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Abstract 

 
Nanoscale latching switches based on controllable 
single-electron transfer and trapping  may serve as a 
synaptic basis for extremely dense and fast self-evolving 
BiWAS (binary weight, analog signal) neural networks. 
We have designed and simulated two devices of this 
type, a “propagating” switch and a “branching” 
switch, as well as multi-entry switching nodes based on 
their combination. We have also carried out a 
preliminary study of two architectures of neural 
networks based on 2D arrays of the switching nodes: a 
“free-growing” network in which the shape of axonic 
and dendritic  trees may be very complex, and a 
“randomized distributed crossbar” network in which 
axons and dendrites are implemented as straight wire 
segments. The latter network scales much better, but the 
former one may be more adequate for input parts of 
very large scale networks. 

 
 

1  Introduction 
 

Hardware implementation of neural networks 
comparable in complexity with the cerebral cortex  
requires nanoscale synaptic devices. Indeed, in order to 
place a network with N = 1010 neurons with the average 
connectivity M = 104, on a 10×10 cm2 chip, the synapse 
should fit onto a 10×10 nm2 area. Such density may be 
achieved using single-electron devices which allow 
controllable transfer and trapping of single electrons in 
system of small conductors (“islands”) separated by 
tunnel barriers. 
 
Physics of single-electron devices [1] is based on the so-
called “Coulomb blockade” effect: If the size of an island 
and hence its capacitance C are so small that the 
electrostatic energy e2/2C of its charging by a single 
electron is well above the thermal fluctuation energy scale 
kBT, this charging may prevent (“block”) transfer of other 
electrons into this island and also alter electron transport 
in the adjacent islands.  
 
The enormous advantage of single-electron devices, in 
comparison with the mainstream, “CMOS” technology of 
electronic circuits, is the possibility of their scaling down 
to virtually single-atom size (islands smaller than 1 nm), 
and hence reaching unparalleled digital device densities 
up to 1014 cm-2. Another important feature of these 
devices is the virtual independence of  their operation on 

the parameters of used materials, giving in particular a 
strong hope for their implementation using molecular self-
assembly.  
 
On the other hand, digital single-electron devices have 
substantial drawbacks, including notably low 
transconductance and the infamous random background 
charge effect (considerable spread of single-electron 
device switching thresholds upon the effect of randomly 
located charged impurities). The latter effect may be 
overcome in single-electron memories [1-3], but makes it 
virtually impossible to use single-electron devices in usual 
logic circuits. However, neural networks with their high 
parallelism looks like a perfect application for single-
electronics.  
 
Earlier work on single-electron devices in the neural 
network context was focused on the implementation of 
neural cell bodies – see, e.g., Ref. 4. On the contrary, we 
believe that these (considerably less numerous) 
components may be left for the CMOS  technology, thus 
circumventing the problems of single-electron devices, 
which were mentioned above. On the other hand, these 
devices are virtually perfect for implementation of simple 
BiWAS (binary-weight, analog-signal) synapses. 

 
2  Single-electron Synapses 

 
Figure 1 shows the simplest single-electron latching 
switch which may serve as a  synaptic node bridging 
two nanowires. The device consists of three small 
islands connected by four tunnel junctions. Island 1, 
together with input and output wires, forms a single-
electron transistor [5-7]. Conductance of this device for 
small applied source-drain voltages may be very low 
(the “Coulomb blockade state”) unless the blockade is 
lifted by electric field applied by a special gate 
electrode [1]. In our case the role of the gate is played 
by another island (3) which also forms (together with 
island 2) another device, a single-electron trap [8].  
 
If the source-drain voltage V = VS -VD between the wires 
is low, the trap in equilibrium has no extra electrons and 
its total electric charge is zero. As a result, the transistor 
remains in the Coulomb blockade state, and input and 
output wires are essentially disconnected. If V is 
increased beyond a certain threshold Vinj (which should 
be lower than the Coulomb blockade threshold voltage 
Vt of the transistor), one electron is injected into the 
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trap. In this charge state the Coulomb blockade in the 
transistor is lifted, keeping the wires connected at any V. 
However, if the node activity (voltage V) is low for a 
long time, unavoidable thermal fluctuations eventually 
kick the trapped electron out of the trap and the 
transistor closes, disconnecting the wires.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The simplest single-electron latching switch 
which may be used as a “forwarding” BiWAS synapse.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Monte-Carlo simulated dc I-V curves of the 
forwarding node shown in Fig. 1. Qi are island 
background charges; C and R are, respectively, the 
capacitance and resistance of most tunnel junctions of 
the circuit. (The only exception is indicated on the 
inset.) The simulation was based on the “orthodox” 
theory of single-electron tunneling which is 
quantitatively correct for systems with islands of not 
very small size (≥ 1 nm).    

