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Physical System

System Parameters: P (z) = (p1; p2; : : : ; pn)

Parameter: pi(z) is measured and/or estimated:
(i) ai measurements: measured by an instrument

mi(z) = fmi;1(z);mi;2(z); : : : ;mi;ai(z)g

(ii) bi estimators: computational method based on measurements

ei(z) = fei;1(z); ei;2(z); : : : ; ei;bi(z)g

In a nutshell:

Every parameter is either measured or estimated
{ It's real values may not be known
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Fusion Problem

For each parameter pi, obtain a fuser fi such that
fi(mi(z); ei(z)) is \close" to pi(z).

Fuser for all parameters: f = (f1; : : : ; fn)

Expected error of fused is

E(f) =
X
z

Z
C [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] dPm1;:::;mnjp1;:::;pn;

where C[:] is a cost function.

Example: Classi�ers:
Parameter pi 2 f0; 1g is the actual class,
Fuser outputs Boolean vectors: f = (f1; : : : ; fn) 2 f0; 1g

n

Fuser Error is

C[f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))]

= [f1(m1(z); e1(z))� p1] + : : :+ [fn(mn(z); en(z))� pn]

{ simply, the number of parameters misclassi�ed by fuser.
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Best Fuser

Choose fi from class Fi such as linear space, neural network.

Best Expected Fuser:

f � 2 F1 � : : :�Fn one with least E(:).

Present Formulation: Error distributions are not known
Measurements are given

f<(m1(z); e1(z)); : : : ; (mn(z); en(z))>: z = 1; : : : ; sg:

Question: can we compute a close approximation to f � ?

Note: Similar problems have been solved
but this problem is not amenable to conventional approaches
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Traditional Paradigm

Cost Function is Direct:

Typically, training data is given for pi:
{ can employ a cost function such as

C[f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))]

= [f1(m1(z); e1(z))� p1]
2 + : : :+ [fn(mn(z); en(z)� pn)]

2

Method of Empirical Risk Minimization:

Minimize empirical error by f̂

Ê(f) =
X
z
C [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] ;

instead of

E(f) =
X
z

Z
C [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] dPm1;:::;mnjp1;:::;pn;

Result: E(f̂) can be shown to be close to E(f �) either
(i) as sample size goes to in�nity (Asymptotic consistency), or
(ii) with high probability E(f̂) � E(f �) + �.

DiÆculty: Traditional paradigm is not applicable:
every parameter pi is either measured or estimated
{ No actual parameter values are known
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Physical Laws

Physical Law: relates the actual parameters
Consider the form

L[p1(z); p2(z); : : : pn(z)] = 0

Monotonicity Condition:
for any y1; y2, jy1j � jy2j, we have

jL[p1(z); : : : ; pi(z) + y1; : : : ; pn(z)]j

� jL[p1(z); : : : ; pi(z) + y2; : : : ; pn(z)]j:

Informally, accurate estimators have lesser or equal error compared to less-
accurate estimators.

Note: we only consider time-invariant or position-invariant laws
L[:] itself does not dependent on z
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Example

Scenario: Known mass m subjected to a constant force f in a friction-free
environment.

Physical Law: in this case is f = ma, and employ

L[f; a] = (f �ma)2 = 0

Sensors: given
one force sensor, and two acceleration sensor.

Force measurements: m1;1(z) = f + �, for some �,
Acceleration measurements:
m2;1 = a+ Æ
m2;2 = 0:7a
where Æ is a small normally distributed error.

Physical Laws are not Exactly Satis�ed:

L[m1;1;m2;1] = (��mÆ)2

L[m1;1;m2;2] = (�+ 0:3ma)2

8



Physical Law Violations:

For each parameter,
{ choose a single estimator or measurement p̂i:
closeness of L[p̂1(z); p̂2(z); : : : ; p̂n(z)] to 0

determines how closely the law is satis�ed.

