significant “random”
component due to the complicated nature of the network traffic. We propose a measurement-
based method to implement multiple paths for achieving low end-to-end delays for message
transmissions in distributed computing applications. Our scheme is implemented over the Inter-
net by a network of user-level daemons, which maintain an accurate “state” of delay-regressions
in the network. These daemons handle all network tasks between the processes and also perform
transport-level routing. They explicitly realize multiple paths via themselves, thereby achieving
physical diversity of the transmission paths as well as higher aggregated bandwidth compared to
usual and parallel TCP methods. Multiple path routing is performed among the daemons with-
out explicit support from the underlying network routers. Experimental results indicate that
our method is a viable and practical means for achieving low end-to-end delays for distributed
computing applications over the Internet.

1 Introduction

High performance applications require aggregated capabilities distributed over a network such as
the Internet or ESnet. Such capability might be the aggregated bandwidth using multiple streams,
or combined computational power of geographically distributed supercomputers. For example,
the former typically arises in high performance storage systems and later arises in climate or
physics computations. In both cases, on-demand communication between various processes must be
effectively supported over the network. In general, both the nature and volume of communication
data could be quite varied among the applications as well as within a single application. The
synchronization messages that coordinate the computation between various processes could be
small whereas the data transfers could be quite voluminous. The variability of the message sizes
must be explicitly accounted for because of the non-monotonicity of end-to-end delays: a path
with high bandwidth (suited for bulk transfers) is not be optimal for small messages if it has high

*Research sponsored by the Defense Advanced Projects Research Agency under MIPR No. K153 and by the
Laboratory Director’s Research Project at the Oak Ridge National Laboratory, and by the Engineering Research
Program of the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-000R 22725
with UT-Battelle, LLC.

host process

I
I
measurements !
7| end-to-end delay send/receive 1
fromother ' | measurements !
daemons !
! |

l _ ' messages from

| multiple path daemon router <+

1 computation . other daemons
! |

Figure 1: Functional block diagram of a daemon.

latency. Indeed, small messages are efficiently sent via smaller bandwidth paths with low end-to-
end delay. Such paths are very vital in preventing supercomputers from idling while waiting for a
message/data to arrive over the network.

In most existing Internet solutions for achieving low delays, the messages are typically sent as
single or parallel Transport Control Protocol (TCP) streams. The TCP stack can be optimized
to account for various host and network parameters. Such solutions, however, do not in general
exploit the physical diversity of paths in the network. The end-to-end delays are also subject to
limitations imposed by the policies and traffic loads at the routers, in addition to the bandwidth
limits of the physical links. Furthermore, the implementation of TCP stack can significantly add to
the end-to-end delays by limiting the achievable bandwidth. While the latter delays are somewhat
measurable and predictable, those at the routers are not so easily accountable for the following
reasons. In the present networks, such as the current Internet, the messages are decomposed
into datagrams and sent via various routers as per the Internet Protocol (IP). At the routers the
incoming datagrams from all sources are serviced using the best-effort method — the datagrams can
be delayed or altogether dropped at the routers. Consequently, the end-to-end delay of a message
transmission can be highly unpredictable, especially if the datagrams are routed through high traffic
regions. While such unpredictability can be tolerated in services such as email, it can cause severe
problems in several applications such as data transfers to and from supercomputers, instrument
control, and distributed simulation.

We propose a network of daemons that exchange measurements, and perform source-based
multiple path routing via themselves. At the hosts, the messages will be simply handed over
to the local daemon which performs all the networking tasks needed to achieve the end-to-end
performance. The user thus is relieved from having to explicitly account for networking. Our main
emphasis is on multiple paths via the daemons, which provide several advantages compared to single
paths. These daemons are special instantiations of NetLets, which are described in detail in [5, 7].

