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Abstract - We consider a physical system described by
a set of parameters. FEach parameter is either measured
by a number of sensors or estimated by a set of computer
programs that use sensor measurements. As a result, the
resultant parameter values could be widely varying. We pro-
pose a fusion method that combines the measurements and
estimators based on the physical laws that relate the param-
eters. In comparison with the traditional fusion problems,
there is no training set that provides the actual parameter
values. Furthermore, since every parameter is measured or
estimated, there are no parameters whose actual values are
known. We propose a fuser based on the least violation of
the physical laws that relate the parameters. Under cer-
tain smoothness conditions on the physical law, we show
the asymptotic convergence of our method, and also derive
distribution-free performance bounds based on finite sam-
ples. We illustrate the effectiveness of this method for a
practical problem of fusing well-log data in methane hydrate
exploration. For this problem, data fusion method resulted
in an order of magnitude improvement in the accuracy com-
pared to the best set of estimators for the key parameter of
porosity.

Keywords: Sensor fusion, physical laws, methane hy-
drates.

1 Introduction

We consider a physical system wherein each parame-
ter is either measured using an instrument or estimated
using a computer program based on the measurements.
In general, it may not be possible to know the actual
parameter values, since all measurements and estima-
tors based on measurements introduce errors of differ-
ent types. In particular, there could be both system-
atic and random errors in the measurements as well as
in the estimators. In certain cases, very accurate sen-
sor noise models are available, but such models are not
easily obtained for estimators based on complicated
computer codes. We address the problem of fusing
various measurements and estimators so that for each
parameter the fused estimate is superior to any one of
the estimators or measurements. There is no real way

of knowing the accuracy of various measurements or
estimators since the actual values are not known. One
of the challenges of this problem is that the traditional
pattern recognition or fusion solutions are not applica-
ble since there is no training data. In other problems,
the training data can be used to design powerful fusers
which can be shown to be at least as good as the best
measurement or estimator [12, 13, 11]. Lack of training
data makes the available methods inapplicable to the
present problem. Indeed, newer problem formulations
and solutions are needed to address this issue as shown
by us in [16].

There are physical laws that relate the parameters
of the physical systems. For example, in a simple mass
sliding on a friction-less surface, we have f = ma,
where f is force, m is mass and a is acceleration. Typi-
cally such physical laws are derived from the first prin-
ciples, and are independently tested. Such laws are
possible in non-physical systems too, for example in-
formation theoretic laws in mathematical systems or
computer programs, and our method can be applied
to such cases. However, physical laws are the most di-
rect ones to use in the proposed method. In general,
we consider a set of parameters that are related by a
physical law. For each parameter, let us choose a mea-
surement or an estimator. The accuracy of this set
of measurements and estimators is determined by how
well the physical law is satisfied. In this sense, the “vi-
olation” of physical law is an indication of error, and
the set of estimators that achieve the least violation of
the physical law is the most preferred one to choose.

We show in this paper that the physical laws can
be used to design a fuser for each of the parameters.
If the sensor error distributions are known, we show
that the isolation fusers [11] can be designed to ensure
that the performance at least as good as the best set of
estimators. In the practical case, where we only have
sensor measurements, we show that the above results
hold asymptotically (as sample size approaches infin-
ity), under certain Lipschitz properties of the physical
law and fusion functions. For finite sample sizes, we
show a distribution-free result that given large enough
sample size the fuser performs better than the best set
of estimators within a specified precision and with a



specified probability in the spirit of Probably Approx-
imately Correct (PAC) learning [17, 19].

In section 2, we define the fusion problem for a phys-
ical system, and show how physical laws can be used to
design a fuser in Section 3. In Section 4, we discuss the
practical problem of fusing the well log data collected
in the exploration of methane hydrates.

2 Physical Systems and Laws

Consider that a physical system is specified by the pa-
rameters P(z) = (p1(2),p2(2), - ., pn(2)) with pi(2) €
R, where z is one-dimensional variable such as time
or position. Each parameter p;(z) is deterministic in
that repeated observations for a fixed z by an error-free
(ideal) sensor yield the same value.