Observation:

Violation of physical law can be considered an error measure

9



Best Set of Measurements/Estimators

Basic Set: S
For each parameter pi, choose one measurement or estimator p̂i: The error
due to S is

Ê(S) =
X
z
L[p̂1(z); p̂2(z); : : : ; p̂n(z)]

Random error of S:
Ŝ: has least random error:

Ê(Ŝ) = min
S
Ê(S):

Expected error of S:

E(S) =
X
z

Z
L [p̂1(z); p̂2(z); : : : ; p̂n(z)] dPm1;:::;mnjp1;:::;pn

Best Sensor Set:

S� has least expected error: E(S�) = min
S
E(S�):

{ among
nQ
i=1

(ai + bi) possible basic sets
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Example { Cntd.

Physical Laws not Exactly Satis�ed:

L[m1;1;m2;1] = (��mÆ)2

L[m1;1;m2;2] = (�+ 0:3ma)2

Condition: a > 0, and � � mÆ; jÆj � j0:3aj,
we have

L[m1;1;m2;1] � L[m1;1;m2;2];

As a result, for large values of a: better choice is m2;1

otherwise m2;2 is a better
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Fusion Rule Estimation

Expected error of fuser f :

E(f) =
X
z

Z
L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] dPm1;:::;mnjp1;:::;pn

Optimal Expected Fuser: f � has least expected error:
{ E(f) cannot be computed if the error distributions are not known,
{ hence f � is not computable.

Solution: compute f̂ that minimizes the empirical cost

Ê(f) =
X
z
L [f1(m1(z); e1(z)); : : : ; fn(mn(z); en(z))] ;

based on of measurements

f<(m1(z); e1(z)); : : : ; (mn(z); en(z))>: z = 1; : : : ; sg:

Summary of Performance:

We provide methods to ensure E(f �) � E(S�),

E(f̂) < E(Ŝ);

{ with a speci�ed probability
{ based entirely on the measurements, and
{ without any knowledge of underlying distributions.
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Isolation Property

De�nition: Fuser class

Fi = ffi(y) : <
ai+bi 7! <g;

for y = (y1; : : : ; y(ai+bi)), has the isolation property if it contains the function
�j(y) = yj for all j = 1; 2; : : : ; (ai + bi).

Consequences of Isolation Property:

If each Fi satis�es the isolation property, we have

E(f �) � E(S�)

and
Ê(f̂) � Ê(Ŝ):

Examples:

1. Linear combinations
2. Linearized feedforward networks
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Lipschitz Property

For any g : [�A;A]d 7! <, let

k g(r) k1= sup
r2[�A;A]d

jg(r)j:

De�nition:

A g(y) : [�A;A]d 7! <a is Lipschitz with constant kg if for all y1; y2 2
[�A;A]d, we have

k g(y1)� g(y2) k1� kg k y1 � y2 k1 :

Examples:

1. sigmoid neural networks are Lipschitz with the constant speci�ed by the
parameters of the network;
2. linear combination are Lipschitz
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Example - Cntd

Fuser Class:: fi(y) = w1y1 + : : :+ wkyk, for wi 2 [�W;W ]
{ isolation property is trivially satis�ed
{ Lipschitz constant of fi is W .

Linear Fuser
f2(m2;1;m2;2) = w1m2;1 + w2m2;2:

For the choice w1 = 0:3 and w2 = 1, we have f2(m2;1;m2;2) = a+ 0:3Æ, and

L[m1;1; f2(m2;1;m2;2)] = (�� 0:3mÆ)2;

{ always smaller than L[m1;1;m2;1], and
{ is smaller than L[m1;1;m2;2] for small Æ � a with probability one
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Asymptotic Convergence Result
Smooth Laws and Fusers

Physical Law: is Lipschitz

Boundedness: parameters, estimators and measurements are bounded

Fuser Class: Lipschitz

General Result: Irrespective of the sensor distributions

E(f̂)! E(f �);

as s!1.

Informal Statement: error of f̂ approaches optimal error

Furthermore:

If Fi satis�es the isolation property for all i, we have

E(f̂)! E(f �) � E(S�)

as s!1.

