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Abstract – 2D square arrays of single-electron latching 

switches may serve as a synaptic basis for extremely 

dense self-evolving BiWAS (binary weight, analog 

signal) neuromorphic networks. Two promising 

architectures of such networks have been preliminary 

studied: a “free-growing” network in which the shape 

of axonic and dendritic  trees may be very complex, and 

a “randomized distributed crossbar” network in which 

axons and dendrites are implemented as straight wire 

segments. The latter network scales much better, but 

the former one may be more adequate for input parts of 

bio-scale networks..... 
 

1 Introduction 
 

Future ULSI implementation of bio-scale neural 
networks requires nanoscale synaptic devices. 
Indeed, in order to place a network with N = 1010 
neurons with connectivity M = 104, on a 10×10 cm2 
chip, the synapse should fit onto a 10×10 nm2 area. 
Such density may be achieved using single-electron 
devices [1]. Earlier work on such devices in the 
neural network context [2] was focused on the 
implementation of neural cell bodies. On the 
contrary, we believe that these (much less numerous) 
components may be left for the mainstream CMOS  
technology, thus circumventing such problems of 
single-electron devices as low transconductance and 
random background charge effects [1]. 

2 Synapse 

We have designed several single-electron devices 
which may serve as a BiWAS (binary-weight, analog-
signal) synaptic nodes bridging two nanowires. The 
simplest of these devices (Fig. 1) consists of three 
small conducting islands. Island 1, together with 
input and output wires, forms a single-electron 
transistor [3-5]. Islands 2 and 3 form a single-
electron trap [6], with island 3 capacitively coupled 
to the transistor island. If voltage V = VS -VD between 
the wires is low, the trap  in equilibrium has no 
trapped electrons (n = 0). As a result,  the transistor 
remains in the Coulomb blockade state, and input and 
output wires are essentially disconnected.  

If V is increased beyond a certain threshold Vinj 
(which should be lower than the Coulomb blockade 
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threshold voltage Vt of the transistor), one electron is 
injected into the trap (n → 1). In this charge state the 
Coulomb blockade in the transistor is suppressed, 
keeping the wires connected at any V. However, if 
the node activity (voltage V) is low for a long time, 
the electron tunnels out of the trap (n → 0) and the 
transistor closes, disconnecting the wires.  

 
 
 
 
 
 
 
 
 
 
 
Figure 1: A single-electron latching switch playing 

the role of a binary weight synapse.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Monte-Carlo simulated dc I-V curves of 

the latching switch shown in Fig. 1. Qi are island 
background charges; C and R are, respectively, the 
capacitance and resistance of most tunnel junctions 
of the circuit. (The only exception is indicated on the 
inset.)  

  
The results shown in Fig. 2 are typical for the 

latching switch with a perfect set of island 
background charges Qi. (They may be fixed by gating 
through small capacitances [1] not shown in Fig. 1.) 
If the charges deviate from these values (say due to 
randomly located charged impurities [1]), the 
Coulomb blockade of the transistor is not completely 
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suppressed even in the “open” state of the node (n = 
1).   For massively parallel circuits like neuromorphic 
networks, this imperfection should be, however, quite 
tolerable. 

3 Free Growing Network 

We have carried out preliminary studies of two 
promising architectures of adaptive ("plastic") 
neuromorphic networks based on 2D square arrays of 
the single-electron switches.  

In the first architecture, axonic and dendritic trees 
grow spontaneously on the array of 8×8 switching 
nodes (Fig. 3), each consisting of 24 binary switches, 
some of them similar to that shown in Fig. 1 and 
some slightly more complex. These switches may 
connect each input wire to its straight continuation 
and (with a lower probability) to two other output 
wires forming angles ±45° with the incoming wire. 
Probability of each connection depends on the signal 
amplitude and hence on the previous length of the 
axon. Figure 4 shows a typical picture of axonic (red) 
and dendritic (blue) trees growing from a neural cell 
body.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: An 8×8 switching node for self-growing 

networks. Each of 8 input wires may be connected to 
one output line via one “propagating” switch (black 
point, Fig. 1) and two more output wires via 
“branching” switches (overlapped open points). 

 
If complemented by a special simple circuit 

(essentially a double-directional diode) which 
mutually grounds axonic (positive)  and dendritic 
(negative) voltages in the node where an axon and a 
dendrite meet, this model forms patterns (see, e.g., 
Fig. 5) which are strikingly similar to those observed 
in biological neural networks. 

This behavior seems very promising, but 
unfortunately we have found that the free growing 
networks do not scale well with the circuit 
connectivity M (the average number of neural cells 

connected to a given cell). Specifically, if F is a 
minimum feature size available in a given fabrication 
technology, the average distance x between two 
neural cell bodies is as high as  

 
     x ~ 25M 3/2F.       (1) 
 
Simple estimates show that even at F = 1 nm (this 

technology level allows room temperature operation 
of single-electron devices [1]), at the connectivity 
typical for the cerebral cortex (M ~ 104), density of 
the free growing networks can hardly exceed a few 
neurons per cm2, the level evidently too low to model 
brain-scale systems.  This is the price we pay for the 
fact that a huge number of axonic and dendritic trees 
may lead to the same set of synaptic weights, i.e., to 
virtually the same network behavior. We still believe 
such networks, with much lower M,  may be useful in 
input signal processing sub-systems, e.g., artificial 
retinas.  

