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ABSTRACT
We present a robust, model-independent technique for measuring changes in the dynamics
underlying nonlinear time-serial data. We define indicators of dynamical change by
comparing distribution functions on the attractor via L1-distance and χ2 statistics. We apply
the measures to scalp EEG data with the objective of capturing the transition between non-
seizure and epileptic brain activity in a timely, accurate, and non-invasive manner. We find a
clear superiority of the new metrics in comparison to traditional nonlinear measures as
discriminators of dynamical change.

1. Introduction

This work focuses on nonlinear analysis of physiological data. Typically, these
data arise from a virtual “black box” with little knowledge of the underlying system, its
dimensionality, or noise contamination. More often than not, nonlinear analysis requires
some assumptions about the underlying dynamics. For example, calculation of Lyapunov
exponents or Kolmogorov entropy implicitly assumes that the physiological process can
be modeled as a dynamical system. At a more fundamental level, one may ask whether
the data arises from a stationary process. Numerous statistical tests for stationarity exist,
but such tests usually assume that the dynamics are stationary within the two time
windows under comparison. Moreover, complex systems, like the brain, may not be well
modeled by stationary dynamics over long times.

We describe a model-independent method for measuring change in nonstationary
data. The dynamics of reference and test cases are represented as discrete distributions of
the density of points in reconstructed phase space during different time windows.
Variability is captured by the visitation frequency at various regions of phase space as
described by the distribution function. The method quantifies differences in these
reconstructed dynamics by comparing the distribution functions. We make no assumption
about stationarity, because no dynamical properties are inferred from the reconstructed
attractor. The system dynamics may change within the time window, but such variability
presents no problem for our technique, which measures dynamical change over a variety
of length scales, and over a wide range of time scales. Moreover, our method allows
measurement of dynamical change that that occurs continuously or intermittently.

Recently, Moeckel and Murray1 discussed similar concepts for measuring the
“distance” between attractors from time-delay reconstructions. In this context, our
method provides continuous measures of change in contrast to stationarity tests for
whether or not any statistically significant change has occurred. Due to their continuous
nature and their independence from assumptions about stationarity, our measures are
particularly useful for analysis of physiological data.



2. Traditional Nonlinear Measures

We assume that an unknown scalar signal, x, is sampled at equal time intervals, τ,
starting at time, t0, yielding a sequence of N points, xi = x(t0 + iτ). Dynamical process
reconstruction2 uses d-dimensional time-delay vectors, y(i)=[xi, xi+λ , … , xi+(d-1)λ ], for a
system with d active variables and time lag, λ. The choice of lag and embedding
dimension, d, determine how well the reconstruction unfolds the dynamics for a finite
amount of noisy data. A proper reconstruction allows calculation of nonlinear measures
that are consistent with the original dynamics. Below, we use three traditional measures,
for comparison to our phase-space indicators of dissimilarity.

The mutual information function is a nonlinear form of auto-correlation function.
Mutual information was devised by Shannon and Weaver3, and  applied to time series by
Fraser and Swinney4. Mutual information measures the information (in bits) that can be
inferred from one signal about a second signal, and is a function of the time delay
between the measurements. Univariate (bivariate) mutual information measures
information within the same (different) data stream(s) at different times. Here, we use the
first minimum, M1, in the univariate mutual information function. M1 measures the
average time separation (in timesteps)  that decorrelates two points in the time series.

The correlation dimension measures process complexity and is a function of scale
length, δ, in the data. Our choice of length scale balances local dynamics (typically at δ ≤
3a) against avoidance of excessive noise (typically at δ ≥ a). The symbol, a, denotes the
absolute average deviation as a robust indicator of variability5 in the time serial data:
                                                                            

N

a = (1/N) Σ |xi - x|.        (1)

                                                                                                    
i=1

The symbol x denotes the mean of xi. We use the maximum-likelihood correlation
dimension, D, developed by Takens6 with modifications for noise by Schouten et al.5

The Kolmogorov entropy, K, measures the rate of information loss (bits/s).
Positive, finite entropy generally is considered to clearly indicate chaotic features. Large
entropy implies a stochastic, totally unpredictable process. Entropy measures the average
time for two points on an attractor to evolve from a small initial separation to more than a
specific (large) distance, δ > δ0. We use maximum-likelihood entropy by Schouten et al7.

Noise corrupts all real data. Also, finite precision computer arithmetic truncates
model data. Thus, we choose a finite-scale length that is larger than the noise, δ0 = 2a, at
which to report K and D, corresponding to finite-scale dynamical structure. Thus, our
values of K and D have smaller values than expected for the zero-scale-length limit.

3. New Measures of Dynamical Change

Traditional nonlinear measures characterize global features by averaging or
integrating over the data. Such measures describe the long-term behavior but poorly
indicate dynamical change. Greater discrimination is possible by more detailed analysis
of the reconstructed dynamics. The natural (or invariant) measure on the attractor



provides a more refined representation of the reconstruction, describing the visitation
frequency of the system dynamics over the phase space.

