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Friction Selection in Nonlinear Particle Arrays
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When a discrete nonlinear array is driven across a periodic surface spatially coherent modes of
motion can coexist associated with different average velocities due to resonant parametric forcing of
the particle fluctuations by the center of mass motion. Depending on the coupling strength k and size
of the array N , jumps in the minimum friction (maximum velocity) exhibited by the array occur at
km�N� � �N�m�2 as new modes stabilize and are selected by the dynamics. The existence of such
coherent modes allows both an effective low dimensional description of the dynamics to exist and the
possibility for control of friction close to these instabilities.

PACS numbers: 46.55.+d, 05.40.–a, 81.40.Pq
New developments in nanoscale technology [1] make
it important to understand the motion of driven nonlinear
particle arrays and clusters on periodic and disordered sub-
strates. In this mesoscale regime, in addition to conven-
tional single particle phononic and electronic dissipation
mechanisms [2], the friction of a nonlinear system can be
significantly affected by the dynamical properties of the
array as a whole.

In this Letter, we address this specific question of how
friction in small driven nonlinear particle arrays depends
on the form of spatiotemporal fluctuations of individual
particles in the array about their center of motion. We
study how the energy is transferred between the center
of mass motion and these fluctuations, and, consequently,
how the degree of phase synchronization in the array
affects its velocity. Since the arrays are highly nonlinear,
we expect that several spatiotemporal modes of motion
are possible for a fixed set of control parameters each
with its own associated frictional properties. We find
that the maximum average center of mass velocity (or the
minimal friction coefficient) undergoes a set of transitions
as the array coupling or the number of particles in the
array N are varied. These results suggest that close to
these instabilities which occur in arrays of well-defined
quantized sizes there exists the strong possibility that small
perturbations may be used to switch the array dynamics
and thus control friction [3].

The basic equations for the driven dynamics of a one-
dimensional particle array of N identical particles moving
on a surface are given by a set of coupled nonlinear
0031-9007�99�83(1)�104(4)$15.00
equations of the form [2]

mẍj 1 g �xj � 2≠U�≠xj 2 ≠V�≠xj 1 fj 1 h�t� ,
(1)

where xj is the coordinate of the jth particle, m is its
mass, g is the linear friction coefficient representing all
single particle energy exchange with the substrate, fj is the
applied external force, and h�t� is the Gaussian noise. The
particles are subjected to a periodic potential U�xj 1 a� �
U�xj� and interact with each other via a pair-wise potential
V �xi 2 xj� which typically has an equilibrium separation
b which may be incommensurate with a.

This set of equations provides a generic framework for
the modeling of dry friction in nonconfined systems though
the level of detail in the particle-substrate and particle-
particle interactions and the dimensionality of the model
varies in different studies from 1D models [4], through
generalizations to 2D models [5] to full sets of molecular
dynamics simulations [6].

Numerically we study the case where the substrate po-
tential has a simple periodic form, the interparticle interac-
tion is via Morse potential, and the same force f is applied
to each particle. We are interested in the regime where the
nonlinearities are important, specifically where the time
average of the substrate force 2≠U�≠x is significant com-
pared to the driving, and the average velocity of the chain
yay ø f�g is much smaller than the single particle limit.
Using the dimensionless phase variable f � 2px�a,
where a is the lattice periodicity, Eq. (1) reduces to
f̈n 1 g �fn 1 sin�fn� � f 1 �k�b� �F���b�fn11 2 fn 2 p0���� 2 F���b�fn 2 fn21 2 p0����� , (2)
where F�x� � exp�2x� 2 exp�22x�, k is the dimen-
sionless coupling constant (the ratio of the strength of
interparticle interaction to the strength of the periodic po-
tential), b is the nonlinearity parameter (b21 is the range
over which the nearest-neighbor coupling is effectively
linear), p0 � �b 2 a��a is the misfit length, and we
consider periodic boundary conditions. For very small
values of b ! 0, Eq. (2) reduces to the Frenkel-
Kontorova model

f̈n 1 g �fn 1 sin�fn� � f 1 k�fn11 2 2fn 1 fn21� .

(3)
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The dissipative dynamics of the Frenkel-Kontorova
model has been extensively studied [7]. This model
provides a reasonable understanding of the mechanisms in
dry friction, in particular when the interatomic potential is
of the same order or larger than the substrate potential (the
case of intermediate or strong coupling k).