Each parameter p; is measured by a; instruments
and estimated by b; estimators such that a; > 0, b; > 0,
and a; + b; > 1. The measurements corresponding to
p;i(z) are denoted by

m;i(2) = {m,1(2), mi2(2),...,Mia,(2)}

and the corresponding estimators are denoted by

, €i,b; (Z)}

The measurements are obtained by instruments such
as sensors, and estimators are obtained using compu-
tational procedures that depend on the measurements
of possibly other variables. Thus, there are a;+b; com-
peting values for each parameter, and in general we do
not know which one is more accurate. The measure-
ments are assumed to be noisy in that repeated mea-
surements by a sensor of p;(z) = z for a fixed value
are distributed independently according to the distri-
bution P, .|, which is denoted by P, ,|p.(z)- Again,
we consider that the measurement error distributions
are not dependent on z, and they depend on the ac-
tual value z of the parameter. Thus, m; ; is a random
variable. The estimator e; ; is a (deterministic) func-
tion of the measurements, and hence is also a random
variable. The joint distribution of the measurements
is denoted by P mo.,....mn[p1,p2y..opn -
There is a physical law

L[pl(z)7p2(z)7 .-

which relates the actual parameters corresponding to
z. We assume that L[.] satisfies the reasonable mono-
tonicity condition: for any y1,ys, |y1]| < |y2|, we have

|L[p1(2), - - -, pi(2) + 41, -, Pa(2)]]
< |Llp1(2),-..,pi(2) + y2,-- -, pn(2)]].

Monotonicity means that accurate parameter estima-
tors yield no lesser “magnitude” of violation of the law
compared to less accurate estimators. Note that LI[.] it-
self does not dependent on z, i.e. informally speaking,
we only consider time-invariant or position-invariant
laws in that the law itself is not dependent upon z.
Such laws are not guaranteed to exist, especially for

ez-(z) = {6,',1(2), e,-,g(z), .

-Pn(2)] =0

complicated dynamical systems, but good approxima-
tions exist for smaller time scales. Also, if multiple
laws of the form L[.] = 0 exist that only relate certain
subsets of parameters, they can be added to obtain one
that relates all p;s.

If we choose a single estimator or measure-
ment p; for the parameter, the closeness of
L[p1(2),p2(2), .., Pn(2)] to 0 determines how closely
the law is satisfied. Let a basic set, denoted by S, be a
set of measurements and estimators such that for each
parameter we choose precisely one measurement or es-
timator (but not both). The total error due to S is
given by

E(S) = ZL[ﬁl(z)apQ(z)a .. 5ﬁn(z)]a

where p; is the estimator or measurement for p;. In all
n A
there are [] (a; + b;) possible basic sets, and S be the
=1
one with least error such that

E(S) = min E(S).
The expected error of S is denoted by

E(S) = Z/L[ﬁ1<z),ﬁ2<z),...,ﬁn<z)]
) del,...,mn\pl,...,pn:

and let S* be the one with the least expected error
such that
E(S*) = mbinE(S*).

Note that S* minimizes the expected error but S in
general does not. If the sensor distributions are not
known, then S* can not be computed, and often S is
used as a good approximation as in the case of empir-
ical risk minimization [19].

Example 1: Consider a simple illustrative example
of known mass m subjected to a constant force f in a
friction-free environment. The physical law in this case
is f = ma, and hence we employ L[f,a] = (f —ma)? =
0, where a is acceleration and f is force. Let py(2) = f
and p2(z) = a. Consider that we are given a sen-
sor that measures force and two sensors that measure
acceleration. The force measurements are given by
m1,1(z) = f +¢, for some deterministic e, i.e. the force
sensor has simple bias error. The acceleration mea-
surements are given by ms1 = a + J, map = 0.7a,
where § is a small normally distributed error. Then,
we have
L[ml,l, m271] = (6 - m5)2

L[mi 1,ma5] = (€ + 0.3ma)?

Consider that a > 0, and € > mé. Under the condition
|0] <]0.3a|, we have

Limy,1,ma1] < Lmy,1,ma 2],

i.e. for large values of a, the better choice is ms ;, oth-
erwise mz 2 is a better choice.



There is a significant leeway and variability in the
expression for the physical law, which determines the
exact value of the error. In particular, the error can
be arbitrarily scaled (up or down) by multiplying L[.]
with a suitable constant. Domain-specific knowledge
must be utilized in choosing the law as well as the form
in which the law is expressed. In addition, there are
inherent limitations to the utilization of physical laws
in error computation from a theoretical viewpoint. In
extreme cases, the errors of various parameters can
cancel each other so that

L[ﬁl(z)aﬁZ(z)a s

In the above example, if m;1 = f +¢€, and ma1 = a+
€/m, then L[my 1,m2,1] = 0. While this is a possibility
depending on the form of L[.], such case needs a very
cooperative error process for the estimators. Since the
individual measurements and estimators are based on
different methods such case is very unlikely, especially
for systems with a large number of parameters and a
complicated form for L[.].

,bn(2)] = 0.

