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The authors present a model-independent approach to quantify changes in the dynam-
ics underlying nonlinear time-serial data. From time-windowed datasets, the authors
construct discrete distribution functions on the phase space. Condition change between
base case and test case distribution functions is assessed by dissimilarity measures via
L1 distance andx2 statistic. The discriminating power of these measures is first tested
on noiseless data from the Lorenz and Bondarenko models, and is then applied to
detecting dynamic change in multichannel clinical scalp EEG data. The authors
compare the dissimilarity measures with the traditional nonlinear measures used in the
analysis of chaotic systems. They also assess the potential usefulness of the new
measures for robust, accurate, and timely forewarning of epileptic events.Key Words:
Nonlinear measures—Event forewarning—Scalp EEG—Artifact filter.

Physiologic systems in either normal or pathologic
conditions display a very rich variety of dynamic behav-
iors. These behaviors manifest themselves in signals that
can be interpreted at various levels; namely, clinical,
physiologic, chemical, physical, and so forth. During the
last two decades, since the advent of chaotic dynamics on
the scientific stage, we have witnessed a strong, reener-
gized interest in casting and interpreting physiologic data
within a dynamic systems framework. Such a dynamic
approach is motivated by several features that are shared
by physiologic and complex systems; namely, multiple
time scales, quasiperiodicity, chaos, and self-organiza-
tion. Typically, complex systems (1) comprise many

components, (2) have hierarchical structure, (3) are driven
by various competing forces, and (4) interact strongly with
noisy and/or nonstationary environments. It is therefore
reasonable to assume that, under certain circumstances, one
can analyze and interpret both physical and physiologic
time series within the same framework, and that this ap-
proach could complement traditional medical diagnostics,
with more precisely quantified assessments.

Quantitative analysis of physiologic time series has
been a difficult and frustrating problem. The most im-
portant issues include the following:

1. The lack of proper (physical) modeling for physi-
ologic phenomena. As a result, signals have to be
considered as generated by a black box with an
internal mechanism that is either poorly understood
or not understood at all.

2. Signals are usually nonstationary. In other words,
statistical properties of the signal may change dra-
matically over the observation period. Usually this
change is not knowna priori and is not explicitly
advertised.

3. Usually, physiologic time series are nonlinear, re-
vealing the nonlinear structure of various organ
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dynamics and their complex, intricate interconnec-
tion, rich in feedback and hysteresis.

4. Physiologic systems rarely function at steady state.
On the contrary, living processes typically occur
far from equilibrium, and use continuous feedback
and control to adjust to changing conditions.

One of the most important problems encountered in
nonlinear time-series analysis is the appropriate charac-
terization of features and events in complex systems’
dynamics. Often these features are either described by
several different quantities or do not have a precise
definition at all. The former category includes (content
of) information, (relative) entropy, and synchrony. Ex-
amples of the latter group are coherence, patterns, and
complexity. These features may have various origins,
such as nonstationarity, nonlinearity, nonequilibrium,
and intertwining of length and time scales. The presence
of any one of these factors frequently introduces erratic
fluctuations, patchiness, lack of obvious structure, or
other irregularities. Previously, these irregularities have
been neglected as noise without much structure and
meaning. However, recent advances in chaotic dynamics
have facilitated the interpretation of intermediate and
small-scale details asbona fidestructure, with important
information about the underlying dynamics. Analysis of
this structure enables a deeper understanding of basic
dynamic features of vital functions and organs (e.g.,
heart, brain, lungs), and results in more efficient assess-
ment, prediction, prevention, control, and treatment of
their malfunctions or dysfunctions.

We present a recently proposed approach for detecting
dynamic change in nonlinear time series collected from
scalp EEG to forewarn of impending epileptic events.
We emphasize that this work isnot a clinical analysis,
but it is intended as a description and illustration of the
method and its potential for event forewarning. We note
that the forewarning problem is related but different from
the detection of event onset (Le van Quyen et al., 1999;
Osorio et al.,1998; Qu and Gotman, 1997) and event
mitigation by chaos anticontrol (Schiff et al., 1994).

Epilepsy afflicts approximately 3 million people in the
United States alone. Epilepsy can be treated effectively
in many instances, and many patients are indeed under
constant medication. However, constant medication fre-
quently has severe side effects. Moreover, between 10%
and 30% of the cases cannot be controlled by medication.
In addition, some extreme events are accompanied by
heart failure or breathing interruption that require imme-
diate medical intervention. On the other hand, most
events are not life threatening or even serious medical
emergencies, but they represent an unpredictable source

of social nuisance, disruption, and embarrassment. The
possibility of robustly detecting change in EEG signals
would provide quantitative means for timely clinical
forewarning of impending epileptic events and would
mitigate the effects of an epileptic event. Then, the
patient can be forewarned to take timely preventive steps
such as interrupting hazardous activities and lying down
in a quiet place, taking medicine, requesting emergency
responders, or contacting the physician. Consequently, a
robust, reliable, and unobtrusive forewarning system
would provide a new treatment paradigm whereby pa-
tients would be constantly monitored rather than contin-
uously medicated. For outpatient and ambulatory appli-
cations, such a system should rely onscalpEEG alone.
Although several analysis, forewarning, and/or predic-
tion methods have been proposed and applied with var-
ious degree of success tosubduralEEG signals,scalp
EEG has resisted ready analysis and interpretation be-
cause of the attenuation of the meaningful signal through
tissue and the high noise contamination (eye blinks,
muscular tremor, involuntary movements, etc.). To de-
tect meaningful signals through a high level of noise and
artifacts, more sensitive and discriminating measures are
required.

We address the forewarning problem within a purely
pragmatic approach geared at designing, testing, and
implementing such measures. We base this approach on
a set of nested assumptions that we retain or discard by
(1) Occam’s razor (i.e., start with a simple explanation
before resorting to a complicated one), (2) consideration
of falsifiable hypotheses only, and (3) acceptance of
operationally realizable tests only. In a more or less
decreasing order of generality, the assumptions underly-
ing our approach are as follows:

1. In certain respects and under a sufficiently broad
spectrum of circumstances, which includes preic-
tal, ictal, postictal, and interictal stages, the brain
behaves as a finite, dimensional, nonlinear, pos-
sibly chaotic, dynamic system. This assumption
underlies all efforts of modeling the brain by a
system of coupled nonlinear (difference, ordinary
differential, partial differential, and/or delay) evo-
lution equations. In the difference or ordinary
differential models, the assumption is explicit. In
the other models, which are infinite dimensional,
the assumption is implicit in some asymptotic
sense. Indeed, such systems are infinite dimen-
sional, but the relevant dynamics occur on a
bounded, finite dimensional region of the phase
space (PS), calledattractor. To date, the valida-
tion of brain dynamics models has been attempted

224 EPILEPTIC EVENT FOREWARNING FROM SCALP EEG

J Clin Neurophysiol, Vol. 18, No. 3, 2001



only a posteriori, if at all. Medical and scientific
literature provides evidence both for (Babloyantz
and Destexhe, 1986; Elbert et al., 1994; Lerner,
1996; Pezard et al., 1994, 1996) and against
(Frank et al., 1990; Gribkov and Gribkova, 2000;
Ivanov et al., 1996; Jeong et al., 1999; Pradhan
and Sadasivan, 1997) the description of the brain
as a low-dimensional dynamic system. In our
opinion, even the successful validation ofone
model would not be able—at this stage—to settle
conclusively the deep and difficult questions
about the nature of the brain dynamics or its
accurate description. Moreover, under assumption
1, we do not attempt to answer questions about
nonstationarity or nonequilibrium. Indeed, statis-
tical tests for stationarity produce a binary result;
namely, they indicate whether a change occurred,
but provide no information about the extent of
departure from one state to another. Stationarity
tests also have limited value for inherently non-
stationary processes that undergo frequent or con-
tinual changes in dynamics (e.g., physiologic data,
like EEG). For such nonstationary processes, a
measure of dissimilarity that quantifies the “dis-
tance” between attractors turns out to be more
useful (Moeckel and Murray, 1997; Schreiber
1997, 1999).

2. Time-serial EEG data captures the main features
of nonlinear brain dynamics. Recent studies show
that different observables do not capture the same
amount and/or quality of information (Letellier et
al., 1998). Obviously, this feature has momentous
consequences for EEG analysis.

3. The first two assumptions are easy to understand
and are well documented in the literature. They
warrant theuse of methods and measures for
nonlinear dynamics in EEG analysis. Therefore,
global aspects of brain dynamics can be adeptly
captured, characterized, and discriminated by
nonlinear descriptors such as Lyapunov expo-
nents, Kolmogorov entropy, correlation dimen-
sion, and so forth(Elbert et al., 1994). Straight-
forward methods exist (Abarbanel, 1996; Cover et
al., 1997; Eckmann and Ruelle, 1985) for discrim-
inating between regular and chaotic motion, or for
detecting the transition between these regimes.
However, distinguishing different chaotic regimes
can be very difficult, especially when data are
limited and noisy.

4. PS parameters can be chosen adequately for ep-
ilepsy forewarning. In addition to relying implic-
itly on the validity of assumptions 1 through 3,

this assumption places constraints on the length
and quality of the datasets.

5. No notable correlation exists between the base
case and the event, and thus no time relationship
exists between the physiologic state of the base
case and the event. This assumption simply im-
plies that the characteristic time of the underlying
brain dynamics is much shorter than the time
interval between the “normal” (base case) regime
and the onset of the abnormal behavior. We see
later the effect of violating this assumption on
model data.

