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Abstract. New agorithms for ultrafast (single iteration) learning in feedforward neural networks are developed. In
addition, a methodology to determine the confidence limits of results predicted by neural network models is
formulated. This methodology aso consistently combines experimental data (e.g., sensor measurements) with
model-predicted results. Our goal is to obtain best estimates for the network model parameters, and to drasticaly
reduce the uncertainties underlying decision processes based on learning. Preliminary results of applying the
approach to selsmic analysis are presented. These results show remarkable promise for petroleum reservoir

characterization.

Key — Words: ultrafast learning, virtud layer, uncertainty reduction, saismic anadyds, petroleum reservoir

characterization

1 Introduction

Artificid neurd networks are adgptive systems
that process information by means of ther
response to discrete or continuous input [1].
Neura networks can provide practical solutions
to a vaiety of atificd intdligence problems
including pattern  recognition [2], autonomous
knowledge acquistion from observations of
corrdlated activities [3], rea-time control of
complex sysems [4], and fast adaptive
optimization [5]. At the heart of such advances
lies the development of efficient computationd
methodologies for “learning” [6]. However,
methods for accurate quantification of the
uncertainty associated with knowledge
acquistion and prediction by neural networks are
not avalable to date. This is becoming an issue
of vitd importance to robust learning, sSgnd
andyss, and decison making. For instance,
many novel sensors, which are expected to play
an ever-growing role in future intdligent sysem
gpplications, produce large data sets. With such
sensors, even rddively sample tasks may involve
an ensemble of often-complex models embedded
in sophisticated codes. How much confidence
should then be placed in decisons made by the
intelligent sysem on the bass of predictions
obtained from these modds when it is known
that they are driven by sensory data possibly
corrupted by uncertainty? It is clear that answers

to such a quedion based soldy on physcd
intuition or engineering judgment are precliuded.

1.1 Neural Learning

The devedopment of neura learning agorithms
has generdly been based upon the minimization
of an energy-like neuromorphic error function or
functiord [9]. Gradient-based techniques have
typicdly provided the man computationd
mechaniam for carying out the minimizaion
process, often reaulting in excessve traning
times for the large-scde networks needed to
address redl-life gpplications. Consequently, to
date, consderable efforts have been devoted to
(1) speeding up the rate of convergence [9,10]
and (2) desgning more efficient methodologies
for computing the gradients of these functions or
functionals with respect to the parameters of the
network [11,12]. The primary focus of such
efforts has been on recurrent architectures.
However, the use of gradient methods presents
chdlenges even for the less demanding multi-
layer feed-forward architectures. For instance,
entrapment in locd minima has remaned one of
the fundamentad limitations of most currently
avalable leaning paradigms.  The  recent
successful  development of the innovative globd
optimizetion dgorithm TRUST [13] has been
suggested [14] as a promisng new avenue for
addressing such difficulties.



In a mgor departure from the above paradigms,
Biegler-Konig and Barman proposed a learning
goproach soldy based on linear agebrac
methods [15]. In ther semind paper, they
observed that it is possble to separate the linear
(inter-layer propagation) and nonlinear
(individua neuron activation function)
operations of information propagation within a
neurd network. Usng linear least squares, they
computed the synagptic weights between each
par of layers. The inverted activation function
enabled the accurate propagation of each
remaning error back into the preceding layer of
the network. The essence of their approach was
to minimize the leaning eror a each layer
separady, rather than globdly, i.e. for the entire
network.

Based on these ideas, we recently developed [16]
a traning dgorithm that minimized the learning
aror function of a generdized feedforward
neurd network in terms of a sequence of
dternding direction sngular  vdue decomt
postions. In such a network architecture, the
nodes (or neurons) are organized in layers,
namdy: (i) input, (ii) one or severd hidden (i.e,
not directly accesshle for input or output), and
(i) output. In addition to these traditiona
layers, we introduced a nove virtual layer
between the input layer and the (first) hidden
layer. This virtud layer acts as a nonlinear
preprocessor of the input patterns, and replaces a
highly overdetermined lineer sysem with an
invertible one. Our method was implemented in
a computer code (DeepNet), and showed promise
[17] in the characterization of an oil fidd usng
data from sdgmic sensors. In this paper, we
report on further advances in the DeepNet
methodology in  connection to  fundamenta
advances in the treament of uncertainties
asociated with the data used for training the
network.