Informal Statement: f̂ approaches f � which can have much smaller error
than S�.
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Finite Sample Result
Smooth Laws and Fusers

Physical Law: Lipschitz

Boundedness: parameters, estimators and measurements are bounded

Fuser Class: Lipschitz

General Result: Given suÆciently large sample,
we have

P
�
E(f̂)� E(f �) > �

�
� Æ;

irrespective of the sensor distributions.

Informally, with probability 1� Æ, the cost of the sample-based solution is
within � of the lowest achievable cost
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Comments on Result
Smooth Laws and Fusers

Distribution-free �nite sample result:

{ depends only on measurements and
{ does not depend on the sensor distributions.

Best possible result:

{ stronger results such as showing Æ = 0 is not possible,
since f � depends on a distribution (which is not �nite-dimensional) and
f̂ depends on a �nite sample.

Analytically justi�es the method even for small sample sizes
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Comments on Conditions
Smooth Laws and Fusers

Physical Law:

{ Smoothness conditions are reasonable
{ Lipschitz condition is satis�ed for a number of physical laws,

although not always guaranteed.

Fuser Class:

Isolation and Lipschitz properties are satis�ed in
{ linear combinations with bounded coeÆcients and
{ piecewise linear feedforward networks

19



Finite Sample Result { Better than Best Sensor set
Smooth Laws and Fusers

Under isolation property for all Fi

P
�
E(f̂)� E(S�) > �

�
� Æ

P
�
E(f̂)�E(Ŝ) > �

�
� Æ:

Informally speaking, error of the computed fuser f̂
(i) is not likely to be much higher than that of the best basic set, and
(ii) could be much smaller.
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Theorem

Theorem 1 Consider that the physical law is Lipschitz with constant kL,
and parameters, estimators and measurements are bounded such that p 2
[�C;C]n, mi 2 [�A;A]ai, and ei 2 [�B;B]bi. Let each fuser class Fi be

Lipschitz with constant kfi. Let

d =
nX
i=1

(ai + bi)

and

k = kLmax(kf1; kf2; : : : ; kfn):

Then given a sample size

s =
512k(A+ B)

�2

2
4d ln

0
@32k(A+ B)

�

1
A+ ln(8=Æ)

3
5 ;

we have

P
�
E(f̂)� E(f �) > �

�
� Æ;

irrespective of the sensor distributions. Furthermore, E(f̂) ! E(f �), as

s!1.
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Corollary

Corollary 1 Let Fi satisfy the isolation property for all i = 1; 2; : : : ; n. Un-
der the same conditions as Theorem 1, we have following conditions satis�ed.

P
�
E(f̂)� E(S�) > �

�
� Æ

P
�
E(f̂)�E(Ŝ) > �

�
� Æ:
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Bounded Variation Property

One-dimensional function h : [�A;A] 7! <.
Partition of [�A;A]: Set of points P = fx0; x1; : : : ; xng such that

�A = x0 < x1 < : : : < xn = A

P [�A;A]: all possible partitions

Bounded-Variation: g : [�A;A] 7! < is of bounded variation:
if there exists M such that for any P = fx0; x1; : : : ; xng, we have

X
(P ) =

nX
k=1

jf(xk)� f(xk�1)j �M:

Multiple Dimensions:

A function g : [�A;A]d 7! < is of bounded variation if it is so in each of its
input variable for every value of the other input variables.

Useful facts:

(i) not all continuous functions are of bounded variation,
e.g. g(x) = x cos(�=(2x)) for x 6= 0 and g(0) = 0;
(ii) di�erentiable functions on compact domains are of bounded variation;
(iii) absolutely continuous functions, which include Lipschitz functions, are
of bounded variation.
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Example

Scenario: of H2O heated in a container:
p1: temperature
p2 2 f0; 1g: state, p2 = 0: liquid

p2 = 1: steam

T0: boiling temperature under this condition.