6. A fixed threshold value for all the datasets is
sufficient for robust and reliable forewarning. On
the one hand, the threshold value is easy to un-
derstand and modify operationally, but it is very
difficult to justify by general principles because
the very notion of threshold is “in the eye of the
beholder.” Conversely, the results of the analysis
depend heavily on the threshold value. Continuing
clinical input and adjustment is necessary for
successful practical implementation.

7. Forewarning of an event is indicated by several
successive occurrences above threshold within the
clinically useful forewarning window in at least
one channel. The same caveats apply to this
assumption as in assumption 6. Here we choose
the number of crossings by striking a balance
between timeliness and accuracy of forewarning.
Within the scope of this study, the judiciousness
of this balance is evaluateda posteriori.

8. Several simultaneous indications from the four
dissimilarity measures give a reliable forewarn-
ing. We find that the rate of false positives is
minimal by requiring change indications in all
dissimilarity measures.

9. For the same patient, the same EEG channels
consistently provide forewarning for one (or per-
haps any) type of epilepsy.

10. Ideally, normal EEG data give no false positives.

We tested systematically the validity of the assumptions
4 through 10, including various clinical checks in the
algorithm development. In particular, we tested these
hypotheses one by one, starting with the simplest ones
via appropriate analysis of the data, while keeping the
others unchanged. If an assumption was found to be
false, it was rejected and replaced by a more appropriate
assumption. We tested assumption 10 by applying the
algorithm to both epileptic and normal (nonepileptic)
EEG, as explained in Application to Scalp EEG Data.
Elimination of any false positives may involve adjust-
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ment of the threshold, which is one of the arbitrary
parameters of our analysis. To test assumption 9 we used
41 “homogeneous” datasets for one type of epilepsy
(temporal lobe [TL]) with lengths varying between 2
hours and 8 hours. This analysis determined which chan-
nels consistently give the best forewarning indications
for multiple datasets from the same patient. Indeed,
demonstration of consistent forewarning (or lack thereof
in normal EEG) is sufficient to satisfy these criteria.
Tests to date have shown that assumption 5 is invalid,
because different base case periods from the same data-
set give different forewarning indications in various
channels. Resolution will require more analysis and un-
derstanding, perhaps involving dissimilarity comparisons
of interchannel PS distribution functions (DFs) to mea-
sure neural synchrony. This analysis is necessary to
clarify completely assumption 9, as well. A conclusive
test of assumption 4 requires significant amounts of
standard length data of verified quality forall typesof
epilepsy, together with data from healthy people. The
results of such an analysis would allow a test of more
“universal” values for the parameters under assumptions
5 through 10.

The following section discusses nonlinear measures
for time-series analysis with special emphasis on the
dissimilarity measures. The next section presents the
results of our analysis first on model data and then on
scalp EEG data. The last section concludes the review
with a discussion of our method in comparison with
other approaches.

METHODS

Nonlinear Time-Series Analysis

Nonlinear time series analysis begins with the collec-
tion of a process-indicative scalar signal,x, from a
dynamic system with dimensionality, structure, parame-
ters, and regime that are usually unknown. This signal is
sampled at equal time intervals,t, starting at the initial
time, t0, and yields a sequence ofN points,xi 5 x(t0 1
it). PS reconstruction (Eckmann and Ruelle, 1985) uses
d-dimensional time-delay vectors,y(i) 5 [xi, xi1l, . . .,
xi1(d21)l], for a system withd active variables and time
lag l. The choice of lag and embedding dimension,d,
determines how well the PS reconstruction unfolds the
underlying dynamics from a finite amount of noisy data.
Takens (1981) found that, for ad-dimensional system, 2d
1 1 dimensions generally results in a smooth, noninter-
secting reconstruction. Sauer et al. (1991) showed that,
usingideal data(i.e., no noise and infinite precision), the
first integer greater than the correlation dimension is

often sufficient to reconstruct the system dynamics. This
result has been confirmed by computing the embedding
dimension via the false nearest-neighbors method (Abar-
banel and Kennel, 1993; Abarbanel et al., 1993; Cao,
1997). However, too high an embedding dimension
could result in overfitting forreal datawith finite length
and noise. We further note that different observables of a
system contain unequal amounts of dynamic information
(Letellier et al., 1998), implying that PS reconstruction
could be easier from one variable, but more difficult or
even next to impossible from another. As indicated in the
discussion of assumptions 1 through 10, our analysis
seeks to balance these caveats within the constraints
imposed by the finite-length noisy data.

Various nonlinear measures have been defined to
characterize process dynamics using PS reconstruction
(Kantz and Schreiber, 1997; Rezek and Roberts, 1998).
We choose three of these nonlinear measures, against
which we compare the dissimilarity indicators. In partic-
ular, we use (1) the first minimum in the mutual infor-
mation function (MIF) as a measure of decorrelation
time, (2) the correlation dimension as a measure of
dynamic complexity, and (3) Kolmogorov entropy as a
measure of predictability. For your convenience, we
briefly describe these three measures:

First, the mutual information function (MIF) is a
nonlinear version of the (linear) autocorrelation and
cross-correlation functions, and was developed originally
by Shannon and Weaver (1949), with subsequent appli-
cation to time-series analysis by Fraser and Swinney
(1986). The MIF measures the average information (in
bits) that can be inferred from one measurement about a
subsequent measurement and is a function of the time
delay between the measurements. Univariate MIF mea-
sures predictability within the same data stream at dif-
ferent times. Bivariate MIF measures predictability of
one data channel, based on measurements in a second
signal at different times. For the current analysis, we use
the first minimum in the univariate MIF,M1, to indicate
the average time lag that makesxi independent ofxj. The
MIF, I(q,r), and system entropy,H, are defined by

I(q, r) 5 I(r, q) 5 H(q) 1 H(r) 2 H(r, q), (1)

H(q) 5 2(
i

P(qi)log[P(qi)], (2)

H(q, r) 5 2(
i,j

P(qi, rj)log[P(qi, rj)]. (3)

For a window ofw points, we denote theQ set of data
measurements byq1, q2 . . ., qw, with associated occur-
rence probabilitiesP(q1), P(q2), . . ., P(qw). R denotes a
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second set of data measurements,r1, r2, . . ., rw, with a
time delay relative to theqi values, having associated
occurrence probabilitiesP(r1), P(r2), . . ., P(rw). The
function P(qi, rj) denotes the joint probability of both
states occurring simultaneously.H andI are expressed in
units of bits if the logarithm is taken in base two.

Second, the maximum-likelihood correlation dimen-
sion, D, is defined by (Schouten et al., 1994a; Takens,
1984)

D 5 {( 21/M)(
ij

ln[(dij /d0 2 dn/d0)/(1 2 dn/d0)]}
21, (4)

whereM is the number of randomly sampled point pairs
anddij is the maximum-norm distance between the (ran-
domly chosen)i–j point pairs, as defined in Eq. 6. The
distance (scale length)dn is associated with noise as
measured from the time serial data. Note that the dis-
tances are normalized with respect to a nominal scale
length d0, which is chosen as a balance between sensi-
tivity to local dynamics (typically atd0 # 5a) and
avoidance of excessive noise (typically atd0 $ a). Here,
the symbola denotes the absolute average deviation as a
robust indicator of variability (Schouten et al., 1994a) in
the time serial data

a5 (1/w)(
i51

w

uxi 2 xI u, (5)

wherex is the mean ofxi over the window ofw points.
The distancesdij are defined by

dij 5 max
0#k#m21

uxi1k 2 xj1ku, (6)

wherem is the average number of points per cycle.
Third, Kolmogorov entropy,K, measures the rate of

information loss per unit time, or (alternatively) the
degree of predictability. A positive, finite entropy is
generally considered a clear demonstration that the time
series and its underlying dynamics are chaotic. A very
large entropy indicates a stochastic (nondeterministic)
and therefore totally unpredictable phenomenon. The
entropy is estimated from the average divergence time
for pairs of initially close orbits. More precisely, the
entropy is obtained from the average time for two points
on an attractor to go from an initial separation (d , d0)
to a separation of more than a specific distance (d . d0).
The maximum-likelihood entropy is calculated from the
method by Schouten et al. (1994b):

K 5 2fslog(12 1/bI), (7)

bI 5 (1/M)(
i51

M

bi, (8)

with bi as the number of time steps for two points,
initially within d , d0, to diverge tod . d0. The symbol
fs denotes the data sampling rate.

There are several problems associated with the use of
these measures for capturing and/or quantifying change
in the dynamic regimes. The most serious is that these
nonlinear measures are expressed as a sum or integral
over (a region of) the PS, which averages all dynamic
details into a single number. Thus, two very different
dynamic regimes may lead to very close or even to equal
measures. The situation is even murkier for noisy dy-
namics, in which case reliable determination of the
nonlinear measures is next to impossible. The second
difficulty is related to the fact that entropy and correla-
tion dimension are defined in the limit of zero scale
length. However, all real data have noise, and even
noiseless model data are limited by the finite precision of
computer arithmetic. Thus, we choose a finite scale
length that is slightly larger than the noise (d0 5 2a), at
which to report the values ofK andD, corresponding to
finite-scale dynamic structure. Consequently, the calcu-
lated values ofK and D have smaller values than ex-
pected for the zero-scale-length limit (d0 3 0) and
cannot capture dynamic complexity at length scales
smaller thand0. A third difficulty arises from the defi-
nition of these nonlinear measures as functionals defined
on the DFs. Some of these functionals do not satisfy all
the mathematic properties of a distance. In particular, for
some of them symmetry and the triangle inequality may
be violated (Quin Quiroga et al., 2000). Therefore, these
measures cannot define a metric in the mathematic sense.
They may indicate change, although only in a sense that
has to be made precise for each situation.