There are several works that deal with infrastructure- or measurement-based methods for pro-
viding certain quality of service, such as overlay networks [2], Detour project [9], and parallel TCP
for large memory transfers [8, 3] or web traffic [1]. While our work is focussed exclusively on end-
to-end delays, it has several unique features: (i) multiple physical paths are explicitly optimized
and realized for the message transport, (ii) the required measurements are collected by internal
instruments, (iii) our measurement and path computation methods are analytically justified under
very general conditions (Section 3.2) in terms of distribution-free performance guarantees, and (iv)
our implementations on the Internet (Section 4 and [5]), local area networks [7], and simulation [4]
show very promising and concrete results.

rocess S0
O P /v daemon

I:l Internet router

Figure 2: Typical scenario of distributed computing environment over the Internet.

The daemons concept for multiple paths is described in Section 2. Theoretical results for the
path computation are described in Section 3. Experimental results based on Internet implementa-
tion are presented in Section 4.

2 Daemons for Multiple Paths

The daemons perform all networking tasks to relieve the communicating processes of the burden of
“accounting for the network”. The daemons run at the processing nodes and communicate over the
network to perform three main functions shown in Figure 1: (a) collection of delay measurements,
(b) multiple path computation, and (c) routing via other daemons. At present, the routing paths
for datagrams in IP networks are decided by the best effort method, and multiple paths are not
supported by the Internet routers. In our scheme, the messages between the daemons are source-
routed via multiple paths through the daemons.

To illustrate the concept, consider a computational distributed over several nodes over the
Internet. Messages must be communicated between the nodes as per the task structure as in
Figure 2(a). For example, the communication between processes P; and P» could be handled by
a process-to-process TCP stream(s). At present, a single or parallel TCP streams are utilized to
send all messages between them. The actual physical paths taken by the individual datagrams
are decided by the network routers. While the datagrams could travel via different physical paths
(which are small in number), these paths are not controlled or optimized by the host processes. If
a TCP connection stream has high traffic, which results in high delays or packet loss, no rerouting
action is taken by TCP, and routers respond by simply dropping the packets at least on the short
time scales. Although some level of rerouting might be performed by certain routers, their primary
goal is not optimizing the end-to-end performance of any particular host process.

Consider that daemons are executed at each of the processes as shown in Figure 2(b). Daemons
maintain peer-to-peer connections among themselves as shown in Figure 2(b), and dynamically
estimate various delay regressions of the message size. If a large message has to be sent, a multiple
path consisting of Ry — Re, R1 — R3 — Ry, Ry — Ry — Ry and R; — Rs — Rp, can be utilized.
Computation of such multiple paths, however, is non-trivial and will be discussed subsequently.

8.50

8.00

7.50

7.00

6.50

6.00

5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

100 e \J s Ao

0.50

0.00

X x 103

0.00 20.00 40.00 60.00 80.00 100.00

Figure 3: ORNL-OU: End-to-end delays for large messages. X-axis: message size in bytes; Y-axis:
end-to-end delay in seconds.

3 Networks of Daemons

In this section, we provide an analytical justification for the daemons in terms of performance
guarantees, and for the design of multiple paths.

3.1 Network Model

A network of daemons is represented by a graph G = (V, E) with n nodes and m links. Here each
node represents a daemon and link represents a communication channel such as TCP connection.
A node does not necessarily correspond to an Internet router but to a host where a daemon can be
run. A message of size r must be transmitted from a source node s to a destination node d, which
incurs three types of delays:

(a) Link Delay: For each link e = (v1,vs), there is a link-delay d(e) > 0 such that the leading
edge of a message sent via e from node v; at time ¢ will arrive at node vy at time t + d(e).

(b) Bandwidth Constrained Delay: Each link e € E has a deterministic “effective” bandwidth
b(e) > 0. Once initiated, a message of r units can be sent along link e in g(r,b(e)) + d(e)
time, where g(r,b) is non-decreasing in r and non-increasing in b. For a simple bandwidth
constraint, we have g(r,b(e)) = r/b(e).