We converted each signal value, xi, to one of S different integers, {0, 1, … , S-1}:

0 ≤ si = INT[S(xi - xmin)/(xmax - xmin)] ≤ S-1.         (2)

Here, xmin and xmax denote the minimum and maximum values of xi, respectively, over
both the reference case and over the test cases. INT is a function that converts a decimal
number to the next lower integer. For xmin ≤ xi ≤ xmax, the inequality 0 ≤ si ≤ S-1 holds
trivially. We took si(xi = xmax)= S-1 in order to maintain exactly S distinct symbols and to
partition the phase space into Sd hypercubes or bins. We then discretized the distribution
function on the attractor, by counting the number of phase-space points occurring in each
bin. We denoted the population of the i-th bin of the distribution function, Pi, for the base
case, and Qi for a test case, respectively. For this initial work, we iteratively varied each
parameter (S, d, N, etc.)  with the others fixed, to obtain optimum sensitivity of the
measures to changes in EEG dynamics. A systematic method to determine optimal values
for these parameters is the subject of future work.

We used an embedding window, M1 = (d – 1)λ. Here, the first minimum in the
mutual information function, M1, is measured in timesteps. We obtained an integer value
for the reconstruction lag by setting λ = INT[0.5 + M1/(d-1)] ≥ 1, thus constraining the
largest value of dimensionality to d ≤ 2M1 + 1.

We compared the distribution function of a test state to the reference state, by
measuring the difference between Pi with Qi via the χ2 statistics and L1 distance:

χ2  = Σ (Pi - Qi)2/(Pi + Qi ), and        (3)
                                            i

L = Σ|Pi - Qi|.        (4)
                           i

The summations include all of the populated cells in the phase space. The sum in the
denominator of Eq. 3 is based on a test for equality of two multinomial distributions.
Proper application of these measures requires a rescaling so that the total population of
the test case distribution function is the same as the total population of the base case.

By connecting successive phase-space points as indicated by the dynamics, y(i)
→  y(i+1), we constructed a 2d-dimensional phase-space vector, Y(i)=[y(i), y(i+1)]. Thus,
we obtained a discrete representation of the process flow.8 This approach extends the
method to capture more dynamical information using pair-wise connectivity between
successive d-dimensional states.

We use base S arithmetic to assign an identifier j ≡ Ii for the i-th phase-space
state, using Ii = Σdm-1 si(m). The sum runs from m=1 to m=d, corresponding to successive
components of the d-dimensional phase-space vector. The symbol, si(m), denotes the m-
th component of the i-th phase-space vector. The numeric identifier for the sequel phase-
space point is k ≡ Ii+1. Then, we can define the measure of the dissimilarity between these
two connected phase-space states, as before, via the L1-distance and χ2  statistics:



χc
2 = Σ (Pjk – Qjk)2/(Pjk + Qjk ), and        (5)

                                                          jk

Lc = Σ |Pjk – Qjk|.        (6)
                                                        jk

Pjk and Qjk denote the distribution functions for the basecase and testcase, respectively, in
the connected phase space. The summations in both equations run over all of the
populated cells in the connected phase space. The subscript, c, denotes the connected
measures, which are stronger metrics than the non-connected versions, according to the
following inequalities9-10: χ2 ≤ L, χc

2 ≤ Lc, L ≤ Lc, and χ2 ≤ χc
2.

We tested the discriminating power of our measures on chaotic regimes of the
Lorenz system9 and of the Bondarenko model.10-11 The latter model mimics high-
dimensional EEG dynamics via a system of delay-differential equations. Over a broad
parameter range, the phase-space measures increased monotonically by more than four
orders of magnitude. Over this same range, traditional nonlinear measures were
indistinguishable from noise or varied erratically by a factor of two. These results gave us
confidence that the phase-space measures would be useful for noisy clinical EEG data.

4. EEG Analysis and Results

We converted one channel of analog EEG data on VHS tapes to 12-bit digital
form at a sampling rate of 512 Hz. We chose N=20480 data points for each cutset. This
choice balances better time discrimination (smaller N) against higher statistical power
(larger N). We used the first 400 seconds of data to construct ten non-overlapping 40-
second basecase cutsets. We compared each base case cutset to every test case cutset to
obtain average values for χ2 and  L (and a corresponding standard deviation of the mean).
We overlapped adjacent test case cutsets by 50% for smooth time-history trending. We
also removed muscular artifacts (e.g., eye blinks) with a zero-phase quadratic filter.9-10

We found that d=3 and S=34 were adequate for our EEG data. The value of M1
came from the first 400 seconds of (nonseizure) data. However, the disparate range and
variability of the conventional and phase-space measures were difficult to interpret. Thus,
we renormalized the nonlinear measures. For each nonlinear measure, V, we defined Vi

as the value of nonlinear measure for the i-th cutset. The variable, V, was in turn D, K,
M1, χ2, etc. We obtained the mean, V,  of Vi over ten non-overlapping cutsets (each with
N=20480) for the first 400 seconds (base case interval) of the dataset. The corresponding
sample standard deviation was denoted by σ. Then, the renormalized form was U(V) =
|Vi – V|/σ. For an indication of change, we used U > Uc = 4.265, corresponding to a false
positive probability of <10-5 in Gaussian random data. We required two or more
consecutive occurrences of a positive indication to avoid spurious false positives,
corresponding to a joint false positive probability of <10-10 in Gaussian data. We next
illustrate the use of these renormalized forms for measuring changes in scalp EEG.