Such limitations have led several authors to express
serious doubts about the unqualified “use by transposi-
tion” of the traditional nonlinear measures for EEG data
or for biologic signals in general. In an attempt to
improve the discrimination power, Thomasson et al.
(2001) has recently proposed the “recurrence quantifica-
tion” approach that does not require assumptions about
stationarity, length, or noise. Their new measure quanti-
fies the recurrence of sets of points of various lengths
that “almost repeat themselves” during the dynamics. It
can be viewed somewhat as a generalization of the
Poincaré section concept and is designed to detect and
characterize “real phenomena” present in the EEG sig-
nal. Since we do not attempt to infer what “real phenom-
ena” are, our approach has a much more modest goal;
namely, to detect dynamic change from time series,
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independent ofspecificassumptions about the underly-
ing dynamics. As we have seen earlier,generalassump-
tions are necessary, but—at this stage of the develop-
ment of the field—we feel that they should be retained or
eliminated on a minimalist and pragmatic basis alone.

Definition of the New Dissimilarity Measures

The traditional nonlinear measures described in the
previous section characterize global features of the dy-
namics and distinguish sufficiently clearly between reg-
ular and chaotic dynamics. However, they do not reveal
slight dissimilarities between dynamic states. The same
is true for other global indicators, such as fractal dimen-
sion, Lyapunov exponents, and so forth. This lack of
discrimination occurs because such traditional measures
are based on averaged or integrated features of the
dynamics over the attractor, which, at best, provide a
global picture of long-term dynamic behavior.

Greater discrimination is possible by more detailed
analysis of the reconstructed dynamics. The natural (or
invariant) measure on the attractor provides a more
refined representation of the reconstruction, describing
the visitation frequency of the system dynamics over the
PS. To obtain a useful, discrete representation of the
invariant measure from time serial data, we proceed as
follows. We first represent each signal value,xi, as a
symbolized form,si; that is, one ofS different integers,
0,1, . . .,S 2 1,

0 # si 5 INT[S(xi 2 xmin)/(xmax 2 xmin)] # S2 1. (9)

Here, the function (INT) converts a decimal number to
the closest lower integer, andxmin and xmax denote the
minimum and maximum values ofxi, respectively, over
the base case (reference data). We previously used
(Gailey et al. 1999; Hively et al. 1999, 2000b; Protopo-
pescu et al., 2000) the minimum and maximum values
over both the base case and test case (data to be tested for
departure from the base case). However, in real- or
near-real-time analyses, only base case extrema are ac-
tually known. We require thatsi(xi 5 xmax) 5 S 2 1 to
maintain exactlyS distinct symbols. Thus, the PS is
partitioned intoSd hypercubes or bins. By counting the
number of PS points occurring in each bin, we obtain the
DF as a “discretized” density on the attractor. We denote
the population of theith bin of the DF,Qi, for the base
case, andRi for a test case respectively. For infinitely
precise data, this representation has been used in Grebogi
et al. (1988). The choice of parameters (S, N, and d)
depends not only on the system, but also on the specific
data under consideration. During the preliminary phase
of the analysis, we systematically varied each parameter

with the others fixed, to obtain optimum sensitivity of the
measures to changes in system dynamics for each class
of data evaluated. After realizing optimal sensitivity, the
values of the parameters were kept fixed.

We use an embedding window,M1 5 (d 2 1)l, based
on the first minimum in the MIF,M1 (Fraser and Swin-
ney, 1986). This choice of time delay provides maximal
information for the reconstruction of the PS dynamics.
Then, we setl 5 INT[0.5 1 M1/(d 2 1)] to obtain an
integer value for the reconstruction lag whenM1 is not
evenly divisible byd 2 1. The reconstruction requires
thatl $ 1, thus constraining the largest value of dimen-
sionality tod # 2M1 1 1 from the previous formula.

Once the dynamics is reconstructed (unfolded), the
test case is compared with the base case. Diks et al.
(1996) measured differences between delay vector dis-
tributions by the square of the distance between two DFs.
Schreiber (1997, 1999) measured dissimilarity via the
Euclidean distance between points of the attractor. This
measureonly accounts for the geometric shape and
location of the attractor. Manuca and Savit (1996) and
Manuca et al. (1998) described dissimilarity via ratios of
the correlation integral over the DF. This is essentially
the correlation dimension discussed in the previous sec-
tion. Moreover, these papers discuss dissimilarity mea-
sures from the perspective of nonstationarity, whereas
our focus is on condition change, as explained earlier.
We measure the difference betweenQi with Ri by thex2

statistic andL1 distance:

x2 5 (
i

(Qi 2 Ri)
2/(Qi 1 Ri), (10)

L 5 (
i

uQi 2 Riu, (11)

where the summations in both equations run over all the
populated PS cells. The choice of these measures is
based on the following considerations. Thex2 statistic is
one of the most powerful, robust, and widely used
statistical tests to measure discrepancies between ob-
served and expected frequencies. Thex2 statistic is
obviously symmetric, but does not always satisfy the
triangle inequality, so it does not define a distance in the
mathematic sense. TheL1 distance is the natural metric
for distribution functions because it is directly related to
the total invariant measure on the attractor and does
define abona fidedistance. Therefore, these measures
account for changes in the geometry, shape, and visita-
tion frequency of the attractor, and can be viewed as
somewhat complementary. Obviously, calculation of
these measures in a consistent fashion requires that the
base case and test case contain the same number of
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points, identically sampled; otherwise, the DFs have to
be rescaled properly.

We extended the previous analysis in a manner that is
naturally compatible with the underlying dynamics. By
connecting successive PS points as prescribed by the
dynamicsy(i) 3 y(i 1 1), i 5 1,2,. . ., we obtained a
discrete representation of the process flow (Abarbanel,
1996). The 2d-dimensional vector,Y(i) 5 [y(i), y(i 1 1)],
formed by adjoining two successive vectors from the
d-dimensional reconstructed PS, lives in a 2d-dimen-
sional space, that we call the connected phase space
(CPS). As before,Q andR denote the CPS DFs for the
base case and test case respectively. We define the
measures of dissimilarity between these two CPS DFs, as
before, via theL1 distance and thex2 statistic, (Hively et
al., 1999, 2000b):

xc
2 5 (

ij

uQij 2 Rij u2/(Qij 1 Rij) (12)

Lc 5 (
ij

uQij 2 Rij u. (13)

The subscriptc indicates the connected DF measure.
We note that the valuel 5 1 results ind 2 1 components
of y(i 1 1) being redundant with those ofy(i), but we
allow for this redundancy to accommodate other data
such as discrete points from two-dimensional maps. The
CPS measures have a higher discriminating power than
their nonconnected counterparts. Indeed, we can prove
that the measures defined in Eqs. 10 through 13 satisfy
the following inequalities:x2 # L, xc

2 # Lc, L # Lc, and
x2 # xc

2 (Hively et al., 2000b).
Use of thex2 statistic requires statistical independence

between various samples. However, the PS points de-
pend on one another as a result of reconstruction from
time delay vectors with dynamic structure (Diks et al.,
1996). The resulting statistical bias is avoidable by av-
eraging contributions to Eqs. 10 and 12 over values of
y(j) or Y(j), which satisfy |i 2 j | , L (Diks et al., 1996),
whereL is some largest typical correlation scale length
in the time series. We tested the bias in typical data by
sampling everyL-th CPS point for 4# L # 23, resulting
in L different samples for the base case (Qi) and for each
cut set (Ri). We then averaged the sampledx2 values over
the L2 different combinations of distribution functions
for the base case and test case cut sets. As expected, a
decrease proportional to1/L occurs in the sampledx2

values, because the number of data points contributing to
x2 decreases in the same proportion. The trend over time
in sampledx2 values remains the same as inx2 values
without sampling, showing that no bias is present. Thus,
we use unsampledx2 values for the remainder of this

work as arelativemeasure, rather than as an unbiasedx2

statistic for accepting or rejecting a null statistical hy-
pothesis. (Hively et al., 1999).

Use of the dissimilarity measures on finite-length,
noisy data requires a consistent statistical implemen-
tation and interpretation. Moreover, construction of
the base cases also requires careful statistics to elim-
inate possible outliers and to ensure robust results. We
use the firstN nonoverlapping cut sets in each of the
datasets as base cases. For each dataset, the choice of
N should strike a judicious balance between a reason-
ably short base case period to capture quasistationary,
“normal” dynamics and a sufficiently long period for
significance. However, a few of these base case cut
sets may be very different from the typical regime,
causing a severe bias in the detection of condition
change. This is especially true for noisy physiologic
data. We statistically test the base case cut sets for
outliers as follows. Dissimilarity comparisons among
the N base case cut sets yieldsN(N 2 1)/2 unique
pairs, from which we obtain an average,IV, and sample
standard deviation,s, for each of the dissimilarity
measures,V 5 L, Lc, x2, and xc

2. We calculate ax2

statistic,S(Vij 2 IV)2/s, for each of these four dissim-
ilarity measures. The indexj is fixed, to test thejth cut
set against the otherN 2 1 cut sets, thereby givingN
2 1 degrees of freedom in thex2 statistic. The null
statistical hypothesis allows a random outlier with a
probability less than2/N(N2 1), corresponding to less
than one out of theN(N 2 1)/2 unique pairs. We have
chosenN 5 5 for the noiseless model-generated data,
where, for fixed dynamic conditions, the variability
arises only from the location in and the discrete
sampling of the PS. On the other hand, for noisy EEG
data we have chosenN 5 10, to provide a larger
statistical sample.