(c) A message of size R arrives at the source s according to an unknown distribution Pr. At
any node v, @), and R, are the random variables denoting the queuing delay and message
size distributed according to unknown distributions Py, and Pg,, respectively. No informa-
tion about the distributions of R and Q,, v € V, is available. Instead, the measurements
(Qus1, Rus1), (Qui2, Ry2)s -+, (Quyi, Ryy) that are independently and identically distributed
(iid) according to the distribution Pg, g,, are known at each node v € V.

We performed end-to-end delay measurements using daemons distributed on the Internet. In
Figure 3, we consider messages with widely ranging sizes between ORNL and a number of other
universities in the left figure, where each cluster corresponds to a single destination. In the right,
we show the delays between ORNL and University of Oklahoma (OU). As portrayed by these
measurements, our model captures the essence of end-to-end delays: in each plot, the “ slope”
corresponds to the bandwidth and the additional variation corresponds to),,. Note that in our
model the “effective” bandwidth plays a key role and hence is explicitly accounted for, and the rest
of the delays can have any distribution (including fractal or self-similar).

4

3.2 Performance Guarantees

Consider a path P, from source s = vy to destination d = vy, given by (vg,v1), (v1,v2), ...,
(vg—1,vk), where (vj,vj41) € E, for j = 0,1,...,(k —1). The bandwidth of this path is b(P) =
k—1
mig b(e;), and the delay due to bandwidth is given by g(r,b(P)). The delay of this path is b(P) =
]:

1
>~ D(ej). The end-to-end delay of path P in transmitting a message of size R is

Jj=0

k—1
T(P,R) = g(R,b(P)) +d(P) +) Qy, (3.1)
j=0

where @Q,, g is the conditional delay at node v; given that a message of size R arrived at the node.
The expected end-to-end delay of path P for the given message size R is given by

k—1
T(P.R) = g(RH(P)) +d(P) + 3. [Qu,dFa, n: (32)
§=0

which is a random variable (of R) for a fixed path P. Let P denote the set of all paths from s to d.

Let P denote a path with the minimum expected end-to-end delay for the given message size R

such that T'(Pg, R) = gli% T(P, R). If the error distributions are known, P} can be computed using
€

deterministic optimization methods. Such an approach is infeasible here since the distributions are
not known. We compute an estimator Pg of Pj using a regression estimator such that

P {Ex[T(R, Pr) - T(R, Pp)] > e} <4, (3.3)

for a sufficiently large sample size, which depends on €, , n, and a suitably chosen function family
Q, that contains the regression function. Informally, this condition guarantees that: the expected
delay of Pg is within € of that of Pg, with probability 1 — &, irrespective of the delay distributions.
Detailed derivations can be found in [4].

This guarantee is possible because the measurements are the actual delays experienced by
the messages based on TCP streams. Traditionally, ICMP-based mechanisms such as ping and
traceroute are used to collect measurements, and end-to-end guarantees as in (3.3) cannot be
provided based on such data if paths go through firewalls. Some firewalls disable responses to ping
and traceroute and sometimes deliberately send incorrect responses. Also, some firewalls enforce
rate controls on ICMP traffic but not on TCP, in which case the delay measurements based on
ping and traceroute could be highly misleading. Thus our approach not only provides analytical
guarantees but also provide guidance for appropriate measurements.

Given that a suitable regression estimator has been selected, an algorithm was presented in [4] to
compute the best empirical path Pr. The complexity of this algorithm is O(m?2 +mnlogn+nf (1)),
where f(l) is the complexity of computing the regression at a given value r. Thus, a polynomial-
time (in /) regression estimator results in a polynomial-time (both in n and) path computation
method.

3.3 Multiple Path Computation

A multiple path from s to d, denoted by M P, consists of a set of simple bandwidth-disjoint paths
from s to d. Consider a network G = (V, E) with zero queuing delays @, = 0 for all v € V' and
g(r,b) = r/b. Now a message of r units can be sent along the edge P in r/B(P) + D(P) time.

