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Abstract

A number of optimal fusion functions have been de-
rived in the literature for multiple detection systems
based on a complete knowledge of the detector distribu-
tions. In several practical systems, however, only mea-
surements are available. A general result was recently
shown that any fusion function with o suitable Lips-
chitz property derived under the complete knowledge of
the distributions can be converted into a measurement-
based one. While this result subsumes the well-known
cases of independent and correlated detectors, it is not
applicable to discontinuous fusion rules which often
arise in practice. In this paper, we show that any fu-
sion function with bounded variation can be converted
into a measurement-based one with a somewhat weaker
guarantee . These fusion functions subsume Lipschitz
as well as several discontinuous fusion functions. In
particular we show that given a sufficiently large sam-
ple, the measurement-based fusion function performs
almost as well as the optimal one with an arbitrarily
specified confidence.

1 Introduction

The decision fusion problems deal with combining
the decisions taken by the individual detectors of a
multiple detector system [14]. Usually in the liter-
ature, the distributions of various detectors are as-
sumed to be given, and an optimal fuser is derived
under a certain criterion. Typically, the fusion rule
is in the form of a Bayesian rule or Neyman-Pearson
test, which can be derived both in the case of inde-
pendent and correlated detectors. In practical appli-
cations, the information about the required probabil-
ity distributions is based on the experience with the
system, and it is possible to derive the distributions
from the first principles. Often, the empirical data

generated by the system during experimentation or
operation is used in estimating the detector distribu-
tions. In practice, the optimal fuser is approximated
by utilizing the estimated probabilities. Analytical
justification for such approaches could be in terms of
asymptotic results which show that as the sample size
approaches infinity, the approximated fusion function
performs as good as the optimal one [7]. Stronger re-
sults based on finite sample sizes were derived in [§],
which are valid for Lipschitz continuous fusion func-
tions and not valid for non-smooth fusion functions
in general. In this paper, we extend these results to
fairly general non-smooth fusion functions with some-
what weaker finite sample guarantees. In particular,
we show that the usual method of estimating empir-
ical means and using them in place of probabilities
to obtain the approximation to fusion rules can result
in large errors. Our method is based on a different
strategy, namely, the empirical minimization [13], and
yields provably better performance results compared
to the usual method.

We consider a parallel suite of N detectors and a
fusion center [3] as in Fig. 1. Each detector D;, for i =
1,2,..., N makes a decision u; € {Hy, H;}, and the
fusion center receives u = (uy, us, - - -, uy) and outputs
either f(u) = Hy or f(u) = H; by suitably using the
information w. The problem of designing the fusion
functions to minize certain cost has been extensively
studied [14]. Let Cy;, ¢ = 0,1, j = 0,1 represent the
cost of outputting H;, when Hj; is true. Then the
average-cost or Bayes risk is given by

C(f) =YY CiyP(f(u) = HilHj)mj,  (L.1)

i=0 j=0

where 7; is the a priori probability of H;, for ¢ =



0,1. The average-cost criterion is optimized by the
likelihood ratio test [5] given by

_ P(u[H,)

T(u) = i 79(C1o — Coo)
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(T.1)

The decision of fusion center is H; if the above test
evaluates to true and is Hy otherwise. If the under-
lying probabilities are available in a convenient form,
then T'(u) can be computed at given u. One of the
most studied formulations of this problem deals with
the case where u;’s are independent, in which case
T'(u) takes a simple form in terms of products [3]; T'(u)
satisfies the Lipschitz property [8] in this case.

We consider formulation of [8] wherein the prob-
abilities needed to evaluate the tests of the form
(T.1) are unknown, but a independently and iden-
tically distributed (iid) sample is available in the
form of (u',HY),(u?, H?),...,(u!, H"), where u’ €
{Ho, H,1}V is the ith example and H? € {Ho, H1}
is the corresponding correct hypothesis. Only a fi-
nite sample is given here as opposed to the formulae
for the underlying probabilities required to implement
Bayesian rule or Neyman-Pearson test often expressed
in the form of test in Eq. (T.1). As a result only
an approximate implementation of the required test is
possible in general.

The fusion rule for decision problems is of-
ten expressed in terms of the probabilities, p =
(p1,p2,---,pPn), and the data, u = (u1,us,-..,un),
in the form

R(p,u) >0, (T.2)

where the decision is H; if the inequality is true and
is Hy otherwise. For simplicity of notation, we also
represent the function R(p,.) simply by R(p). Here
R(p,u) minimizes certain cost functional C such that
C(R(p,.)) < C(f) for any function f. In the above
example, the test T'(u) minimizes the Bayesian risk in
Eq (1.1). If the underlying probabilities are known,
R(p,u) for given u can be explicitly evaluated. If only
a sample is known, then an estimator p of p based on
the sample (u', H'), (u?, H?),..., (u!, H") is employed
[8]. Then, the empirical implementation R(p,u) is
used in place of R(p,u). The resultant performance
of R(p,u) depends on the properties of R and close-
ness of p to p. The function R(p,u) is assumed to be
Lipschitz in [8] with respect to p, i. e. these exists a
positive constant L such that

|R(p+ Ap,u) — R(p,u)| < L||Ap]|

for all Ap, u, where ||Ap|| denotes the Euclidean norm
of Ap in R™. Let p be the empirical mean of p based

Yl —=> Detector 1 1

YN —= Detector N /" U

on the sample. Given a sample of size

= [% ln(2n/)\)-‘

for any r > 1, R(p,.) is shown to achieve the opti-
mal cost C(R(p,u)) with probability 1 — A. Fusion
rules for several systems satisfy the required Lips-
chitz condition, including, independent detectors for
the Bayesian [2] and Neyman-Pearson formulation
[12], and also non-independent detectors formulated
in terms of correlation coefficients [4].