In the latter case, we identify an outlier cut set as
having the largestx2 statistic greater than 19.38 over the
four dissimilarity measures, which corresponds to a
probability larger than 1/45. If this analysis does not
identify any outlier, then the previous values ofV are
used for subsequent renormalization, as described later.
If this analysis identifies an outlier, we remove it. We
then repeat this analysis for the remaining nine base case
cut sets to identify any additional outliers when the
largestx2 statistic exceeds the threshold, corresponding
to a random probability of more than 2/B(B 2 1), as
interpolated from standard statistical tables forB 2 1
degrees of freedom (Abramowitz and Stegun, 1964).
Here,B is the number of nonoutlier base case cut sets.
Thus, rejection of the null hypothesis corresponds to ax2
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statistic more than 19.38, 17.24, 15.03, 12.74, and 10.33,
for B 5 10, 9, 8, 7, and 6, respectively.

This approach improves dramatically the robustness of
the condition change detection. If the analysis identifies
five (or more) outliers, we would have to reject all 10
base cases as unrepresentative, and acquire a new set of
10 cut sets as base cases. However, the current analysis
never finds more than four outliers. Subsequently, we
compare the nonoutlier base case cut sets with each
nonoverlapping test case cut set, and obtain average
values for the dissimilarity measures for each test case.

The disparate range and variability of the various
nonlinear measures are difficult to interpret (especially
for noisy data), so we need a consistent means of com-
parison. Thus, we convert the nonlinear measures to a
renormalized form (Hively et al., 1999, 2000b). For each
nonlinear measure,V 5 { D, K, M1, L, Lc, x2, andxc

2},
we defineVi as the value of the nonlinear measure for the
ith cut set. As before,IV is the mean value of that
nonlinear measure over the nonoutlier base cases, with a
corresponding sample standard deviations, as described
earlier. No such averaging is done forD, K, and M1

because the calculation of these measures involves only
one cut set at the time. The renormalized form is then
U(V) 5 uVi 2 IVu/s, which measures the number of
standard deviations that the test case deviates from the
base case mean. For a positive indication of change in
EEG (see Application to Scalp EEG Data), we require
Nocc successive occurrences above the threshold,U $
Ucrit.

RESULTS

Application to Model Data

We assessed the discriminating power of the nonlinear
measures by first testing them as well as some of the
assumptions 1 through 10 on noiseless model-generated
time-serial data. We considered the well-known Lorenz
model (Lorenz, 1963) that is a three-dimensional system
of coupled, nonlinear differential equations:

dx

dt
5 a(y2 x),

dy

dt
5 rx 2 y 2 xz,

dz

dt
5 xy 2 bz (14)

with properties that have been well documented in the
literature. We integrated the Lorenz system with time
stepsd t 5 0.03 and used the variabley to reconstruct the
dynamics. We fixed parametersa andb at the values 10
and 8/3 respectively. As the variable parameterr in-
creases from zero, the solutions the Lorenz system dis-
plays increased complexity and different stability prop-

erties. Transitions from one type of solution to another
occur through bifurcations or transitions to chaos for
which traditional nonlinear measures are, in general,
good indicators. However transitions between two cha-
otic regimes are not readily detected by these traditional
measures, especially for small changes in the parameter
r. Therefore, we concentrate on detecting dynamic
change within a region where the Lorenz system behaves
chaotically (Jackson, 1989, 1990); namely, for 45# r #
90. We started withr 5 45, which was considered the
base case, and keptr unchanged for 2,250,000 points (45
cut sets of 50,000 points). Then we increasedr from 45
to 90 in one-unit steps for each 50,000-point window.
Finally, we maintainedr 5 90 for another 2,250,000
points (45 cut sets of 50,000 points). Fig. 1 shows the
consistency and robustness of the resulting dissimilarity
measures. Indeed, as long as the parameterr is un-
changed, the dynamic system remains in the same re-
gime, and the dissimilarity measures remain consistently
close to zero. When the parameter varies monotonically,
the dissimilarity measures increase monotonically, in
roughly linear fashion, and over a much broader range
than the traditional nonlinear measures. The dissimilarity
measures reach a clear plateau atr 5 90, illustrating their
consistency. Here the base case consisted of the first 10
adjacent windows forr 5 45. We obtained the traditional
and (C)PS renormalized measures by comparing the
distribution function for each 50,000-point test case to
each of the 10 base cases using Eqs. 10 through 13. We
note that the CPS measures (dashed curves in Fig. 1) lie
below the nonconnected measures (solid curves in Fig.
1). This does not contradict the theoretic results (Hively
et al., 2000b), because the curves in Fig. 1 were obtained
by averaging, to obtain renormalized measures. Only the
MIF values are given in the unrenormalized form be-
cause the first minimum in the MIF is completely con-
stant over the base case, resulting ins 5 0. Of course, if
the window length decreases, more variability appears
ands would be different from zero. Fig. 1 shows various
nonlinear measures versusr. The correlation dimension
(Fig. 1A) varies erratically between 0 and 0.2 over the
whole range. The renormalized Kolmogorov entropy
(Fig. 1B) also varies erratically while gradually rising
from 0 to 4. Fig. 1C shows the location of the first
minimum in the mutual information function,M1, with a
single abrupt step atr 5 60. A smaller integration step (d
t 5 0.1) yields a series of finer steps (not shown here),
thereby illustrating the limitation of a coarser sampling
rate. In sharp contrast, the (C)PS measures (Figs. 1D, E)
increase almost monotonically from zero to more than
500 asr increases from 45 to 90. The values ofL andx2

essentially coincide over the whole range because the
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measures are dominated by PS bins that are populated
only for the base case (Qi . 0 for Ri 5 0) and only the
test case (Ri . 0 for Qi 5 0), for which the two measures
become analytically equivalent. Fig. 2 shows the dissim-
ilarity measures for a different choice of the base case;
namely, over the first 10 cut sets ofr 5 90. These curves
are roughly mirror images of those in Fig. 1: large and
constant dissimilarity forr 5 45; a monotonic, approx-
imately linear decrease during the transition (45, r ,
90); and small dissimilarity in the base case region (r 5
90). Fig. 3 shows the dissimilarity measures for several
lengths of the window, varying from 5,000 to 25 points.
As expected, the quality of the results degrades dramat-
ically as the length of the window shortens. For a very
short window, the long-range regularity of the dynamics
is overcome by short-range variability, which depends
substantially on the specific location in the PS. This

result underscores the importance of the relationship
between the length of the dataset, the characteristic times
of the underlying dynamics, and the need for “sufficient-
ly long datasets” for “sufficiently good” statistics.

In addition to the Lorenz system, we assessed the
discriminating power of the dissimilarity measures on
the Bondarenko “synthetic brain” model (Bondarenko,
1997). The interest in this model is twofold: On the one
hand, it is supposed to mimic well the general features of
actual EEG signals; on the other hand, and unlike the
Lorenz system, it is an infinite dimensional model de-
scribed by a system of time-delayed, ordinary differential
equations:

dui(t)

dt
5 2ui(t) 1 (

i5j

M

aijf(uj(t 2 tj)), i, j 5 1, 2,..., M.

(15)

FIG. 1. Renormalized nonlinear mea-
sure versusr calculated from they
variable of the Lorenz system:(a) cor-
relation dimension,(b) Kolmogorov
entropy,(c) lag (in time steps) of the
first minimum in the mutual informa-
tion function, (d) non-connected (sol-
id) and connected (–) L1 dissimilarity,
and(e)non-connected (solid) and con-
nected (–)x2 dissimilarity. The phase-
space reconstruction parameters are:
S512, d53, N550,000, andl 5 2.
No variability occurs in the values of
M1 for r545, so subplot (c) is not
renormalized. The value ofr is as
follows: r545 for 0#T#45, r5T for
46#T#89, r590 for 90#T#134.
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Eq. 15 is obtained from the finite-dimensional Hop-
field model for the electronic circuit realization of a
neural network by adding a time delaytj. Here,ui(t) is
the output signal of theith neuron and the matrixaij

denotes the coupling coefficients between the neurons,
with randomly chosen values,22 # aij # 2. For this
particular implementation, the indicesi andj run from 1
to M 5 10 (10 neurons). The time delay of thejth neuron
output, tj, is constant and equal to 10. The nonlinear
response function,f(x) 5 c tanh(x), simulates the non-
linear neural response to signals from neighboring neu-
rons. We vary the coefficientc to change the values of
the coupling coefficients between the neuronsaij

simultaneously.
As discussed earlier, the traditional nonlinear mea-

sures are good indicators of either bifurcations or tran-

sitions to chaos. However, transitions between two cha-
otic regimes are not readily detected by these same
measures, especially for relatively small changes in the
parameter that underlies the transition. Therefore, the
current work concentrates on measuring dissimilarity
within a region where the Bondarenko system is known
to behave chaotically; namely, 5# c # 18 (Bondarenko,
1997). The model was integrated by using a standard
fourth-order Runge–Kutta method with a time step equal
to 0.3. We allowed 40,000 time steps for the solution to
achieve stationarity after initiating the integration with
random impulses,uj(t 5 0) 5 rj for uniformly random
values,22 # rj # 2. We calculated 100,000 data values
of ui at fixed time intervals ofDt 5 10 for each value of
c. We obtained the (C)PS measures by partitioning each
100,000-point Bondarenko dataset into five nonoverlap-

FIG. 2. Renormalized nonlinear mea-
sures versusr calculated from they
variable of the Lorenz system with the
basecase over the first 10 cutsets of
r590: (a) non-connected L1 dissimilar-
ity, (b) connected L1 dissimilarity, (c)
non-connected connectedx2 dissimi-
larity, and(d) connectedx2 dissimilar-
ity. The phase-space reconstruction pa-
rameters are:S512, d53, N550,000,
andl 5 7. The value ofr is as follows:
r545 for 0#T#45, r5T for
46#T#89, r590 for 90#T#134.
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ping subsets of 20,000 points each, for comparison with
each of the 20,000-point subsets of base case atc 5 5.