This model is a first order approximation to the measurements shown in Figures 2. The end-to-end
delay, denoted by T(M P, r), of a multiple path M P from s to d is defined as the time required to
send a massage of size r from s to d, wherein the message is subdivided and transmitted via the
constituent paths. Multiple paths often provide more bandwidth compared to single paths which
can result in smaller end-to-end delay. But to minimize the end-to-end delays, the message must
be suitably divided into parts to be routed via different paths as illustrated in the next example.

Consider a network consisting of two paths P; and P». Let By = 10 units/sec, By = 20 units/sec,
Dy = 2 sec, and Dy = 12 sec. Consider a message of size r = 100 units. Then T'(P;,100) = 12
and T'(P»,100) = 17. If a single path is to be used, P; will be chosen for this message size. On
the other hand, let us say that 99 units are sent on P; and 1 unit is sent on Ps; the corresponding
delays are given by 99/10 + 2 = 11.9 sec and 1/20 + 12 = 12.05 sec respectively, resulting in an
end-to-end delay of 12.05 seconds. Clearly, it is advantageous not to use the two-path {P;, P>}
for this message size. Now consider a message of size r = 1000 units. The end-to-end delays of
individual paths P; and P, are 102 sec and 62 s ec, respectively. Thus if a single path is to be used,
then P, will be chosen. Consider using a two-path {P;, P>} for » = 1000 such that 400 and 600
units are sent via P; and P; respectively, resulting in the individual delays of 42 sec for each path;
hence the resultant end-to-end delay is 42 sec which is smaller than that of P, or P, (given by 102
and 62 sec, respectively).

For two paths P, and P, we have T({P, P»},r) < min{T(Py,r),T(P,,7)} if and only if the
condition C(Py, P,) given by

D(P1) + ‘I“/B(Pl) Z D(PQ) and D(PQ) + ’I'/B(PQ) Z D(P1)

is satisfied. Under this condition, the minimum end-to-end delay of { P;, P} is achieved by dividing
the message into two parts of sizes 1 and r9, 71 + r9 = 7, to be sent via P; and P, respectively.
The sizes of the parts are given by

Blr BlBQ(D2 — Dl) BQT’ . BlBQ(DQ — Dl)

= and 79 =
Bi + B, Bi + B, " Bi+ By Bi + B,

™

Let {Pi,P,,..., Py} be the paths from which a multiple path with low end-to-end delay must
constructed. Let D; = D(P;) and B; = B(F;) for i = 1,2,...,p such that D; < Dy < ... < D,,.
Let & € [0, 1] denote the fraction of r routed via path P;. Then the end-to-end delay of a multipath
with & = (&1,&e, - .., &p) is specified as follows.

B j B 2]: B;D;
Lemma 3.1 Let Bj =) B; and D; = i:; . The minimum end-to-end delay is given by
=1 B
i=1 !
BL1+1?1 ifO<T§B}(D2—E1) B
BL2+D2 ifBl(DQ—Dl) <7‘§Bl(D3—D2)
T*(r)={ -

7 tDi i Bj—1(Dj = Dj—1) <7 < Bj(Dj+1 — Dj)

corresponding to & = B;(T* — D;)/r. O

Theorem 3.1 For a sequence of paths Pii1, Piio,..., Py, i,i+k <gq, let MP;; = {P;j11, Piyo,
.-, Piyj}. Consider that that C(MPiyj, Piyj+1) is true for all 1 < j < g —i. Then the optimal

end-to-end delay of the multipath {P;11, Pita,...,Pitx} is given by

T n Biy1Dit1+ BivoDiyo+ ...+ B Dy
Bit1+ Biyo+ ... Biyg Bit1+ Biyo+ ... Biyg '