  
 

The results shown in Fig. 2 are typical for the latching 
switch with a perfect set of island background charges 
Qi. (They may be fixed by a proper adjustment of 
additional voltage Vb – see Fig. 1.) If the charges 
deviate from these values (e.g., due to randomly located 
charged impurities [1]), the Coulomb blockade of the 
transistor is not completely suppressed even in the 
“open” state of the node.   For massively parallel 

circuits like neural  networks, this imperfection should 
be, however, quite tolerable. 

 
Figure 3 shows a slightly more complex latching 

switch. An additional island 4 forms a “single-electron 
box” [9]. In contrast to the trap, the number of electrons 
in the box is a unique function of the applied voltage, in 
this particular case V. Namely, if V exceeds a certain 
value Vbox, an extra electron tunnels into island 4. Due 
to the Coulomb repulsion, this injection makes passage 
of an electron to trap 3 impossible. (Essentially, island 2 
now plays a role of an additional single-electron 
transistor connecting island 3 to the common drain.) As 
a result,  the transistor with island 1 remains closed for 
both very low and very high voltages, and opens only in 
an intermediate voltage range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: The “branching” latching switch. 
 
 

3  Free Growing Neural Network 
 

We have carried out preliminary studies of two 
interesting architectures of adaptive ("plastic") 
neuromorphic networks based on 2D square arrays of 
the single-electron switching nodes.  

 
In the first architecture, axonic and dendritic trees grow 
spontaneously on a 2D array of 8×8 nodes (Fig. 4a). 
Each of 8 output signals may be contributed by 3 
incoming wires: one along the output direction 
(“forwarding”) and two other input wires forming angles 
±45° with the outgoing wire. This is achieved using a 
composite switch (Fig. 4b) consisting of one forwarding 
latch (Fig. 1) and two branching latches (Fig. 3). 
Capacitive coupling of these devices ensures their 
mutual blocking so that only one input is actually 
connected to   each output. Thus the switching node as a 
whole (Fig. 4a), consisting of 8 composite latches, 
allows up to 8 input signals to be forwarded or branched 
without mutual interference. Due to the properties of the 
F and B circuits (Fig. 1 and 3), probability of each 
connection depends on the signal amplitude and hence 
on the previous length of the axon/dendrite. At short 
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distances from the signal source (neural cell body) these 
properties favor forwarding (straight “growth” of the 
wires carrying nonvanishing voltage, called active 
links), while at larger distances, branching becomes 
almost equally probable. 
      (a) 

 
 
 
 
 
 

 
 
 
 
 
 
 
      (b) 

 
Figure 4: (a) A 2D array network of 8×8 switching 
nodes for self-growing networks and (b)  a latching 
switch composed of elementary single-electron latches  
shown in Fig. 1 and 3. 
 
 
We have Monte-Carlo-modeled the initial evolution of 
self-growing networks formed under the effect of output 
signals of neural cell bodies which are randomly placed 
on two similar, overlapping 2D switching node arrays, 
one for dendrites and one for axons. (Parameters of 
dendritic switches were slightly different, providing 
more branching for dendrites than for axons.) Figure 5 
shows a typical picture of axonic (red) and dendritic 
(blue) trees growing from a neural cell body. 
  
If complemented by a special simple synapse circuit 
(essentially a double-directional diode) which mutually 
shortens axonic (positive)  and dendritic (negative) 
voltages in the node where an axon and a dendrite meet, 
this model grows in patterns (see, e.g., Fig. 6) which are 

strikingly similar to those observed in biological neuron 
networks.  
 
This behavior seems very promising, but unfortunately 
we have found that the free growing networks do not 
scale well with the circuit connectivity M (the average 
number of neural cells connected to a given cell). 
Specifically, if F is a minimum feature size available in 
a given fabrication technology, the average distance x 
between two neural cell bodies in this architecture is as 
high as  

 

     x ~ 25M 3/2F.       (1) 
 

Figure 5: A typical pattern of the initial growth of an 
axonic (red) and dendritic (blue) trees from a neural cell 
body (red dot), stimulated by its activity. All the plane is 
filled with a 2D array of the 8×8 switching nodes shown 
in Fig. 4a, but only activated (voltage carrying) links are 
shown. 