Fig. 4 shows various renormalized nonlinear measures
versusc, by analyzing only the signal from one neuron of
the Bondarenko system. Here (unlike the Lorenz sys-
tem), we obtain similar results when other neuron signals
are used to reconstruct the dynamics. The renormalized
correlation dimension (Fig. 4a) varies erratically between
0 and 0.1. The renormalized Kolmogorov entropy (Fig.
4b) increases erratically from 0 to approximately 2.0.
Fig. 4c shows the renormalized location of the first
minimum in the MIF,M1, with erratic variation between
0 and 0.1, asc increases. In sharp contrast, the (C)PS
measures (Figs. 4d, e) increase almost monotonically
from zero to more than 40, asc increases from 5 to 18.

Note that the CPS measures are stronger than their
nonconnected counterparts.

Application to Scalp EEG Data

We turn next to analysis of brain wave data. Nonlinear
EEG measures are not stationary, displaying instead
marked transitions between normal and epileptic states
(Manuca and Savit, 1996; Manuca et al., 1998). As
established by many authors, EEG data seem to display
low-dimensional features (Elbert et al., 1994; Lehnertz
and Elger, 1998) with at least one positive Lyapunov
exponent (Elbert et al., 1994; Iasemidis and Sackellares,
1991, 1996), and hence positive Kolmogorov entropy.
EEG data also display clear PS structure (Elbert et al.,

FIG. 3. Renormalized nonlinear mea-
sures versusr calculated from they
variable of the Lorenz system:(a) non-
connectedx2 dissimilarity forN55000,
(b) non-connectedx2 dissimilarity for
N5500, (c) non-connectedx2 dissimi-
larity for N550, (d) non-connectedx2

dissimilarity for N525. The phase-
space reconstruction parameters are:
S512, d53, andl 5 2. The value ofr
is as follows:r545 for 0#T#45, r5T
for 46#T#89, r590 for 90#T#134.
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1994; Iasemidis and Sackellares, 1996), on which our
analysis relies for measuring condition change. We find
that PS measures are useful for nonlinear detection of
condition changes in brain wave data (Hively et al.,
1999, 2000a and 2000b). We emphasize that our work
relies on scalp EEG, which measures the noisy synchro-
nous dynamics in cortical neurons over an area of
roughly 6 cm2 as attenuated through the skull. Our
analysis assumes that both the traditional and the new
measures are sensitive to changes in nonlinear dynamics
(Elbert et al., 1994).

Recordings came from 32-channel Biomedical Moni-
toring Systems Inc. instruments (Nicolet-BMSI, Madi-
son, WI, USA) with 19 scalp electrodes in the Interna-
tional 10-20 System of placement as referenced to the ear

on the opposing hemisphere. Each channel of scalp
potential was amplified separately, bandpass filtered be-
tween 0.5 to 99 Hz, and digitized at 250 Hz.

We analyzed 41 datasets with at least one electro-
graphic temporal lobe (TL) event, broken down further
by clinical event type in Table 1. We analyzed 20
additional datasets without TL events as controls. This
work was performed in accord with the United Status
National Institutes of Health Human Studies Review
guidelines, although internal review board approval is
not required for this privately funded research. In partic-
ular, physicians obtained the EEG data with informed
consent of the patients or their guardians, under standard
protocols for epilepsy unit monitoring. We ensured pa-
tient anonymity by using only numeric identifiers. The

FIG. 4. Renormalized nonlinear mea-
sures versusc calculated from one neu-
ron channel of the Bondarenko system:
(a) correlation dimension,(b) Kolmog-
orov entropy,(c) lag (in time steps) of
the first minimum in the mutual infor-
mation function, (d) non-connected
(solid) and connected (–)L1 dissimilar-
ity, and (e) non-connected (solid) and
connected (–)x2 dissimilarity. The
phase-space reconstruction parameters
are: S534, d53, N520,000, andl 5
13.
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TABLE 1. Characterization of datasets

PID DID S AG START STOP T (EV) AE TYP B-ACT E-ACT

3 12 F 15 23:30 03:54 03:24 P
4 13 F 44 07:56 11:58 11:28 P OOC, eating Reading
5 16 M 7 03:54 08:50 08:20 P Asleep LIB, TV, eating

99 17 F 17 12:22 14:20 NE Awake
6 18 M 43 10:39 13:57 13:26 G NVOV Asleep
6 19 M 43 16:34 20:40 20:10 G Asleep Asleep
7 20 F 12 19:40 23:18 22:48 T3 P Eating, talking Asleep

100 22 M 21 11:45 13:50 NE Awake
8 24 M 30 21:24 01:09 00:39 P2G LIB, talking EC, LIB, talking
8 26 M 30 03:13 06:25 06:55 NS Seizure, asleep Asleep

11 37 F 42 19:29 01:18 01:29 NS LIB (lights off)
11 39 F 42 15:16 20:18 19:48 P Asleep, TV LIB, FIDG, reading
12 42 M 34 04:55 09:17 08:47 P Asleep, awake, NVOV Eating, talking
12 46 M 34 10:23 14:03 13:33 P Talking, TV, LIB Talking, SIB
11 125 F 42 14:17 19:56 19:13 19:25 P2G TV, talking GU, NVOV, FIDG
19 127 M 4 01:04 04:49 04:10 T3 NS Asleep Awake, SIB, LIB
19 129 M 4 14:37 17:59 15:22 16:25 17:29 T3 P2G Asleep Reading, talking
11 131 F 42 14:08 19:30 19:01 P SIB, TV TV, LOM
22 149 F 43 07:22 09:12 08:22 NE
22 150 F 43 09:51 11:52 11:24 NE
24 157 F 41 02:23 04:24 03:36 NE
24 158 F 41 21:44 23:36 23:09 NE
24 163 F 41 18:12 19:36 NS
24 165 F 41 12:36 15:59 NS
27 170 M 37 11:05 14:04 14:02 F7 P
75 193 M 41 09:41 12:45 12:39 T3 P
81 199 M 41 00:36 06:53 06:45 T3 P Asleep GU, NVOV, FIDG
82 200 M 23 16:12 20:40 19:59 F3 F4 G SIB, PWAT SIB, PWAT, SPAC
84 203 F 33 00:05 05:44 05:42 T3 P2G Reading Asleep
83 207 F 33 08:06 15:17 14:42 T3 P Reading, talking Asleep
86 211 M 41 18:41 23:59 23:52 T3 P2G SIB Asleep
74 214 F 32 18:54 23:50 23:45 T3 P Asleep Awake, TV
74 216 F 32 04:15 07:11 06:59 T3 P Asleep Awake LIB/RA GU
89 222 F 52 10:47 15:02 13:23 13:29 14:27 T3 P WWN SIB, talking, BP
90 221 M 43 16:03 19:49 19:19 T3 P LIB, talking, EC SIB, eating
40 235 F 51 20:54 02:42 02:33 T4 P2G SIC, TV SIB, talking (SPAC)
46 255 F 16 21:09 00:51 00:49 T3 P Asleep
47 259 F 43 11:54 14:47 14:44 P LIB, talking, eating NVOV, LIB/VW
48 261 F 14 16:11 21:17 21:02 NS LIB, TV LIB (LOM)
61 264 M 33 07:50 11:14 11:09 T3 P
61 265 M 33 23:47 06:33 06:29 T3 P TV, eating, drinking Asleep
61 266 M 33 07:45 11:55 11:52 T3 P NVOV SOSB
61 267 M 33 07:43 10:45 10:38 T3 P SOSB, talking Asleep
62 270 F 27 15:46 17:23 15:49 NE
61 271 M 33 07:45 12:11 11:57 T3 P SIB, drinking, TV Talking, SIB
63 273 F 44 07:44 14:59 10:31 11:04 14:54 NE Eating, talking SIC, talking, yawning
64 274 F 56 07:38 09:04 08:28 NE
64 275 F 56 07:37 13:00 12:09 NE Drinking NVOV
64 276 F 56 05:13 11:38 11:45 NE SOSB, rocking NVOV
67 283 F 20 11:38 15:07 14:32 NE Talking Breathing hard
65 284 M 58 07:51 13:25 13:11 NS LIB, LOOK (SPAC) SIB, TV
67 285 F 20 15:44 20:35 19:46 NE Awake, SIB LIB, EC
68 286 M 56 23:40 04:11 03:32 T3 P2G Asleep, (LOM) Asleep
66 287 M 19 10:00 17:28 12:47 17:49 P TV Talking
69 289 F 57 16:38 22:34 21:38 T4 P Talking, NVOV Asleep
70 293 F 44 20:38 00:38 00:31 P TV, talking, laughing LIB, writing CARD
69 299 F 57 23:56 03:21 03:19 T4 P TV, EC Asleep
72 300 F 44 23:41 05:11 04:51 T3 P Asleep Asleep
94 308 F 15 08:14 11:56 11:52 T4 P
30 386 F 15 05:57 10:49 09:04 09:57 F7 T3 P
54 403 M 12 02:56 08:02 08:00 P

There was a total of 46 temporal lobe (TL) events (22 female and 24 male patients) from 33 different patients with the following distribution of
event types: partial (n5 31), partial secondarily generalized (n5 7), generalized (n5 3), and nonseizure (n5 5).