The constituent paths of a multiple path for a given message size are computed by repeatedly
computing the quickest path and removing it from the graph by reducing the appropriate band-
widths of the links. Then the extracted quickest paths are combined using the algorithm Disjoint
MTA in O(plogp) time, for p paths. The resultant multiple path is not always guaranteed to be
optimal in a strict sense because of the additional unaccounted randomness in the delays. But this
path yielded very good results in actual implementations as shown in the next section. Details of
Theorem 3.1 and Lemma 3.1 are provided in the fuller version of this paper.

algorithm disjoint MTA

sort the set of paths according to their delays;

compute shortest delay path P; ;

MP + {P};

while for the next shortest delay path P the condition C(M P, P) is true do
MP < MPU{P};

Cups W

Algorithm Disjoint MTA. Algorithm for solving disjoint MTP.

4 Experimental Results

The network shown in Fig. 4 is utilized in our implementation. The delay regression estimation is
based on potential function method as in [6]. The server is located at OU and client is located at
ORNL. Daemons are executed as user-level socket-based codes at the sever and client, and at two
additional locations ! at Louisiana State University (LSU) and Old Dominion University (ODU).
Typical experimental results are shown in Fig. 4 in the right. The upper curve represents the
delays in a single TCP stream ORNL-OU as is usually done. The lower curve corresponds multiple
path consisting of TCP streams ORNL-ODU-OU, ORNL-LSU-OU and two direct parallel TCP
streams ORNL-OU. The messages are divided into four parts as per the delay curves of the paths
as described in the previous section, and are sent along the respective paths. Note that the overall
the end-to-end delay is much lower when daemons are employed, except for some smaller sizes.
The multiple paths resulted in an average improvement of about 35% in the end-to-end delay in all
the cases studied by us. The details of the experimentation and more extensive measurements are
provided in the fuller version of the paper. To our knowledge, ours is the first implementation of
physically diverse multiple paths over the Internet (without additional support from the Internet
routers) that achieve concrete reductions in the end-to-end delays. Note that parallel TCP streams
do not necessarily implement physically diverse paths, and methods such as DiffServ and MPLS
require support from the network routers. We believe that further improvements of our method
are possible when the daemon implementations are more customized to the host sites.

!The daemons, being user-level programs, can be executed at free telnet sites at various locations on the Internet.

X x 103

0.00 50.00 100.00 150.00 200.00

Figure 4: ORNL-OU: End-to-end delays for large messages. X-axis: message size in bytes; Y-axis:
end-to-end delay in seconds.

References

[1]

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H. Katz. TCP behavior of a busy
Internet server: Analysis and improvements. In Proceedings of INFOCOM. 1998.

G. Huston. Internet Performance Survival Guide: Basic Mechanisms and Directions. John Wiley and
Sons, 2000.

W. Matthews and L. Cottrell. The PingER project: Active Internet performance monitoring for the
NENP community. IEEE Communications Magazine, pages 130-136, May 2000.

N. S. V. Rao. End-to-end delay guarantees in computer networks: Analysis and NetLet implementation,
2000. ORNL Draft, http://saturn.epm.ornl.gov/~nrao.

N. S. V. Rao. NetLets: End-to-end QoS mechanisms for distributed computing in wide-area networks
using two-paths. In Proceedings of International Conference on Internet Computing, 2001. ORNL Draft,
http://saturn.epm.ornl.gov/~nrao.

N. S. V. Rao and S. G. Batsell. On routing algorithms with end-to-end delay guarantees. In IC3SN:
International Conference on Computer Communications and Networks, pages 162-167. 1998.

N. S. V. Rao, S. Radhakrishan, and B-. Y. Bang. NetLets: Measurement-based routing for end-to-end
performance over the Internet. In Proc. IEEE Int. Conf. on Networking, 2001.

D. Salamoni and S. Luitz. High-performance throughput tuning/measurements. In PPDG Collaboration
Meeting. 2000.

S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vandat,
G. Voelker, and J. Zahorjan. Detour: Informed internet routing and transport. IEEE Micro, pages 50-59,
January-February 1999.