 
 

Simple calculation shows that even at F = 1 nm (this 
technology level allows room temperature operation of 
single-electron devices [1]), at the connectivity typical 
for the cerebral cortex (M ~ 104), density of the free 
growing networks can hardly exceed a few neurons per 
cm2, the level evidently too low to model brain-scale 
systems.  This is the price we pay for the fact that in this 
architecture a huge number of axonic and dendritic trees 
may lead to the same set of synaptic weights, i.e., 
eventually to the same network behavior. We still 
believe such networks, with much lower M,  may be 
useful in input signal processing sub-systems, e.g., 
artificial retinas, but for the core signal processing a less 
redundant architecture is necessary. 
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Figure 6: A typical pattern of the initial growth from several active, randomly located, neural cell bodies (red 
dots). As in Fig. 5, red lines are growing axons and blue lines are growing dendrites, while gray and green lines 
show “frozen” axons and dendrites, respectively. The “freeze” takes place when an axon and a dendrite meet and 
form a synapse (black dot). The total number of synapses formed between an axonic tree of one neuron and a 
dendritic tree of another neuron gives the corresponding synaptic weight.  (At this stage of modeling, neural cell 
signals were considered fixed, i.e., no actual signal dynamics was traced.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: “RandBar”. Each neural cell body (gray square) sends its output signal into 4 axonic lines (red) and 

receives signals from 4 dendritic lines. The lines are connected by simple single-electron switches (shown by the 
curly green arrows) whose structure is shown in Fig. 1 [10]. Each switch plays the role of a BiWAS synapse. The 
yellow square and dashed green lines are just guides for the eye, indicating the basic cells of the switching 
node/wiring array. 
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4 RandBar 
 

Much better scaling may be achieved in another, 
"randomized distributed crossbar" (RandBar) architecture 
(Fig. 7). As before, cell bodies are embedded randomly 
into a 2D array of single-electron latching switches, but 
now every switch plays the role of a BiWAS synapse. As 
a result, each cell is hard-wired to a limited subset of 
other cells, with the binary synaptic  weights controlling 
which of these connections are currently active. This 
network actively uses virtually the whole chip area; as a 
result, scaling improves dramatically: 
 
         x ~ 15 M1/2 F.         (2) 
 
For the example given above (M = 104, F = 1 nm), this 
scaling gives a density estimate almost as high as 108 
neurons per cm2, implying that brain-scale systems could 
be implemented on a chip area of the order of 100 cm2 – 
the size which the electronics industry plans to reach in 
just about 10 years [10]. 
 
Estimated speed scaling of this network is also very 
impressive. Time scale τ0 of signal propagation by one 
network layer is physically dominated by charging of 
dendrite wire capacitances through a relatively high 
resistance R >> RQ ~ h/e2 ~ 104 Ohms [1] of open single-
electron transistors. For M = 104 and F ~ 1 nm, simple 
estimates give τ0 ~ 0.1 ns. (This is a result of a small 
average length, about 1 micron, of interconnects in the 
quasi-local architecture of the network.) This speed is 6 to 
7 orders of magnitude (!) higher than that of cerebral 
cortex cells. 
 
 Preliminary estimates of another important factor, power 
dissipation (which imposes very strict restrictions on the 
performance of the traditional CMOS VLSI circuits), also 
give acceptable results: they show that the main 
contribution to the dissipation will be given by CMOS 
circuits used for cell bodies. For the F = 1 nm technology 
level, this power should be of the order of 100 W/cm2 – a 
little bit high, but still manageable.  
 