3 Data Fusion Based on Physi-
cal Law Violations

A fusion function f; € F; for parameter p; com-
bines the measurements and estimators such that
film;(2),ei(2)) is an estimate of p;(2). Let f =
(f1,.-., fn) denote the fuser for all parameters. The
expected error due to the fused estimate is

E(f) = Z/L[fl(ml(z),el(z)),---,fn(mn(Z),en(Z))]
dpP,,

1seeesin |[P1yeeesPn?

and let f* € F; x ... x F, be the one with the least
expected error. In general E(f) cannot be computed
if the error distributions are not known, and hence f*
is not computable. In stead, we compute f that mini-
mizes the empirical cost given by

E(f) =Y LIfim(2),e1(2)), - - -, falma(2), ea(2))],

based on a set of measurements (also called the sample)

, 8}

Now we discuss methods that ensure E(f*) < E(S*),
and more importantly based on a computable f that

{<(mi(2),e1(2)),...,(mn(2),en(2))>: 2 =1,...

E(f) < E(S),

with a specified probability based entirely on the mea-
surements and without any knowledge of the underly-
ing distributions.

We now present some preliminaries needed for the
main result. For any function g : [-4, A]? = R, let
lg(r)I-

19(r) lloo="sup

’I‘E[—A,A]d

A function g(y) : [~ A4, A]? = R is Lipschitz with con-
stant k, if for all y1,y» € [—A, A]?, we have

Il g(y1) = 9(y2) lloo< kg [l y1 — ¥2 [oo -

For example, the sigmoid neural networks are Lipschitz
with the constant specified by the parameters of the
network [14].

The covering number Ny (€, G) of a function class G
is the smallest cardinality for a subclass G* = {g*} of
G such that

min — " |eo< €

min, lg—9" o<
for each g € G. Lipschitz functions defined on bounded
domains have easily computable cover sizes. By using
amesh with points € apart, we can cover [—A, A]? with
[%] ¢ points. Then, because of the Lipschitz property
of functions of G, we have

24k, 1"

NOO(eag) < Noo (ia[_AaA]d> < [ﬁ] .

kg €

We now discuss the isolation property [15] of the

fuser class that ensures that the fuser is at least as
good as the best basic set. A fuser class

Fi = {fily) : R¥+" = R},

for y = (y1,---,Y(ai+b:)), has the isolation property
if it contains the function 7;(y) = y; for all j =
1,2,...,(a;+b;). If each F; satisfies the isolation prop-
erty, then the following conditions are directly satisfied.

E(f*) < E(S")

and

E(f) < E(S).
The first condition is useful only if f* can be computed,
which in turn requires the knowledge of the distribu-
tions. If the distributions are not known, then f can
be used as an approximation. We now show that with
probability 1 — §, we have

E(f) - B(f*) <e

given a sufficiently large sample, and that the physical
law and the fusers classes are Lipschitz.

Theorem 3.1 Consider that the physical law is Lips-
chitz with constant k., and parameters, estimators and
measurements are bounded such that p € [-C,C|",
m; € [—A, A%, and e; € [-B,B]%. Let each fuser
class F; be Lipschitz with constant ky,. Let

d= Z(ai + b;)
i=1
and
k= kLmax(kfl,kf2, . 7kfn)'

Then given a sample size
12k(A+ B 2k(A+ B
s= 512k(A + B) [dln (M) +1n(8/6)] ,
€

€2



we have

PB(f) ~E(7) > | <5,

irrespective of the sensor distributions. Furthermore,

E(f) - E(f*), as s = co.
Proof: Consider the function class

L={L(f1, fos--- o) : fr € Fr,. . fr € Fi},

where L(fi, f2,---, fn) is defined on [—A, +A]%. Since
each f; is Lipschitz with constant ky,, L(f1, fa,---, fn)
is Lipschitz with constant k¥ = kp max(ky,,..., ks, ),
and furthermore due to boundedness of estimators
L(f1, f2y---, fn) is upper-bounded by k(A + B). By
the result of Vapnik [18] (page 41), we have

P [E(f) - B(f") > €]

<P [sup |E(l) — E()| > 6/2] .
lec

To see this result, consider the condition
P [sup |E(l) —E{)| > 6/2] <4é
leL

or equivalently
P [sup |E() — E()| < 6/2] >1-4.
leL

Then, with probability 1 — §, we have

E(f") (f*) +¢/2
(f) +€/2

E(f)+e

E
E

IN IN A

where the first and third inequalities are due to the
application of supremum bound for f* and f, respec-
tively, and the second inequality is due to the condition
E(f*) > E(f). As a result, we have

P [B(f) - B > | <4,

which shows the above Vapnik’s result.
Based on Lemma 3 of Appendix of Krzyzak et al. [3]
(which itself is based on Pollard [7]), we have

P [sup |EQ) - EQ)| > e]
lec
< 8N (¢/8, £)e™ AT
By combining the above two results, we have
P [B(f) - B(f") > <]
< 8N, (¢/16, £)e™ THATHT

Thus, the sample size required to ensure the result of
the theorem is given by

512k(A + B)

5 [In Noo (e/16, £) + In(8/5)] .