Physical law: : p2 = 0 if p1 < T0 and p2 = 1 otherwise.

L[p1; p2] = p21fp1<T0g + (p2 � 1)1fp1�T0g = 0;

where the indicator function 1C is:
1 if condition C is true
0 if condition C is false

{ Not Lipschitz in p1

Motivation: For non-smooth physical laws
To address the cases typi�ed by the above L[:]
we consider the class of functions with bounded variation
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Pseudo-Dimension

Fuser Class: With �nite pseudo-dimension

For G = fg : X 7! <g and S = fx1; x2; : : : ; xmg � X:

Pseudo-shattering: S is pseudo-shattered by F
if there are real numbers r1, r2, : : :, rm
such that for each b 2 f0; 1gm there is a function g0 in G with

sgn(fb(xi)� ri) = bi

for 1 � i � m.

Pseudo-Dimension: G has pseudo-dimension d: maximum cardinality of a
subset S of X that is pseudo-shattered by G

Examples: Function classes with known pseudo-dimension
1. Feedforward sigmoidal neural networks
2. Vector spaces
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Asymptotic Convergence Result

Physical Law: bounded variation

Boundedness: parameters, estimators and measurements are bounded

Fuser Class: bounded pseudo-dimension

General Result: Irrespective of the sensor distributions

E(f̂)! E(f �);

as s!1.

Informal Statement: error of f̂ approaches optimal error

Furthermore:

If Fi satis�es the isolation property for all i, we have

E(f̂)! E(f �) � E(S�)

as s!1.

Informal Statement: f̂ approaches f � which can have much smaller error
than S�.
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Finite Sample Result

Physical Law: Bounded Variation
{ includes Lipschitz laws as subclass

Boundedness: parameters, estimators and measurements are bounded

Fuser Class: �nite psuedo-dimension

General Result: Given suÆciently large sample,
we have

P
�
E(f̂)� E(f �) > �

�
� Æ;

irrespective of the sensor distributions.

Informally, with probability 1� Æ, the cost of the sample-based solution is
within � of the lowest achievable cost
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Comments on Result

Distribution-free �nite sample result:

{ depends only on measurements and
{ does not depend on the sensor distributions.

Best possible result:

{ stronger results such as showing Æ = 0 is not possible,
since f � depends on a distribution (which is not �nite-dimensional) and
f̂ depends on a �nite sample.

Analytically justi�es the method even for small sample sizes
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Comments on Conditions

Physical Law:

{ Allows for discontinuities
{ Allows for discrete-valued parameters

Fuser Class:

Isolation and pseudo-dimension properties are satis�ed in
{ linear combinations with bounded coeÆcients and
{ piecewise linear feedforward networks
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Finite Sample Result { Better than Best Sensor set

Under isolation property for all Fi

P
�
E(f̂)� E(S�) > �

�
� Æ

P
�
E(f̂)�E(Ŝ) > �

�
� Æ:

Informally speaking, error of the computed fuser f̂
(i) is not likely to be much higher than that of the best basic set, and
(ii) could be much smaller.
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Theorem

Theorem 2 Consider that the physical law is of bounded variation such that

jL(p)j � ML for all p. Let parameters, estimators and measurements are

bounded. Let each fuser class Fi have �nite pseudo-dimension di, and each

fuser function g be bounded such that jg(:)j � M for all parameters. Let

d =
nP
i=1

di. Then given a sample of size

s =
256M2

L

�2

"
4d ln

 
128eM

�

!
+ (n+ 1) ln(4=Æ)

#
;

we have

P
�
E(f̂)� E(f �) > �

�
� Æ;

irrespective of the sensor distributions.

Furthermore, E(f̂)! E(f �), as s!1.
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Corollary

Corollary 2 Let Fi satisfy the isolation property for all i = 1; 2; : : : ; n. Un-
der the same conditions as Theorem 2, we have following conditions satis�ed.