1.2 Uncertainty Analysis

There ae severa potentid agpproaches to
uncertainty anayss. Response surface methods
[18] are a popular paradigm because of their
intringc conceptua  smplicity.  Other  techniques
frequenty used in the  neurocomputing
community incdude fuzzy logic [19] and cross
vdidation [20,21]. The methodology we propose
here is based on concepts and tools from
sengitivity analysis [see 22 and references
therein]. Sendtivities can be used to determine

and rank the importance of network mode
parameters and input data to computed quantities
of interet (usudly referred to as system
responses), and to assess modd uncertainties due
to uncertainties in parameters and data. They are
defined as the deivaives of the system
responses with respect to parameters and inputs.
To enable reliable decisions, uncertainty anadyss
methods must possess five key capabilities. Firgt,
there should be a guarantee that no important
effects are overlooked, i.e, a full set of
sengitivities should be avalable. A full st means
tha the sengdtivities with respect to all
parameters are needed, without making an a-
priori judgment as to which one is important.
Second, we require an efficient computation of
the sensitivities, snce we may have to process
laage data sts fast. Thus, for recurrent
architectures, adjoint operator methods and/or
automated  differentiation  preprocessors are
essentid. Third, proposed methods should dlow
for a sysematic trestment of nonlinearities. The
fourth criterion addresses the rigorous trestment,
where relevant, of full time dependence. This
includes moded  inputs, parameters,  and
reponses. Findly, one requires a coherent
method for combining experimentd (i.e,
measured) data and mode results, the primary
god being to reduce the uncertainties.

2 Approach

To endble leaning under uncetanty, we
envison a two-step paradigm. In the first step, a
novel  achitecture and  ultrafast  training
procedure are introduced to determine the
nominal values of the network parameters
assuming no uncertainties in the daa In the
second step, best estimates of these parameters
ae obtaned by minimzing a genedized
Bayesan loss function in a space where the
inveese of a genadized covaiance matrix
(which captures al uncertainties) serves as
metric of the computationd manifold. As result
of the minimization process, dl uncertanties of
interest are considerably reduced.

In practice, our effort is organized aong three
thrusts. The firg focuses on the deveopment of
new utrafast learning dgorithms and ther
incorporation into the DeepNet code. The second
encompases the formulaion of uncertanty
andyss methods and their implementation in a
code, which we caled NOGA. The third and



find thrus addresses the demondration of the
new methodology in chdlenging agpplicaions
such as petroleum reservoir characterization.

3 DeepNet

We condder fird a multilayer, feedforward
network architecture with | input nodes, V virtud
nodes, and O output nodes. The numbers | and
O ae equd to the dimendondities of the input
and output data and, for a given application, are
in generd fixed. The god of the learning process
is to minimize the discrepancy between DeepNet
predictions and measurements for responses of
interest. In paticular, we wish to determine the
syngptic  interconnections,  while  incorporating
explicitly the uncertainties associated with the
training data.

Two sats of L pattern vectors are being provided
for traning. Typicdly, L >> 1. Clugeing
methods are used to reduce the number of
samplesto K (with L >> K >>I ). The patterns
are gored as rows of the matrices Q2x; and Rko
repectively, which represent the input sgnds
and the target outputs. The number of columns
of each matrix equals the number of nodes of the
corresponding processing layer. For conve-
nience, the matrix dimendons ae explicitly
indicated as subscriptss Two successve non-
linear trandformations map y; into the K x V
presynaptic matrix, Hgy, output by the virtud
layer. We congruct these trandformations such
that Hkyv becomes a nonsingular sguare métrix,
which requires, in particular, that V = K be
chosen. We dso decouple the nonlinearity of the
trandfer function a the output layer from the
linear interlayer pattern propagation mediated by
the synaptic weights Wyo . This trandformation
is being used to compute the postsynaptic input
to the output layer as a K x O rectangular métrix.
Since the latter is connected via a bijective
sgmoid mapping to the output training
examples, the synaptic interconnection matrices
Wyo can be uniquely determined by solving a
system of linear equations.

The processng between the input and virtud
layers is specified as follows. For a given st of
training vectors, we assume that there exids a
paticular nonlinear trandfer function, v, that
maps row vectors from the input pattern matrix
Q,, to row vectors of the postsynaptic matrix
Ekk . The usud sgmoid transform ¢ is gpplied

to each dement of = to produce the presynaptic
matrix Hgx output by the virtud layer. The
function y is not dtered during the learning
process. We have

Hik = @( Exx ) = (W (Qgq) ) 1)

The mapping v (defined by Eq. 2) will dways
produce a nonsingular square matrix, Exk . Let
w”  denote the i-th component of the k-th
traning vector wy , and u(k) refer to the L,
digance between wx and wk+1. For each

component i = 1, 2, ... |, condruct a K x K
marix =0
_ W~ @
Xf&(k,l)zl—%
with k, 1=1, .. K. Here, D @ isthe maximum

of | wd® - | over all k. Let Ex bethe block
diagond matrix whose i-th block is given by Eq.
(2). The determinant of the full matrix is[16]

det(X ) = H [;ﬁ 2”[;)(,(k) ]> 0. &)

k=1

The above implementation of Exx for guarantees
that the marix is nonsngular. Each network
node implements a sgmoid nonlinear trander
function ¢ : R—(0,1). As result of gpplying o,
the presynaptic matrix, Hkk, output by the virtua
Ialyer is obtained. Since ¢ is bijective, the inverse
¢ ~ is well defined. Then, the postsynaptic inputs
T to the output layer correspondi ng to the given
target outputs R are Tko = @ “(Rko ). The
postsynaptic inputs to the output layer computed
by the network are obtained from the expression
Pxo = Hkk Wko .