Now we have

32k(A + B)]d

Noo(€/16, L) < [

which proves the first part of the theorem.
To show the asymptotic convergence, let

625
0(s,€) = 8N (€/16, L)e™ 512R(AFE)

show the explicit dependence of § on s and €. Under the
finiteness of N (€, L), the consistency result follows
from the Borel-Cantelli Lemma [1] if

o SEZ
Z 8N (€/16, L)e™ B12R(AFE) <
=1 o0

for every € > 0. This condition is true since

o

S€2 o0 I€2
Z e FIATE) < / e STTRGATE) 4
s=1 z=0
512k(A + B) 2

e 512ka+B)

which is finite for all € > 0. 5

This theorem provides a distribution-free finite sam-
ple result: given a sufficiently large sample size, with
a probability 1 — §, the cost of the sample-based solu-
tion is within € of the lowest achievable cost (which can
only be computed if all error distributions are known).
This result is distribution-free, i. e. it depends only on
the measurements and does not depend on the sen-
sor distributions. It is the best possible result in that
stronger results such as showing § = 0 is not possi-
ble, since f* depends on a distribution (which is not
finite-dimensional) and f depends on a finite sample.
Results similar to the asymptotic result shown in the
above theorem are more common in the statistics liter-
ature [8]. The finite sample result, however, is stronger
in that it implies the asymptotic result, and also estab-
lishes that the method is justified even for small sample
sizes. The actual sample size estimate provided in the
above theorem, we believe, can be sharpened.

The smoothness conditions required in this theorem
are quite reasonable. The Lipschitz condition is satis-
fied for a number of physical laws, although not always
guaranteed. Similar condition was used in converting
the decision fusion rules designed for known distribu-
tions to sample-based ones in [10]. The isolation and
Lipschitz properties required of the fusers are satisfied
in a number of cases such as linear combinations with
bounded coefficients and piecewise linear feedforward
networks [11].

The following corollary is a weaker version of The-
orem 3.1 since E(f*) < E(S*) < E(S).

Corollary 3.1 Let F; satisfy the isolation property for
alli=1,2,...,n. Under the same conditions as The-
orem 3.1, we have following conditions satisfied.

P [E(f) — B(S*) > e] <6

P [E(f) —ES) > e] <.



Informally speaking, this corrollary shows that the er-
ror of the computed fuser f is not likely to be much
higher than that of the best basic set, and could be
much smaller. Indeed the above theorem states that f
will be closer to f* which can have much smaller error
than S*.

The isolation property was first proposed in [15, 9]
for the concept and sensor fusion problems. If F; is
the set of linear combinations, i. e. f;(y) = w1y +

..+ wryg, for w; € [-W, W], this property is trivially
satisfied. Lipschitz constant of f; is W.

Example 2: Consider the scenario in Example 1, and
fa(ma,1,m22) = wima + wamsa 2.

For the choice wi; = 0.3 and wy =
f2(ma1,ma2) = a+ 0.30, and

1, we have

L[ml,la f2(m2,1, m272)] = (6 - 03m6)2,

which is always smaller than L[mj1,m9,.], and is
smaller than L[mj 1,mq 2] for small § < @ which is
true with probability one since ¢ is a zero-mean ran-
dom variable.

4 Methane Hydrates Well Logs

In this section, we briefly describe the methane hy-
drates problem [4] and show how the proposed fu-
sion method improves the porosity estimation. Gas
hydrates are crystalline substances composed of water
and gas, in which gas molecules are contained in cage-
like lattices formed by solid water. Gas hydrates are
present in permafrost regions and beneath the sea in
sediment of outer continental margins. Among the sev-
eral gas hydrates, methane hydrates are believed to be
the most common in nature [4]. Methane hydrates rep-
resent an alternative to conventional gas as a fuel, and
they are expected to be available in volumes exceeding
known estimates for conventional gas reserves. One of
the challenging problems is to predict the prescence of
hydrates using measurements collected at wells located
in certain locations such as off the US coast in mid-
Atlantic and Mackenzie Delta in Northwest Canada.