There was a total of 17 nonepileptic or nonseizure events datasets (16 female patients and 1 male patient).
Patient 64 had a left temporal lobe resection with new, nonepileptic episodes. EEG was read by as “normal” during the episodes.
PID, patient identifier; DID, dataset identifier; S, sex of patient; M, male; F, female; AG, age of patient (years); START, starting time of dataset

(hh:mm); STOP, stoping time of dataset (hh:mm); T (EV), time of TL events (hh:mm) accounting for multiple events; AE, active electrode; TYP,
type; P, partial; NE, non event; NS, nonseizure; G, generalized; P2G, partial secondarily generalized; TYP, type; B-ACT, activity during base case
period; E-ACT, activity immediately before event; BP, blood pressure checked; CARD, plays cards; EC, eyes closed; FIDG, fidgeting; GU, got up
(out of sight); LIB, lying in bed; LOM, lots of movement; LOOK, looking around; NVOV, not visible on video; OOC, out of chair; PWAT, playing
with a toy; RA, rolling around; SIB, sitting in bed; SIC, sitting in chair; SOSB, sitting on side of bed; SPAC, spacey; TV, watching TV; VW, very
wiggly; WWN, working with nurse.
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TABLE 2. Summary of forewarning analysis

PID DID T(SZ) T(EN)

Forewarning time (sec) by channel

FP1 FP2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T3 T4 T5 T6 FZ CZ PZ

3 12 14040 15750 FP FP FP FP 3040 FP FP FP FP FP FP FP FP FN FP FP FP FP FP
4 13 12720 14500 FP 720 FP FP FN FP FP FN FP FP FP FP FP FN FN FN FN FN FN
5 16 15960 17750 FP FP FP FP FP 2460 FP FP FP FP FP FP 3460 FP FP FP FP FP FP
6 18 10020 11750 FN FN FN FP FN 770 FN FN FN FN FN FN FP 270 FN FN FN FN FN
6 19 12960 14750 FN FP FN FN FN FN FN FP 1460 FP FP FN FP FP FN 1960 1710 3210 FP
7 20 11280 13000 FN FN FP FN FN FN FP 1780 530 FN FN 280 1780 FN FN 1280 FN FP FP
8 24 11700 13500 FP 950 FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP
8 26 0 13250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN

11 37 0 23000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
11 39 16320 16500 820 FN FP FN FP FP FP FP FN FP FP FP FP FP FP FP FP FN FP
11 125 17760 20250 FN FP FN FP FN FP 3010 FP FP FP FP FN FP FN FP 260 FP FP FP
11 131 17580 19250 3580 FP FP FP FP FN FP FN FN FN FN FP FP 1330 FP FP FP FP FN
12 42 13920 11500 FP 2920 FP FP 2920 FP 2920 FP FP 3170 FP FP FP FP FP FP FP 3420 FN
12 46 11400 13000 FN FP FP FP FP FP 1650 FP FP FP FN FN FP FN FP 1150 FN 650 1150
19 127 0 21000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
22 149 0 6500 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
22 150 0 7250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
24 157 0 7250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
24 158 0 6500 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
24 163 0 5000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
24 165 0 12000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
27 170 10620 10500 FP FP 1370 FP FP FN FP FN 1870 FP FP 2620 FP FN FP FP FP 1120 FP
30 386 11220 18250 FP FP FP 220 FP 1720 FP 1470 2720 FP FP FP FN FP FP 1470 FP 3220 FN
40 235 20340 20750 FP FP FP FP 2590 FP FP FP FP 3340 FP FP FP 3340 FP FP FP FP FP
46 255 13200 13250 FP FP FP FP FP FP FP FP FP FP FP FN FN FP 450 FP FP 3200 FP
47 259 10200 10250 FP FN FP FN FP FN FP 3450 2950 FP 2950 FP 2200 FP FP FN 2200 FP FP
48 261 0 19250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
54 403 18240 18750 FP 1490 1490 FP FP 1240 1240 FP 1740 FP FP FP FP FN 1240 FP FP FP 1990
61 264 11940 12000 1690 3440 2440 3440 1940 FN FP FP 2440 2940 FN FP FP FP FP FP FN FP FP
61 265 24120 24250 FP FP FP 2870 FP FP FP FP FP FN FP FN FN FN FP FP FP FP FP
61 266 14820 15250 1820 2570 FN FP 3570 FP FP FP FP FN FP 1570 FN 70 FN FN FP 3320 FP
61 267 10500 10750 FP FN FP FN FN FN FN 1500 FP FN FN FN FN FN FN FP FP 1500 2500
61 271 15120 15750 FP 1370 FP FP FP FP FP FP FP FP FP FN FP FP FP 2870 620 FN FP
62 270 0 5750 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
63 273 0 26000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
64 274 0 5000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
64 275 0 19250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
64 276 0 23000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
65 284 0 20750 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
66 287 10020 27250 FP FP 2020 FP FP FP FP FP FP FP FN FP FP FN FP 3520 FN 3020 FP
67 283 0 12750 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
67 285 0 17250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN
68 286 13920 16250 FP FP FN FP FN FN FN FN FN FP FN FP FN FN FP FP FP FP FN
69 289 18000 21250 FP FP FP FP FP FP FP FP FP 1500 FP FP FP FP FP FP FP FP FP
69 299 12180 12250 1180 FN FN 3180 3180 FP FN FP FP FN FN FN FN FP 430 FP FP FN 3180
70 293 13980 14500 FN 1980 1480 FN FN FN FP FP FP FN FP 1980 FP FP 1980 FN FN FP FN
72 300 18600 28750 FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP 3600 FP FP
74 214 17460 17750 FP FP 2460 FP FP FP FP 1960 FP 2210 FP FP FP 1710 FP FP FP 1210 1710
74 216 9840 20500 340 340 1590 590 FP FP 340 1590 1090 1090 340 FP 1590 1590 FN 840 FP 2340 340
75 193 10680 11000 FP 930 930 930 2680 FP FN 2430 FP 3180 FP 930 FN FN 1930 FN 1430 1180 FP
81 199 22140 22500 FP FP FP 2640 2890 FP FP FP FP FP FP FP FP FP FP FP FP 2890 FP
82 200 13620 16000 FP FP FP FP FP 870 FP FP FP FN FP FP FP 1120 FP FN FP 1870 FP
83 207 23760 29500 FP FP FP 3510 FN FN FP 3510 FP FP FP FP FP FP FP FP FN FP 260
84 203 20220 20250 FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP FP
86 211 18660 19000 FN FN FP 2910 FP FP FP FP FP FN FP 1160 FP 160 FP FP FP FP FN
89 222 9360 15250 FN FP FN FN 3110 FN FN FN FP FN FN 2610 2360 110 FP FN FP FN 3110
90 221 11760 12750 FP FN FP FP FN 1510 FP FN FP FN FN FP FN 2760 FN FN FP 1760 FP
94 308 13080 13250 FP FN FP 80 FN FP FP FP FP FN FP FP FN 2080 FP FP FP FP FN
99 17 0 7000 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN

100 22 0 8250 TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN TN

PID, patient identifier; DID, dataset identifier; FN, false negative; FP, false positive; TN, true negative; T(SZ), time of seizure (sec) from startof
data; T(EN), time (sec) from the beginning to the end of the dataset, 0, no temporal lobe epilepsy event.
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characterizations in Tables 1 and 2 were verified by
double entry from the physician’s final reports. Table 1
shows that patient age ranged from 4 to 57 years,
including datasets from 36 female and 25 male patients.
We examined all 19 EEG channels in each of these
datasets, which have lengths between 5,000 seconds (1
hour 23 minutes) and 29,500 seconds (8 hours 12
minutes).