We have carried out a preliminary Monte-Carlo modeling 
of dynamics of modest (N up to 105, NM up to 106) 
RandBar fragments, at this stage ignoring the effect of 
signals on the state of synaptic latches. (For the 
simulations shown here , 50% of the latches, at random 
locations, have been connected). The dynamics depend 
essentially on the net neural cell gain G (including signal 
attenuation in synapses). If the gain is less than some 
critical value Gt (depending on the average connectivity 
M), the network is “dead”: signals do not change in time, 
though they may differ from wire to wire because of 
random position of open and closed synapses. If G is 
increased beyond Gt (≈ 0.5 for the case illustrated in Fig. 
8) the network starts generating random oscillatory 
signals. Close to Gt these signals are typically almost 
sinusoidal, with a period of  a few RC – see red lines in 

Fig. 8. At somewhat larger G, several quasi-independent 
oscillators of this type may drift over the network, at each 
particular instant being  localized to a region with a size 
of the order of M. Finally, large gain (see black lines in 
Fig. 8) leads to intensive, essentially chaotic oscillations 
of almost the entire network. 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 8: (a) Typical oscillograms of dendrite signals 
and (b) and their power spectrum, for a rectangular 
RandBar fragment with N = 4,800 neural cell bodies 
embedded randomly into an array of 100×800 switching 
node plaquettes. Each plaquette (like one shaded yellow 
in Fig. 7) consists of 8 elementary synapses similar to 
those shown in Fig. 1, so that the average cell 
connectivity M = 80,000×8/4,800 ≈ 133. Cell bodies are 
modeled by perceptrons, with differential inputs (see the 
gray shaded rectangles in Fig. 7) and the usual sigmoid 
saturation function. RC is the time constant of the 
dendrite wire recharging through a single connected 
synapse, G is the net gain of one network level, for a 
signal below the saturation threshold. Signal amplitude 
in (a) is normalized to the perceptron saturation level. 
Power spectrum in (b) is averaged over the long side of 
the RandBar fragment (800 outputs) and is normalized 
to the value which would be provided by 800 signal 
oscillating with the same frequency and maximum 
amplitude. (Due to averaging over 300 time points, in 
these units a set of random, unit-amplitude outputs 
would give a flat power spectrum level of 1/300.) 
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These properties of the RandBar are qualitatively 
understandable, but so far defy our attempts at their 
quantitative analysis. The main reason of this is that due 
to the sign symmetry of the perceptron inputs (Fig. 7) 
this structure (despite a long range of cell interaction) 
lacks a static order parameter even at large G.  Statistics 
of random systems of this type can very rarely be traced 
analytically [11]. We believe, however, that this 
richness of behavior is promising rather than prohibiting 
from the point of view of information processing [12, 
13]. Our plans are to carry out extensive, large-scale 
Monte-Carlo simulations of RandBar networks to 
confirm this assumption. 
 

5 Discussion 
 

Single-electron devices may provide the first plausible 
opportunity for the implementation of room-temperature 
systems comparable in complexity with the cerebral 
cortex, on single chips, using 1-nm-scale 
nanofabrication technologies which are presently under 
active development in several laboratories. This is 
especially true concerning the RandBar architecture 
which apparently allows to implement the maximum 
possible density of synapses per unit area.  
 
The speed of information propagation in such systems 
may be some 7 orders of magnitude higher than in the 
biological neuron systems. If this scaling may be 
sustained through the whole hierarchy of neural activity 
including learning and self-evolution, it will imply that 
one iteration of evolution of these networks (apparently, 
functionally equivalent to one biological generation, of 
the order of 10 years for mammals) may be achieved in 
just a few seconds.   

 
It is also instructive to compare the speed of such 
hardware implementation of self-evolving neural  
networks with that of their software implementation on 
general-purpose computers. In a hardware-implemented 
system with N = 1010, M = 104, approximately MN = 1014 
synapse state updates could be made in ~ 0.1 ns, while the 
most powerful existing parallel supercomputers, with the 
peak performance of a few teraflops, would spend at least 
1014×100ns = 107s ≈ 100 days for such an update. This 
comparison gives an idea of the possible information 
processing power of the “ultra-parallel” self-evolving 
integrated circuits. 
 
An evident drawback of the RandBar is the binary 
character of the synaptic weights wij = {0,1}. We hope 
that effects of this discreteness will be partly 
compensated by the analog nature of dendritic and 
axonic signals and randomness of each connection 
(which is due to both the random location of cell bodies 
and the background charge randomness). Our hopes are 
that our future detailed simulation of such networks will 
prove that this limitation still allows effective globally 
supervised learning. (Such learning may be provided  

changing not only the input signals, but also the 
common bias voltage and hence latching thresholds of  
the single-electron synapses, in accordance with the 
observed network behavior.) 
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