The find phase of the leaning dgorithm
minimizes yTko — Pxko v by solving the sysem
Tko = Hkk Wko for Wko. Since Tko and Hkk
ae known we can compute Wgo usng a
sngular-vaue decompostion of Hgk from the
|eft.

4 NOGA

The incorporation of uncertainty information into
the DeepNet learning mechanism is essentid for
enabling proper generdization. We present here
our proposed approach for dtatic pattern analysis.
We begin by specifying the assumptions and the
notation.



As reault of the sngle-iteration training process
in DeepNet, a set of nominal vdues for the
intrinsic  network parameters  (eg., Wko) has
been determined. There is uncertainty associated
with  Wko, Snce there is uncetanty in the
traning sets. Let w denote an |-dimensond
input pettern. It may be sdected from the input
traning st Q, or be a new pattern for which a
measured O-dimensional response pettern r is
avalable The intrindc network parameters W
are concatenated (by rows) with the inputs w as a
vector a of system parameters. The dimenson of
a is of order KO + |. The responses caculated by
DeepNet as function of a are denoted by g. The
nomind uncertainties in the paamees ae
quantified by gpecifying covariance matrices,
eg., Caa= <Aa Aad' > The brackets denote
integration over a joint probability dendty
function (PDF). Many uncertainty anayss
methods choose a form for the PDF. We will be
more generd, and need only to specify the firg
few moments of the PDF. eg., mean vaue and
covaiance mdrix. Initidly, Casa will be block
diagonal, each block corresponding to the
covariance matrices associated with W and w.

Sengdtivities provide a sysemaic way to
propagate  uncertainties in  complex, non
dationary, nonlinear models. For example, to
fird order in a dationary sysem, the sengtivity
of the caculated response n with respect to
parameter |1 evaluaed a the nomind vdues a is
Si=0qn/dai. In a feed-forward multilayer archi-
tecture sengtivities can be caculated andyticaly
in a draghtforward manner. When neurd
networks are implemented as dynamicd systems,
sengtivities can be obtained efficently usng an
adjoint operator formdism [11,12], or exiding
automated differentiation preprocessors [23].

Usng the sengtivity marix S, we can cdculate
the nomind covariance marix of the DeepNet
responses. By expanding about the centroid of
the joint PDF of the system parameters, we
obtain, again to firt order, Cgq= <AQAq' > =
SCaaS.

We seek best estimates for the parameters and
responses, denoted by a and . These vaues are
rdlated to the current edimates by the
sengtivities §= q + S(a- a ). To obtain the best
edtimatess, we must consistently combine
computetiond results and experimentd
measurements.  We  will  achieve this by
optimizing a genedized Bayedan loss function,

which  dmultaneoudy  minimizes (i) the
differences between the best estimate and the
measured responses and (i) the best estimate and
the nomind vdues of the system parameers.
Our optimization process uses the inverse of a
generdized totd covariance marix as the naturd
metric  of the cdculaiond manifold. In
particular, we write:

~ ~ Crr Cra N d_r
Q:[q_r|a_a]|:c C :| |:A i| 4)

aa a—a

Additiond  potentid  contributions to  the
covariance matrix such as method biases may
adso be included in the above expresson. To
capture the condraints between parameters and
reponses, it is convenient to define new
vaidbles x = a-a,y=qg-r,and e=q-r.
Note that e denotes the discrepancy between
cdculations and messurements. Using the new
variables, the condraints become y = Sx + e. For
amplicity, we have illudrated here this
relationship to firs order only. One can now
construct an augmented Lagrangian, L, given by

L=Q+A"[Sx-y+e] . ©)

The best edstimates for the parameters and the
reduced uncertainties will be obtained by solving
the eguations derived from applying the
optimdity conditions to the minimization of L.
For ingtance, the  covaiance  matrix
coresponding to the best edtimates of the
parametersis given by the expression:

C33 =Caa _(C-rra_caa ST)(Crr _SC-rra

aa
T -1 6
~CraS +SC4aS ) €ra —SCaa)- ©

This formdism is being further extended to
dlow treatment of time dependent systems
(where, for example, sendtiviies such as
S¥ =9q /oa* appear), and to higher order
(nonlinear) congtraints.