In several important cases, however, the required
test does not the Lipschitz condition, in which case
the specific method of [8] can perform very poorly (see
Section III). For example, consider a monitoring area,
divided into two non-overlapping regions monitored by
two detectors each of which declares a detection if its a
posteriori probability is above a threshold. In detect-
ing a single object, since monitoring regions are dis-
joint, an appropriate fusion rule is R(p1,p2) = (p1 >
t) \/(p2 > t), which is not Lipschitz in p, since it is dis-
continuous at (t,t). More generally, the fusion func-
tion involving Boolean combinations of decision taken
by individual detectors are not Lipschitz. Such func-
tions are captured by functions of bounded variation
(Section II). In this paper, we generalize the results
of [8] to non-smooth fusion functions. We show that
given sufficiently large sample
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we have

P[C(R(p)) — C(R(p)) > €] <0



irrespective of the detector distributions. This condi-
tion means that the performance of R(p, u) is within e
of the optimal with probability 1 —§. Here € and § are
called the precision and the confidence, respectively.
We describe the fusion functions of bounded varia-
tion in Section 2. We show our main result in Section

3.
2 Non-Smooth Fusion Functions

Consider a one-dimensional function h : [-A, A] —
R. For A < o0, a set of points P = {zg,Z1,...,Zn}
such that — A =z <21 < ... < xp, = A is called a
partition of [— A, A]. The collection of all possible par-
titions of [—A, A] is denoted by P[—A, A]. A function
g : [—A, A] = R is of bounded variation, if there exists
B such that for any partition P = {xg,z1,...,2n}, we

n
have >>(P) = > |f(zk) — f(zk—1)| < B. A multivari-
k=1
ate function g : [~ A4, A]? = R is of bounded variation
if it is so in each of its input variable for every value
of the other input variables.

The following are useful facts about the functions
of bounded variation: (i) not all continuous functions
are of bounded variation, e.g. g(z) = xzcos(n/(2z))
for £ # 0 and g(0) = 0; (ii) differentiable functions on
compact domains are of bounded variation; and (iii)
absolutely continuous functions, which include Lips-
chitz functions, are of bounded variation.

For the rest of the section, we describe some pre-
liminaries needed for the proof in the next section. We
utilize the pseudo-dimension [1], which is described as
follows. Let G be a set of functions mapping from a do-
main X to R and suppose that S = {z1,Z2,...,Zm} C
X. Then S is pseudo-shattered by F' if there are real
numbers rq, 73, ..., Ty such that for each b € {0,1}™
there is a function go in G with sgn(fy(z;) — ;) = b;
for 1 <4 < m. Then G has the pseudo-dimension d if
d is the maximum cardinality of a subset S of X that
is pseudo-shattered by G. If no such maximum ex-
ists, we say that G has infinite pseudo-dimension. The
pseudo-dimension of G is denoted Pdim(G). Pseudo-
dimensions are known for several classes such as linear
spaces, and sigmoid neural networks.

Let G be the class of functions from Z to into [0, M],
where M > 0, and let P be a probability measure on
Z. Then dy:1(py is the pseudo metric on G defined by

duapy (g1, 92) = E(lg1 - gs]) = /Z 191() — 92(2)|dP ()

for all g1, g2 € G. The covering number N (e, G,dp1(p))
of a function class G is the smallest cardinality for a
subclass G* = {g*} of G such that dri(p)(g,9*) < ¢,
for each g € G.

3 Sample-Based Fusion Rules

We consider an empirical implementation of a gen-
eral test R(p,u) by computing p such that

CRM) = min ~C(Rpu))  (3.1)

pelo,1]~ [

based on the sample. Then R(p,u) is used in place of

R(p,u).

Theorem 3.1 Consider that the fusion function
R(p,u) is of bounded variation with respect to p, and
C < M is of bounded bounded variation. Given a
training sample of size
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we have
P[C(R(p)) — C(R(p)) > €] < 4.

Proof: For simplicity of notation, let us denote
C(R(p,.)) by C(R(p,.)). Here CR(p) is of bounded
variation with respect to p. Consider the function class

CR ={CR(q,.): q € [0,1]"}.