All scalp EEGs are obscured by muscular activity as a
result of eye blinks, facial twitches, and so forth. These
artifacts are avoidable by obtaining EEG data from depth
or subdural electrodes, but such methods are invasive
and nonambulatory. We remove most of the low-fre-
quency artifacts from the scalp EEG data with a novel
zero-phase quadratic filter, which—unlike standard lin-
ear filters—retains the nonlinear amplitude and phase
relationships (Hively et al., 1995). This filter uses a
moving window of 2n 1 1 points of raw EEG data,ei,
with the same number of data points,n, on either side of
a central point. We fit the data to a quadratic equation,
F(t) 5 a1T

2 1 a2T 1 a3, with T 5 t 2 tc, andtc the time
at the central point of the moving window. We fit this
quadratic form to the data, by minimizingC 5 S[F(t) 2
ei]

2, where the sum is over the 2n 1 1 points in the
moving window. The minimum inC is found from the
condition dC/dak 5 0, which yields three linear equa-
tions in three unknowns. The window-averaged artifact
at the central point is given by the fitted value at the
central pointF(tc 5 ti) 5 a3. We note that the sums over
odd powers ofTi are zero and that symmetric sums over
even powers ofTi (over i from 2n to n) can be converted
to sums from 1 ton, giving a window-averaged solution
for the artifact signal

F(t 5 tc)

5 [3(3n2 1 3n2 1)(Sei1c) 2 15(Si2ei1c)]
2/

(4n2 1 4n2 3)(2n1 1). (16)

The sums in this last equation are overi from 2n to n,
with sums over even powers ofi evaluated explicitly
with standard formulas. The effort to evaluate this equa-
tion can be reduced further by computing the sums
initially from the previous equation withc 5 n 1 1, and
then using recursions thereafter (Hively et al., 1995).
Application of this filter to theN-point set of raw EEG
data,ei, yields N 2 2n points of artifact data,fi, that
contain the low-frequency artifact signal. The residual
(artifact-filtered) signal,gi 5 ei 2 fi, has essentially no
low-frequency artifact activity. The filter window width
corresponds to eye blink activity at 2 Hz, for whichn 5

62 at a 250-Hz sampling rate. All subsequent EEG
analysis uses this artifact-filtered data.

Fig. 5 compares the raw signal, conventional nonlinear
measures, and PS dissimilarity measures for an epileptic
event. Signal amplitude (Fig. 5a) shows little preevent
variability except four small spikes between 450 and 750
seconds, followed by a large-amplitude spike during the
event. Correlation dimension (Fig. 5b) shows two suc-
cessive (Nocc 5 2) threshold crossings (Ucrit 5 3) at
1,650 seconds, giving 282 seconds of forewarning with-
out any subsequent indication of the event. The Kolmog-
orov entropy (Fig. 5c) varies erratically, with no fore-
warning or indication of the event. The first minimum in
the MIF (Fig. 5d) has two successive threshold crossings
at 1,760 seconds, giving 172 seconds of forewarning
without any event indication.

The PS dissimilarity measures remain small for 1,200
seconds then all increase together above threshold at
1,320 seconds to provide 612 seconds of forewarning.
These results illustrate the robustness and consistency of
the PS dissimilarity measures for change indication, in
sharp contrast to the lack of indication for the raw signal
and inconsistent indication by the conventional nonlinear
measures.

Fig. 6 compares the raw EEG signal, conventional
nonlinear measures, and PS dissimilarity measures for a
second epileptic EEG dataset. The raw EEG (Fig. 6a)
shows a large spike at 7,190 seconds, with several small
spikes before and after this large one. The event occurs at
11,280 seconds. The correlation dimension (Fig. 6b)
shows quasiperiodic variability with no clear forewarn-
ing or event indication. The Kolmogorov entropy (Fig.
6c) also displays quasiperiodic variability before and
after the event that provides no forewarning or indication
of the event. The first minimum in the MIF (Fig. 6d)
varies erratically with three successive values above
threshold at 9,280 seconds (3,000 seconds of forewarn-
ing), then increases during the event to a value that is
below the peak at 5,000 seconds. In sharp contrast to
these inconsistent indications for the conventional mea-
sures, the PS dissimilarity measures all increase together
with three successive values above threshold at 10,560
seconds, to provide 720 seconds of forewarning. Conse-
quently, we focus the remainder of this analysis on the
use of PS dissimilarity measures for condition change.

The choice of the base case is not obvious nor is it
uncontroversial for EEG analysis. Consequently, we
tested the robustness and consistency of the dissimilarity
measures by offsetting the base case for a typical epilep-
tic EEG dataset. Fig. 7a shows that the dissimilarity is
low during the base case period (first 10 cut sets),
subsequently increases, and then peaks during the event.
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Fig. 7b shows that the dissimilarity is large initially,
decreasing to low values during the base case period (cut
sets 34 to 43), then subsequently increases to a peak
during the event. Fig. 7c shows large values of dissimi-
larity at the beginning of the dataset that then decrease to
small values during the base case (cut sets 66 to 75), then
show a peak at the event. These results show that the
dissimilarity is low during the base case and increases as
the brain dynamics depart from the base case. We also
note that the parameters for these results are different for
the subsequent analysis (as found by a systematic search
for the best parameters), thus illustrating the robustness
of the method for less than “best” parameters.

Fig. 8 illustrates further the consistency of the dissim-
ilarity measures for event forewarning. This patient had
three successive epileptic events with separations of
slightly more than 1 hour. The base case was taken at the
beginning of the dataset (cut sets 1 to 10). All four
dissimilarity measures detect each event, as well as
provide more than 2,000 seconds of forewarning for each

event. The PS reconstruction parameters are different
from the earlier case (Fig. 5), as an additional demon-
stration of the method’s robustness and consistency. To
our knowledge, this example is the first demonstration of
forewarning for multiple events in a single dataset by
using nonlinear dynamics techniques. This result is not
included with the 41 TL events in Table 2, because the
event occurs only 45 minutes after the start of the data
and is not detected as a true positive for the “best”
parameter set. Nevertheless, the clear forewarning for
each of the multiple events remains a success for the
methodology.

We used an operational approach to find the best param-
eters for PS reconstruction and forewarning. In particular,
we varied each parameter systematically with all the others
fixed, to find the largest fraction of true positive plus true
negative event forewarnings over the 61 datasets. We sub-
sequently performed all analyses with the single best choice
of the analysis parameters; namely,d 5 3, N 5 62 500,S
5 16, Nocc 5 16, andUcrit 5 0.035. The values ofxmin,

FIG. 5. Various measures versus time for
channel T4 of dataset #SZPR03 (total
dataset length of 2,215 seconds, sampled
at 200 Hz) with seizure onset at 1,932
seconds (vertical line in each subplot):
(a) smallest (emin) and largest (emax) val-
ues of the raw EEG signal in each cutset,
(b) renormalized correlation dimension,
(c) renormalized Kolmogorov entropy,
(d) renormalized value of the first mini-
mum in the mutual information function
(M1), (e) renormalizedx2 measure for the
non-connected- (solid) and connected-PS
(–), and(f) renormalized L1 measure for
the non-connected (solid) and connected
PS (–). We show a threshold of three
(Uc53) for this example in subplots e-f.
The phase-space reconstruction parame-
ters are:S522,d53, N522,000. See text
for discussion.
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xmax, andM1 are taken from the first cut set of each dataset.
Systematic optimization over all the available parameters is
the subject of future work.

Fig. 9 shows an example of no indication in a normal
dataset. In particular, the four measures occur above the
threshold, but do not remain there for the requisite
number of successive occurrences to be counted as a
positive indication. The choice of smallUcrit. and large
Nocc uses infrequent occurrences of small dissimilarity
values to eliminate false negatives and false positives, as
shown in Fig. 10. The topology of these contours re-
mains surprisingly robust for a relatively large range of
values ofd, S, andN (not shown). Specifically, the total
true rate (true positives plus true negatives) is small near
the origin, and maximum inside an island at largeNocc

and smallUcrit. A subject of future work is systematic
study of the total true rate versusNocc, Ucrit, d, S, andN.

Table 2 summarizes the forewarning times for all 61
datasets for the “best” choice of parameters. The total

true rate is 59 of 61, including true positives for 39 of 41
TL events and true negatives for all 20 of the nonevent
datasets. The PS dissimilarity method does not give true
positives for two event datasets (nos. 203 and 286). For
event datasets, we define a true positive as a forewarning
time between 1 to 60 minutes in one or more channels, and
a false positive as a forewarning time outside this range.
This forewarning window represents the extreme limits for
a “clinical useful” forewarning time for an epileptic event.
Less than 1 minute is insufficient time for response to an
impending event, and more than an hour is too nonspecific.
The impact of other forewarning windows on the PS ap-
proach is the subject of future work. Our current analysis
shows 70 to 3,600 seconds of forewarning for the 41 TL
events, in up to 14 channels (dataset no. 216). For nonevent
datasets, we define a true negative as no indication in one
(or more) channels. Without a true negative indication in at
least one channel of normal data, one is left with false
indications in all channels, in which case the net indication

FIG. 6. Various measures versus time
for channel F4 of dataset #20 with sei-
zure onset at 11,280 seconds (vertical
line in each subplot):(a) smallest (emin)
and largest (emax) values of the raw EEG
signal in each cutset,(b) renormalized
correlation dimension,(c) renormalized
Kolmogorov entropy,(d) renormalized
value of the first minimum in the mutual
information function (M1), (e) renormal-
ized x2 measure for the non-connected-
(solid) and connected-PS (–), and(f)
renormalizedL1 measure for the non-
connected- (solid) and connected-PS (–).
A typical threshold value (solid horizon-
tal line in subplots e-f) is shown at
Uc52.5. The phase-space reconstruction
parameters are:S516, d53, N520,000.
See text for discussion.
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is a false positive. Based on the current analysis of model
and EEG data, we conclude that the dissimilarity measures
are superior to the conventional nonlinear measures as
preevent indicators of condition change for a single channel
of scalp EEG.