5 Application

The ability to accuraely predict the location of
remaning ol in the neighborhood of exiding
production wdls is of vitd economic importance
to the petroleum industry. For practica purposes,
one typicdly targets volumes of fluid 10 meters
thick and 200 meters in laterd extent & a



distance of 200 meters from each well, requiring
a resolution accuracy of 5% in terms of the
digance from the observaion wel. Available
ailfidd information incorporates many datasets
with different scdes,  uncertainties, sample
volumes, and reevancee. Wdl logs (eg.,
porosity, gamma ray response, and resgivity)
provide the most accurate possible sensor-based
charecterization of the geologicad formations
encountered dong the path of a wdl [24]. On
the other hand, low-resolution seismic daa ae
generdly used to conduct large-scde fidd
assessments  [25]. The specific focus of the
research we report in this paper was to develop a
methodology that would enable fast and accurate
prediction of well pseudo logs from seismic data
across an entire oil field.

To test the proposed methodology, the Pompano
field, located in the Gulf of Mexico, wes
selected. Pompano is in deep water and has a
dgnificant potentid for compartmentaized ail.
The fine scde heterogeneity caused by the
channel  depostiond environment is wedl bdow
the resolution of 3D sasmic daa The
information available to us included 3D seismic
data, well logs, core samples, oil location and
production profiles.

Five sagmic vaiables were provided: the
reflected seismic  sSgnd, acoudic  impedance
(Al), and three components of the Hilbert
tranform of the reflected sdsmic sSgnd
(amplitude, frequency, and phase). Each of the
five datasats had 80 megabytes of data with a
goatid resolution of 4 kmin x and 7 kmin y. An
x-t plot of the reflected segmic sgnd is
displayed in Fg. 1. For the case of normd
incidence, the amplitude of the reflected signd
depends on the change in acoustic impedance at
the interface between two materids, where Al is
the product of densty and the speed of sound in
the materid.

The log data is sampled a regular intervals aong
the wdl. In Pompano, most wdls ae not
vertica (of the 17 wells studied here, only three
are verticd). The DeeplLook consortium of petro-
leum companies provided us with the rate of
deviation for each well. We cdculated the ,y,2)
coordinates for each data sample in the log data
from the saismic data, which have coordinates of
(x,y,t), where t is the two way trave time. To
convert from t to z we used a smooth estimates

of the average velocity [v = (2 2)/t]. Such
estimeates are less detailed than the seismic data.
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Fig. 1: An x-t cross section of a reflected seismic signal. Lighter
colorsindicate positive data

The DeepNet code is written in FORTRAN-95
running under Windows NT 4.0. Prdiminary
results are very encouraging, both in terms of the
exceptional speed of the learning process, and
the quaity of prediction obtained with test data
For ingance, the typicd traning time usng a
dataset of severd hundred seismic Sgnatures is
of the order of seconds on a Ddl Workstation
610 configured with 2 Petium I Xeon
processors operating at 400 MHz.

It is important to assess the quality of predictions
that can be obtained with DeepNet. The network
is initidly traned usng a smdl subsst of the
avalable daa typicdly, we have used the
sagmic-to-log correspondence for one, two, or
three wells. DeepNet was then used to generate
pseudo logs at other wells in the Pompano field.

DeepNet Prediction of Well Logs
Pompano Test Data: Well_B10
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Fig. 2: DeepNet predicts accurately the gamma ray
log using test data from Pompano well B-10



For comparison purposes the same pseudo logs
were generated usng a competing, recently
published  date-of-the-at  neura  network
dgorithm (i.e,, the Nadaraya-Watson paradigm
[26]). The much more accurate DeepNet results
are illudrated in Fgure 2. The N-W results are
given in Figure 3. For both cases, Pompano well
B-10 was used for the prediction test.

Prediction of DeepLook Well Logs using
Rao's Nadaraya-Watson Net

Gamma Ray Response

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

Sequential z Samples

Fig. 3: Prediction of gammaray log using a Nadaraya
Watson algorithm for test well B-10 isless accurate.

Conclusions

The DeepNet agorithm represents a new, ultra
fast (single iteration) approach to neura network
learning for feedforward nets. As such, it has
congderable advantages in  efficiency (Speed,
computation cost) over backpropagation. Further
more, initid results indicate that it is dso has
higher prediction accuracy. It is interesting to
note tha network retraining, typicaly associated
with an excessve cost when usng conventiona
learning, will now become trivid. When
combined with the NOGA uncertainty reduction
agorithms, our methodology will engble the all
exploration and production industry to gain an
unprecedented  ingght into  fluid types and
digributionsin reservoirs of interest.
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