Let CR(q) = +C(R(p, u?). By the result of Vapnik [13]
(page 41), we have

P[CR(p) — CR(p) > ¢]

<P

sup |CR(q) — CR(q)| >e/2]-
q€(0,1]™

To see this result, consider the condition

P| sup |CR(q)— a%(q)l >ef2] <4
q€[0,1]"
or equivalently
P| sup |CR(q) - @(qﬂ <ef2] >1-0.

qE[O,l]"
Then, with probability 1 — §, we have
CR(p) < CR(p) +¢/2 < CR(p) + ¢/2 < CR(p) +¢

where the first and third inequalities are due to the
application of supremum bound for p and p, respec-
tively, and the second inequality is due to the condi-
tion CR(p) < CR(p). As a result, we have

P[CR(p) — CR(p) > €] <9,



which shows the above Vapnik’s result.
Now using Theorem 3 of Haussler [6], we obtain

P[CR(p) — CR(p) > ¢
< 2B [2min(N(e/2,CR, dy. )] eme

We now show that

In

deM . deM\*"
N(C,CR,dLl(p))§4( € € )

€

for any P, which yields the required sample size. Since
CR(.) = C(R(.)) is of bounded variance, it can be
represented as a sum of two monotone functions CR =
Ri+ Rsy. Fori =1,2, let

Ri= {Ri(qa ) ‘g€ [07 l]n}’

which is the class of functions obtained by composing
a monotone function R;(.) with the identity function
I(.), i. e. I(q) = q. Since ¢ forms a linear space, by
Theorem 11.3 of [1], we have

Pdim(R;) = Pdim({q}) < Pdim([0,1]") = n.

Then by using Theorem 6 of [6] we have

In
€ €

2eM _ 2eM\"
N(E,Rz’,dLl(P)) S 2( € € )

for any measure P. Since CR = R; + R, we obtain

N(G,CR,dL1(P))
< N(e/2,R1,dpi(p))N(€/2, Ra,dL1(p))

2n
<4 <4eM In 4eM>

€ €

for any P. The sample bound follows by using

0

2E [2min(N (¢/2,CR, dy1))] ez
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and solving for 1. 5

Often empirical mean p of p based on the sam-
ple is utilized in sample-based implementation of R(.),
i. e. R(p,u) used in place of R(p,u) as in [8]. If R(.)
is discontinuous the performance of this method can
be quite unsatisfactory. Consider that R(.) is 1 in the
interval [p — a,p + a] and zero everywhere else. As
a — 0, we have R(p,u) # R(p,u) and this method
yields very high error. The main problem here is that
the proximity of p to p is not dictated by R(.) but

rather by the convergence of means to the expectation.
Thus this method yields good results only when the
variation of R(p) is conducive with that in p, which
is not necessarily the case if R is discontinuous. In
our method, on the other hand, R(.) has a significant
influence on p due to optimization in Eq (3.1). The re-
quired proximity of p to p is enforced by R and hence
the performance of R(p,.) approaches that of R(p,.).

It is interesting to note that in the simulation of
systems with independence, the method based on p
yields very good results; this is true because the inde-
pendence implies Lipschitz R(p,u). If independence
is not satisfied, R(.) could be discontinuous and the
performance could be quite unsatisfactory. Thus the
above example cautions against using the results based
on independence in a system without this property.

The sample size in Theorem 1 is entirely
distribution-free and can be precomputed by using €, §
and M. The sample size of [8] cannot be precomputed
since it involves the term R(p,u). Nevertheless, the re-
sult of [8] essentially guarantees that ¢ = 0 for finite
sample; such result is not possible based on Theorem
1.

The finite sample result of Theorem 1 implies an
asymptotic result of the type common in statistics lit-
erature. Using Borel-Cantelli Lemma Theorem 1 im-
plies that C(R(p)) — C(R(p)) as | — oc.

4 Conclusions

We considered multiple detection systems in the
case when training examples are available, but no in-
formation is available about the probability of errors
committed by the individual detectors. We showed
a general result that any fusion function (derived for
known distributions) of bounded variation can be im-
plemented based on a training sample with an arbi-
trarily high precision and confidence. Our result sub-
sumes the cases of non-independent and correlated de-
tectors, and provides an analytical justification for us-
ing empirical approximations of the fusion rule derived
for known distributions. More generically, we show
that the empirical approximation must be carefully
computed, and the usual method of using the empir-
ical means in place of probabilities can result in high
error if the fusion function has discontinuities. We be-
lieve specific properties of fusion rules can be used to
obtain sharper results than those yielded by our gen-
eral result. The computational aspects of our method
is a topic for further investigation.

In this paper, we leveraged the fusion rules de-
rived for known distributions to obtain fusion rules
for sample-based formulation. This approach is useful
since a large number of fusion rules have been derived



for various formulations under known distributions. If
such fusion functions are not available, however, the
problem might be addressed using empirical estima-
tion methods [11, 10, 9] which directly operate on the
data (bypassing any explicit estimation of probabil-
ities). In such cases, one could derive fusers under
known distributions and then use the method pro-
posed in this paper. It would interesting to see the
boundaries of performance of these two approaches.
It appears that there will be cases more suited, in
terms of performance and ease of implementation, to
one method than the other.
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