To study the influence of spatiotemporal fluctuations on
dry friction we therefore first separate the center of mass
motion of the array from the spatiotemporal fluctuations
which dissipate only energy. This proposed analysis of
the motion allows a low dimensional reduced description
of the dynamics in which only a few key variables
capture its main features. For such coherent states it is
possible to justify the use of phenomenological models
[8], and it becomes possible to extract both the form of the
equations of motion for the key state variables describing
the dynamics, and make an analysis of the parameter
range for which they form an effective description.
We define the spatial average �X��t� � 1�N
P

n Xn�t�,
and the temporal average Xn � 1�T

Rt1T
t Xn�t� dt for

any array variable of interest Xn�t�. Then we split
the dynamics into a center of mass contribution and a
spatiotemporal fluctuation by

fn�t� � f�t� 1 cn�t� , (4)

where �cn�t�� � 0 by construction. In terms of these
variables we can equate the average energy input into the
array to the average dissipation to the substrate due to the
average center of mass motion, its temporal fluctuations,
and the spatial fluctuations as

f �f � g�� �f�2 1 d �f2 1 � �c2
n�� . (5)

The center of mass motion obeys

f̈ 1 g �f 1 sin�f� �cos�cn�� 1 cos�f� �sin�cn�� � f ,

(6)

while the spatiotemporal fluctuations cn obey
c̈n 1 g �cn 1 sin�f� �cos�cn� 2 �cos�cn��� 1 cos�f� �sin�cn� 2 �sin�cn��� � k�cn11 2 2cn 1 cn21� . (7)
The power spectrum of the spatiotemporal fluctu-

ations (see Fig. 1) indicates that the �f�2 parametric
excitation is a significant mechanism in the dynamics

of the array, where �f is the average velocity of the
center of mass motion. There is a qualitative similarity
to the Suhl instability [9] for ferromagnetic resonance,
which is a high microwave power phenomenon. The
analog of the microwave field is ≠U�≠x, and spin
waves rather than lattice vibrations are excited. As-
suming therefore that the main mechanism for the
transfer of energy from the center of mass motion to
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FIG. 1. The logarithm of the power spectrum S�v� versus

the scaled frequency v� �f of the spatiotemporal fluctuations
c6�t� for the particle No. 6 in the N � 25 particle array (the
power spectrum of the other particles show qualitatively very
similar behavior). The other parameters are f � 0.9, g � 0.7,
p0 	 0.2, b 	 0.01, and k � 2.9. Note the strong parametric

resonance at v � �f�2 (the highest peak).
the spatiotemporal fluctuations in the array is due to this

subharmonic �f�2 parametric resonance, we can neglect
sin�f� �cos�cn� 2 �cos�cn��� 	 0 as it has no resonant
contributions. We also make the quasilinear approxi-
mation �sin�cn� 2 �sin�cn��� 	 Ccn, where we choose

C �
q

�sin2�cn�� 2 �sin�cn��
2
���c2

n� 	
q

1��1 1 2�c2
n��

self-consistently so that the spatiotemporal average of the
first two moments of the fluctuations are correct (the final
approximation is a parametrized fit between C 	 1 valid

for small fluctuations and C 	
q

1��2�c2
n�� valid for large

fluctuations). This self-consistent approximation made
to yield a set of analytically tractable equations, can be
justified both by their agreement with numerical results
and by the fact that to order �c2

n� the fluctuations are
correctly preserved. Thus Eq. (7) reduces to

c̈n 1 g �cn 1 C cos�f�cn � k�cn11 2 2cn 1 cn21� ,

(8)
and because these equations are quasilinear we make the
Fourier decomposition cn�t� �

P
m cm�t�ei2pmn�N to find

equations of motion for the modes cm

c̈m 1 g �cm 1 �V2
m 1 C cos�fm��cm � 0 , (9)

where Vm � 2
p

k sin�pm�N�. Assuming that the fluctu-
ations from the center of mass of motion are small, Eq. (6)
for the center of mass motion also reduces to

f̈m 1 g �fm 1 sin�fm� �1 2 c2
m�2� � f , (10)

where in deriving Eq. (10) we assumed that the spatiotem-
poral dynamics consists of only one coherent mode. We
now show that such mode selection indeed occurs and
therefore a reduced description of the dynamics given by
Eqs. (9) and (10) is possible.