Figure 1 shows results for one dataset. The first 300 seconds of data displays
modest variability in all of the measures, representing the dynamics of normal brain
activity. The clinical seizure occurs at 966-1035 seconds, as indicated by the vertical bars



at these times; all of the measures clearly show the seizure. Maxima and minima in the
raw EEG (Fig. 1a) provide no preseizure indications, nor does the correlation dimension
(Fig. 1b). Both Kolmogorov entropy (Fig. 1c) and mutual information (Fig. 1d) show
preseizure change, beginning at 750 seconds. Connected phase-space measures (Figs. 1e-
1f) have significant dissimilarity, beginning at 600 seconds. Measures of dissimilarity for
the non-connected phase-space become really large, beginning at 700 seconds.

Table 1 summarizes the forewarning times (T in seconds prior to the clinical
seizure) for each measure over  nine EEG datasets. A negative value of T corresponds to
an indication after onset of the seizure. Analysis of normal EEG shows no positive
indication of change. M1 provides the largest average forewarning, but gives no pre-
seizure indication in three datasets. Correlation dimension gives the least pre-seizure
warning, with no preseizure indication in one dataset. Kolmogorov entropy gives an
intermediate level of forewarning with no preseizure indication in one instance. We
denote the average time of preseizure indications as  T for each nonlinear measure. The
connected phase-space measures give more forewarning than the non-connected ones:
T(Lc) – T(L) = 144 seconds, and  T(χc

2) – T(χ2) = 131 seconds, with indications for all
datasets. We conclude that the phase-space measures are superior to the conventional
nonlinear measures as indicators of dissimilarity.

Table 1: Times (in seconds prior to seizure) at which condition change is detected
______________________________________________________________________________________________________

Dataset # D K M1 Lc L χc
2 χ2 best

______________________________________________________________________________________________________

109310 1155 1135 * 1155 -45 1115 -45 1115
109314 1110 1940 1700 1880 1880 1960 1960 1960
119230 371 491 451 911 911 911 911 911
119234 2060 2060 2120 2120 2120 2120 2120 2120
62723t -100 1380 1400 1720 1720 1720 1720 1720
69212 716 1496 996 736 736 736 736 1496
73305D -55 -55 * 785 785 785 785 785
c8492D -14 206 166 326 226 326 306 326
wm12sD * * * 521 521 521 521 521
______________________________________________________________________________________________________

Maximum time 2060 2060 2120 2120 2120 2120 2120
Minimum time -100 -55 166 326 226 326 306
Average time 655 1082 1139 1128 984 1133 1002
# false negatives  1 1 3 0 0 0 0
______________________________________________________________________________________________________

Entries denoted by an asterisk (*) show no positive indications of condition change.
For each dataset, bold entries denote the earliest time of dissimilarity indication.



5. Conclusions

Figure 1: Results for dataset #c8492D versus time: (a) maxima (emax) and minima (emin) in the raw EEG,
(b) change metric for correlation dimension, U(D), (c) change metric for Kolmogorov entropy, U(K), (d)
change metric for first minimum in mutual information function, U(M1), (e) change metric for connected
(solid) and non-connected (- -) L1, and (f) change metric for connected (solid) and non-connected (- -) χ2 .
The ordinate values of the change metric (U) are in units of standard deviations from the mean.
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5. Conclusions

These results have several new and important features. First, we use non-invasive
scalp EEG in contrast to previous studies12-13 that used data from subdural and depth
electrodes. Second, earlier effort obtained EEG from the epileptogenic area. We use only
channel 13 data in the bipolar montage (closest to the patients’ right eye), showing the
robustness of our method. Third, prior effort used invasive monitoring to avoid low-
frequency artifacts, which we remove from scalp data with a novel zero-phase quadratic
filter. Fourth, previous investigations used conventional nonlinear measures, which we
earlier found to provide no consistent preseizure trends.14 Instead, we focus on model-
independent phase-space measures of dissimilarity. By their definition, these indicators
better capture the differences between the process dynamics, avoiding cancellation effects
due to averaging over many orbits (e.g., correlation dimension and Kolmogorov entropy).
Our measures provide preseizure indications in all nine EEG datasets. In sharp contrast,
the traditional nonlinear measures provide inferior or no preseizure indications. Useful
epilepsy forewarning will require analysis of several seizures for each patient, and
detailed determination of detection criteria. Future work will evaluate: (i) false positives
and negatives in epileptic patients, (ii) false positives in normal patients, and (iii) optimal
reconstruction parameters, and (iv) the earliest indication of condition change.
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