P
�
E(f̂)� E(S�) > �

�
� Æ and P

�
E(f̂)�E(Ŝ) > �

�
� Æ:

Informally, error of the fuser f̂ is not likely to be much higher than that of
the best basic set, and could be much smaller.

32



Methane Hydrates Problem

Gas hydrates: crystalline substances composed of water and gas, in which
gas molecules are contained in cage-like lattices formed by solid water.

Gas hydrates are present in permafrost regions and beneath the sea in sedi-
ment of outer continental margins.

Alternative to conventional gas as a fuel:
{ methane hydrates
{ expected to be available in volumes exceeding known estimates for conven-
tional gas reserves.

Challenging Problem: predict prescence of hydrates using measurements
collected at wells
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Methane Hydrates Problem - Measurements

Measurements:

At each well, using a suite of sensors
{ density,
{ neutron porosity,
{ acoustic transit-time,
{ electric resistivity
collected at various depths in the well

Our focus: estimation of the porosity at various depths.

Data:

3045 sets of measurements each collected at di�erent depths in a single well.

Methods to estimate porosity: based on

{ neutron measurements (�̂1),
{ density measurements (�̂2),
{ uid velocity equation (�̂3),
{ acoustic travel time based on S-wave (�̂4),
{ time-average equation based on P-wave (�̂5),
{ Wood's equation (�̂6)
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Methane Hydrates Problem - Physical Law

Well-established physical law: relates:
�: porosity
�: density
 : hydrate concentration

L[�;  ; �] = (�[�m � (1�  )�w +  �h]� �+ �m)
2 = 0;

where �m, �w, and �h are known constants.

We employ:

{ one measurement for density �̂
{ a single estimator  ̂ for the hydrate concentration using the Archie's equa-
tion { six estimates of porosity �

Problem Addressed:

{ we assume that the estimators �̂ and  ̂ are reasonably accurate, and
{ objective is to fuse the porosity estimates.
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Methane Hydrates Problem - Estimators

Error due to a set of estimators �̂,  ̂, and �̂ is given by

Ê(�̂;  ̂; �̂) =
3045X
z=1

L[�̂;  ̂; �̂]

=
�
�̂(z)[�m � (1�  ̂(z))�w +  ̂(z)�h]� �̂(z) + �m

�2
:

Error estimates for individual estimators:

estimator Ê(:)

�̂1 1.454920

�̂2 1.407088

�̂3 1.400968

�̂4 1.400967

�̂5 1.728479

�̂6 1.410965

fused estimate 0.079374

In terms of Ê(:), the best estimator for porosity is �̂4.
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Fuser

Fuser based on linear combination

�̂F = w7 +
6X

i=1

wi�̂i;

where (w1; : : : ; w7) 2 <
7 is the weight vector.

Computation: Weight vector to minimize the error

Ê(�̂F ) =
3045X
z=1

L

2
4w7 +

6X
i=1

wi�̂i(z);  ̂(z); �̂(z)

3
5 :

Solution:
w1 1.198060

w2 2.871261

w3 -0.264511

w4 -7.243817

w5 2.254488

w6 -6.330654

w7 2.458406
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Results

{ Error achieved by �̂F is about 20 times better than best estimator �̂4.

{ More dramatic performance of the fuser was observed when smaller subsets
of well log data were utilized.

Perspective:

Since the magnitude of the error depends critically on the exact form of L[:],
the improvement must be interpreted in the context,

Computation:
The computation is performed using the netlib library routines for solving
the least square problems.
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Conclusions

� New Paradigm for Sensor Fusion:

{ Physical systems - physical laws can be used for fusion

{ Each parameter is sensed and/or estimated by di�erent sensors and
methods

{ Provable performance - �nite sample and asymptotic guarantees

{ Fused system better than best set

{ Physical laws considered - smooth and non-smooth

� Work in progress

{ Projective fusers | better than best subset of sensors ?
| beyond isolation property.

{ Time-varying physical laws - can they be used for fusion ?

{ More general physical laws and fusion rules

{ Applications - methane hydrates, ballistic objects.
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