Detailed examination of Table 2 reveals three types of
inconsistency. First, the “best” set of parameters provides
forewarning for only the first event in each of the multiple-
event datasets (dataset nos. 125, 222, 273, 287, and 386).
Moreover, the “best” parameter set provides no forewarn-
ing for the any of the three events in dataset no. 129, as
discussed earlier. Second, the forewarning channels for
most TL events are inconsistent with the electrode with the
earliest event indication (dataset nos. 170, 193, 199, 200,

203, 207, 211, 214, 221, 255, 264 to 267, 271, 286, 289,
299, 300, and 386). We do not regard this second incon-
sistency as serious, because the active electrode typically is
oversensitive; in other words, it provides (false-positive)
forewarning more than 1 hour before the event. Third, the
channels with forewarning are inconsistent across multiple
datasets from the same patient. We have denoted multiple
datasets for each patient by bold-type identifiers in Table 2
to facilitate this discussion. For example, dataset no. 18 for
patient no. 6 has forewarning in channels C4 and T4,
whereas dataset no. 19 for patient no. 6 shows forewarnings
in completely disjoint channels (O1, T6, FZ, and CZ).
Channel FP1 shows inconsistent indication for patient no.
11 in three datasets out of four, with one true negative

FIG. 7. RenormalizedLc dissimilarity
measure versus time for channel F8 of
dataset #PVM006 with seizure onset at
6,644 seconds (vertical line in each sub-
plot): (a) basecase during the first ten
cutsets,(b) basecase during cutsets 34-
43, and(c) basecase during cutsets 66-
75. The phase-space reconstruction pa-
rameters are:S522, d53, N522,000.
Other channels and the three other dis-
similarity measures give similar results.
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(dataset no. 37) and two forewarnings (dataset nos. 39 and
131). Channel FP2 gives inconsistent indications for patient
no. 61 in three datasets (nos. 264, 266, and 271) out of five.
Forewarning for patient no. 69 occurs in channel O2 for
dataset no. 289 and in different channels (FP1, F4, C3, T5,
and PZ) for dataset no. 299. This lack of uniformly true
positives and negatives by channel violates assumption 10
and is the subject of future work, perhaps by finding the
best PS reconstruction and forewarning parameters for
multiple datasets from each patient.

DISCUSSION

One of the most important problems encountered in
nonlinear time-series analysis is the appropriate charac-

terization of changes in the system’s dynamics. This
problem is particularly vexing in physiologic systems,
which are more often than not complex, nonstationary,
affected by noise, and difficult to quantify fully in
ordinary physical or mathematic terms. It is generally
accepted that the brain behaves like a reasonably low-
dimensional dynamic system with dynamics that may
vary between (quasi-)periodic and completely irregular
(chaotic). Thus, to a certain extent, global aspects of
brain dynamics may be quantified legitimately by tradi-
tional nonlinear descriptors such as Lyapunov exponents,
Kolmogorov entropy, and correlation dimension. Al-
though these descriptors are adequate for discriminating
between clear-cut regular and chaotic dynamics, they are

FIG. 8. Renormalized dissimilarity
measures versus time for channel F3
of TLE dataset #129:(a) x2, (b) xc

2,
(c) L, and(d) Lc, showing forewarn-
ing for three successive events with
onset times at 2,700 seconds, 6,480
seconds, and 10,320 seconds (vertical
lines in each subplot). The PS recon-
struction parameters are:S522,d53,
N522,000. See text for discussion.
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not sufficiently sensitive to distinguish quasiperiodicity,
intermittency, or slightly different chaotic regimes,
especially when data are limited and/or noisy. Unfortu-
nately, most brain dynamics before, during, and after an
epileptic event fall within the latter regime. Therefore,
robust and timely forewarning of epileptic events has
remained an outstanding challenge. We address this
problem, by introducing four new measures of dissimi-
larity that capture more details about the dynamics and
differences between various regimes and therefore are
more sensitive than the traditional nonlinear measures. A
change in these measures signifies that the system has
departed from the base case and can be interpreted as a
forewarning of an impending epileptic event.

The PS indicators of condition change measure the dif-
ference between PS density functions for a base case and a

test case asx2 statistic andL1 distance. Thus, these indica-
tors retain the differences between the process dynamics
and avoid the inner cancellation effects resulting from
averaging over many orbits (as one does, for instance, when
calculating the correlation dimension and the Kolmogorov
entropy). Changes in the Lorenz and Bondarenko model
dynamics are clearly detected by the dissimilarity measures
and somewhat by the Kolmogorov entropy, asc increases
from 5 to 18 (Figs. 1 and 4). On the other hand, these
changes are either undetected or barely detected by the
correlation dimension and mutual information measures.
The new measures also indicate marked preevent changes
in 39 of 41 TL datasets and 20 of 20 nonevent datasets
(Table 2). These results show that the PS measures seem
superior to traditional nonlinear measures for detection of
condition change.

FIG. 9. Renormalized nonlinear mea-
sures versus time for channel FP2 of
non-event dataset #165:(a) non-con-
nected x2 measure,(b) connected-x2

measure, (c) non-connectedL1 measure,
and (d) connected-L1 measure. The
threshold (horizontal line in each sub-
plot) is set at the “best” value of
Uc50.025. The phase-space reconstruc-
tion parameters are:S516, d53,
N562,500. See text for discussion.
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Our approach differs from earlier work in the follow-
ing respects. First, previous studies (Iasemidis and Sack-
ellares, 1996; Lehnertz and Elger, 1998; Le van Quyen et
al., 1999; Martinerie et al., 1998) used multichannel data
from subdural and depth electrodes to avoid low-fre-
quency (e.g., eye blink) artifacts. Instead, we analyze 19
channels of scalp EEG data that may eventually allow for
noninvasive, ambulatory, long-term, nonclinical moni-
toring. Second, we remove the low-frequency artifacts
from scalp EEG with a novel zero-phase quadratic filter.
Third, prior investigations forewarn via changes in con-
ventional nonlinear measures, such as correlation inte-
gral (Casdagli et al., 1996; Le van Quyen et al., 1999;
Martinerie et al., 1998), correlation dimension (Lehnertz
and Elger, 1998), and largest Lyapunov exponent (Iase-
midis and Sackellares, 1991, 1996; Le van Quyen et al.,
2001). In our earlier work, we determined no consistent
trends in such conventional nonlinear measures for var-
ious event types (Hively et al., 1995, 1999, and 2000a
and 2000b). Therefore, we focused on PS dissimilarity
measures without regard to event type. Fourth, our stud-
ies demonstrate methodology robustness over a variety
of clinical conditions: digital and analog EEG from
several clinical sites; data sampling at 200, 250, and 512
Hz; raw EEG data precision between 10 to 12 bits;
presence of substantial noise in the raw EEG, as well as
periods of constant signal; use of a fixed channel (name-

ly, channel 13) in the bipolar montage; and use of a
variety of clinically interesting channels in the 10/20
montage.

It is important to note that the PS indicators contain
more information than we have systematically exploited
so far. For instance, some datasets show a remarkably
close similarity between the pairs {x2, L} and {Lc, xc

2},
whereas other datasets show close similarities between
{ L, Lc} and {x2, xc

2}. Other datasets show no similarities
at all. The first situation may arise because the base case
and test case DFs are not notably different from zero on
a common domain. The second situation can be inter-
preted as a sign of very slow dynamics (little change
between the PS and CPS measures). The third case
displays more variability in the dynamics.

Despite the aforementioned progress, we assess our
success to date as modest. As mentioned earlier, our
analysis of epileptic events isnot a clinical analysis, but
rather an illustration of our method and its potential for
event forewarning. Event forewarning is a formidable
task, and the possibilities to fall into various traps are
countless, as illustrated by various counterexamples that
we have constructed to many situations that seem other-
wise natural. Moreover, the EEGs for our analysis were
obtained in a controlled clinical setting, which is very
different from the uncontrolled environment where a
portable, ambulatory device may attempt forewarning. In

FIG. 10. Contours of constant total true
rate versusUc andNocc for the best set
of PS-reconstruction parameters of
d53, S516, N562,500. The contour
levels begin at 0.1 and increase in steps
of 0.1 to a maximum of 0.9. The largest
total true rate (0.97) is located at
Uc50.035 andNocc516, as indicated by
the asterick (*). See text for discussion.
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addition, assumption 7 defines a forewarning as a true-
positive indication in at least one channel, which is a
rather weak criterion. Finally, we have adjusted the PS
reconstruction and forewarning parameters that give the
best rate of true positives plus true negatives for these 61
datasets. The algorithm may not be equally well tuned
for other datasets. Thus, we are acutely aware that as
long as the dynamics areunknown,theymayreserveany
surprise.

On the other hand, the performance and robustness of
our approach on model data and real EEG suggests that
this methodology could allow convenient electrode
placement by a patient in a nonclinical, ambulatory
setting and could be used as a complementary quantita-
tive method in conjunction with clinical assessment.
Future use of this approach as a complementary and/or
stand-alone method for seizure forewarning will require
extensive analysis of several events for each patient, and
detailed determination of detection criteria. Future work
will involve statistical evaluation of false positives and
negatives in epileptic patients, and of false positives in
normal patients; clinical monitoring of each patient to
determine optimal PS reconstruction parameters, which
subsequently would be fixed for ambulatory monitoring;
the specific nonlinear features for event forewarning in
the EEG; and the response of our approach to psychiatric
states, such as hysterical events.
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