At each well, a number of measurements are col-
lected using a suite of sensors. These measurements in-
clude density, neutron porosity, acoustic transit-time,
and electric resistivity, collected at various depths in
the well [2]. Our focus is on the estimation of the poros-
ity at various depths. Our data consists of 3045 sets
of measurements each collected at different depths in a
single well. There are a variety of methods to estimate
porosity based on different principles and utilizing dif-
ferent measurements [5]. We employed six known
methods for estimating the porosity based on neutron
measurements (¢1), density measurements (¢2), fluid
velocity equation (¢s), acoustic travel time based on
S-wave (¢4), time-average equation based on P-wave
(¢5), and Wood’s equation (¢g) (see [5, 6] for details
on these models).

One of the well-established physical laws relates the
parameters of porosity (¢), density (p), and hydrate
concentration (1), as follows [5, 6]

L{p, 9, p] = (Blpm — (1 — ) puw + Ppn]

where p,, pw, and pp are known constants. In this
equation, we use the only one measurement for density
p and and a single estimator ¥ for the hydrate concen-
tration using the Archie’s equation [6]. As a first step
solution to this problem, we assume that the estima-
tors p and i are reasonably accurate, and the objective
is to fuse the porosity estimates. When an estimator
¢ is used in the above equation we obtain a non-zero
value in general, so that

_P+Pm)2:0;

L[, p] = (é[pm —(1=9)puw +9Ypr] —p+ Pm)2 ,

1s non-zero. Thus, the error due to a set of estimators

¢, zp, and p is given by

3045

Z Li, ), ]

z=

= (¢ z [pm -
—p(2) + pm)” -

The following are the error estimates for the individual
estimators.

E(¢,4,p) =

~

— 9(2))pw + (2)pi]

estimator E()

b1 1.454920
bo 1.407088
b3 1.400968
b4 1.400967
b5 1.728479
b6 1.410965
fused estimate | 0.079374

Note that in terms of E(.), the best estimator for

porosity is <$4. Then, we consider a fuser based on the
linear combination of the estimators

6
¢ =wr + Y widi,
i=1
where (w1, ...,w7) € R7 is the weight vector. Recall
that the isolation property is satisfied by linear combi-
nations. We computed the weight vector to minimize
the error

3045

ZL w7+zwz¢z

The solution is given as follows for the well log data:

, P(2)

wi | 1.198060
wy | 2.871261
ws | -0.264511
wy | -7.243817
ws | 2.254488
we | -6.330654
wy | 2.458406




The computation is performed using the netlib li-
brary routines for solving the least square problems.
The error achieved by ¢r is about 20 times better
than that of the best estimator ¢4. More dramatic
performance of the fuser was observed when smaller
subsets of well log data were utilized. However, since
the magnitude of the error depends critically on the ex-
act form of L[], the improvement must be interpreted
in the context, as described at the end of Section 2.
Nevertheless, the fused estimate is significantly better
than any individual estimator for the porosity.

5 Conclusions

We presented an information fusion method that ap-
plies to physical systems wherein accurate measure-
ments of physical parameters are not possible. The fu-
sion operation is achieved by utilizing the physical laws
that relate various parameters of the system. Com-
pared to the traditional information fusion problems,
this formulation is a significant departure in that it
lacks the ground truth in the form of training sample.
We presented a methodology that utilizes physical laws
to compare various sets of measurements and estima-
tors. If the error distributions are known, the best set
of measurements and estimators can be computed. In
practice, the distributions are not known but only mea-
surements are available. We presented a fusion method
that combines various measurements and estimators to
achieve performance at least as good as the best set of
measurements. Such fuser again depends on the sensor
distributions, and cannot be computed with probabil-
ity one if only measurements are available. We showed
that a close approximation to the this optimal fuser
can be computed such that with a high probability the
solution performs at least as good as the best set of
measurements, given large enough sample size. We il-
lustrated the effectiveness of this method for the data
fusion for the well log data in methane hydrates explo-
ration.

The proposed fuser is based on the isolation prop-
erty. The projective fusers proposed recently [13] are
more powerful in that they perform at least as good as
the best subset of estimators, but are harder to com-
pute based on a sample. Also, metafusers that combine
various fusers to ensure that the best performance of
the fusers as well as estimators have been proposed
[13]. The study of projective fusers and metafusers
for the proposed formulation will be of future interest.
Furthermore, a more detailed analysis of the methane
hydrates data by using a number of estimators for pa-
rameters such as density and concentration, and also
the other types of fusers, will be of future interest.
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