Figure 4: A typical pattern of the initial growth of 
an axonic (red) and dendritic (blue) trees from a 
neural cell body (red dot), stimulated by its activity. 
All the plane is filled with a 2D array of the nodes 
shown in Fig. 3, but only activated (voltage carrying) 
links are shown. 

 

4 RandBar 

Much better scaling may be achieved in another, 
"randomized distributed crossbar" (RandBar) 
architecture shown in Fig. 6. In this network, each 
cell is hard-wired to a limited subset of other cells, 
with the binary synaptic  weights controlling which of 
these connections are currently active. This network 
actively uses virtually the whole chip area.  
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Figure 5: A typical network, free growing from several active, randomly located, neural cell bodies (red 

dots). As in Fig. 4, red lines are growing axons and blue lines are growing dendrites, while gray and green 
lines show “frozen” axons and dendrites, respectively. The “freeze” takes place when an axon and a dendrite 
meet and form a synapse (black dot). The total number of synapses formed between an axonic tree of one 
neuron and a dendritic tree of another neuron gives the corresponding synaptic weight.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: “RandBar”. Each neural cell body (gray) sends its output signal into 4 axonic lines (red) and 

receives signals from 4 dendritic lines. The lines are connected by single-electron switches (shown by the 
curly green arrows), similar to one shown in Fig. 1. The yellow square indicates the basic cell of the switching 
node/wiring structure. 
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     As a result, scaling of this network is much more 
favorable:  
       x ~ 15 M1/2 F.         (2) 
 
For the example given above (M = 104, F = 1 nm), this 
scaling gives a density estimate almost as high as 108 
neurons per cm2, implying that brain-scale systems 
could be implemented on the chip area of the order of 
100 cm2 – the size which the electronics industry plans 
to reach in just about 10 years [7]. 
    Estimated speed scaling of this network is also very 
impressive. Estimates show that the characteristic time 
of whole network “settling” (apparently, equivalent to 
one learning cycle, of the order of a few seconds for 
biological neural networks) should be as short as 
  τs ~ τ0 N/M,             (3) 
 
where τ0 is the time of information propagation by one 
network layer, physically dominated by charging of 
dendrite wire capacitances through a relatively high 
resistance R >> RQ ~ h/e2 ~ 104 Ohms [1] of opened 
single-electron transistors. For M = 104 and F ~ 1 nm, 
simple estimates give τ0 ~ 0.1 ns. (This high speed is a 
result of absence of very long interconnects in the 
quasi-local architecture of the network.) As a result, 
even for a very large network (N = 1010) we get τs as 
small as 10-5 s, about 6 orders of magnitude faster than 
the biological evolution. In order to comprehend the 
significance of this estimate, it implies that one 
evolution iteration (equivalent to one biological 
generation, of the order of 10 years for mammals) may 
be achieved in just a few seconds! 
   It is also instructive to compare the speed of this 
“hardware” implementation of self-evolving 
neuromorphic networks with that of their “software” 
implementation on general-purpose computers (the 
presently dominating approach to neural networks). 
One τs corresponds to approximately N2, i.e. to about 
1020 updates for the parameters quoted above. This 
means that the most powerful existing parallel 
supercomputer, with the peak performance of a few 
teraflops, would spend at least 100 days for just one 
settling, and (impractical) 108 years for just one 
evolution cycle. This comparison gives a spectacular 
example of the possible information processing power 
of the “ultra-parallel” self-evolving integrated circuits. 
   Preliminary estimates of another factor, power 
dissipation (which imposes very strict restrictions on 
the performance of the traditional CMOS VLSI circuits 
[7]), also give acceptable results: they show that the 
main contribution to the dissipation will be given by 
CMOS circuits used for cell bodies. For the F = 1 nm 
technology level, this power should be of the order of 
100 W/cm2 – a little bit high to be pleasant, but quite 
manageable.  

   A possible drawback of the network architecture 
shown in Fig. 6 is the binary character of the synaptic 
weights wij = {0,1}. We hope that effects of this 
discreteness  will be partly compensated by the 
randomness of each connection (which is due to both 
the random location of cell bodies and the 
background charge randomness). However, only 
detailed simulation of such networks may show 
whether this limitation imposes undesirable 
restrictions on unsupervised learning.   

 5 Conclusions 

We believe that room-temperature bio-scale 
systems may be implemented on single chips with 1-
nm-scale nanofabrication technologies (presently 
under active development in several laboratories). 
Speed scaling of these network is also very 
impressive: they should process information and self-
evolve about 6 orders of magnitude faster than 
biological systems.  

At the meeting, we intend to present detailed results 
of synaptic node modeling, and of simulated behavior 
of reasonably large network fragments (with up to 
106 synapses), both in the autonomous mode and 
under globally supervised learning. 
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