In the absence of coupling Eq. (10) has a propagating
solution where the center of mass of the array moves with
105
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a velocity v0 � �f0. Let us assume that in the presence
of coupling the propagating solution remains with a

perturbed center of mass velocity vm � �fm. We can
therefore neglect higher harmonics and parametrize the
center of mass motion as fm�t� 	 vmt 1 Bm sin�vmt�.
In consequence we can rewrite Eq. (9) as

c̈m 1 g �cm 1 �V2
m 2 CJ1�Bm� 1

C�J0�Bm� 1 J2�Bm�� cos�vmt��cm � 0 , (11)
106
where Jn�x� are Bessel functions of order n. Equa-
tion (11) clearly shows resonant parametric forcing whenp

�V2
m 2 CJ1�Bm�� � vm�2.

A resonant solution to Eq. (11) in the form cm�t� �
bm sin�vmt�21bm� exists where bm � 
�J0�Bm� 1

J2�Bm��Cbm�2� 
�V2
m 2 CJ1�Bm� 2 �vm�2�2�2 1 �gvm�

2�2�21�2. Thus either bm � 0, or, as C � 1��1 1P
m0 b2

m0�, there exists for each nonzero mode an equation
of the form

2��J0�Bm� 1 J2�Bm���2
�V2
m 2 CJ1�Bm� 2 �vm�2�2�2 1 �gvm�2�2� � 1

, "
1 1

X
m0

b2
m0

#
. (12)
As the left hand side of this equation takes a mode depen-
dent value while the right hand side is mode independent,
these N constraints ensure that mode selection occurs, and
only one mode can exist at a time bm fi 0 and all other
bm0 � 0. There are N such solutions. Each mode is spa-
tially coherent with a different center of mass velocity and
different amplitude fluctuations (see Fig. 2).

To study how the dynamics of mode m depends
on system size N and coupling k, we first note that
C � 1�

p
1 1 b2

m, and therefore 0 , C , 1. But C 	
2�

p

�V2

m 2 �vm�2�2�2 1 �gvm�2�2� 2 �V2
m 2 �vm�

2�2�Bm� 1 O�B2
m�. These two equations are only self-

consistent in a certain range Vmin , Vm , Vmax. We
can calculate approximately the maximal natural frequency
for a mode which can exhibit a coherent spatial form as
V2

max 	 �v0�2�2 1 B0�2 1
p

1 2 �gv0�2�2�2, where
v0 and B0 are the velocity and amplitude of temporal
fluctuation of the uncoupled center of mass motion. Simi-
larly the minimal natural frequency supporting a coherent
mode is V

2
min 	 �v0�2�2 1 B0�2 2

p
1 2 �gv0�2�2�2.

In this range we can solve for the average propagation
velocity vm and relate it to the degree of spatiotemporal
fluctuations in the array by using the balance between
forcing and dissipation given by Eq. (5)

vm � � f�g����1 1 B2
m�2� 1 b2

m�8� . (13)

We are interested in the maximum velocity (minimum
friction coefficient) of the array as we change array
parameters such as the coupling strength k, or the number
of particles N in the array. In Fig. 3 we show the
maximum velocity of the array as a function of the
coupling strength k. We observe quantized jumps in
maximum velocity, each corresponding to a transition
to a different mode of motion (described by its mode
number m). Analysis of these transitions reveals that
they are observed if the applied force f is slightly above
the critical force to start motion. It is possible to scale
the position at which these maximum velocity/minimal
friction jumps occur as the coupling strength is varied
using the size of the array, as km�N� � �N�m�2.

Our analytical results explain these quantized jumps
in the maximum velocity and the associated system
size scaling with N observed in the numerical simula-
tions. As Vm � 2

p
k sin�pm�N�, we see that V1 	
2p
p

k�N , V2 , · · · , VN�2 � 2
p

k, and therefore a
series of dynamical transitions can occur as k is decreased
(for fixed N), or N is increased (for fixed k). For very
large coupling strength or small system size V1 . Vmax,
there are no coherent modes and a synchronous dynamics
is observed. When the coupling is reduced sufficiently so
that V1 , Vmax but V2 . Vmax a single coherent mode
exists with high center of mass velocity v1 	 v. As
the coupling is reduced further the spatial fluctuations in
mode 1 increase as resonance is approached V1 ! v�2
causing v1 to decrease in turn. As k is decreased or
the system size N is increased still further, new modes
become stable and several possible modes of motion
can exist for the array. In general as each new mode
becomes stable it will have the highest center of mass
velocity because it is furthest from resonance and there-
fore its fluctuations which only dissipate energy without
contributing to the center of mass motion are small.
Thus a quantized jump in maximum velocity will occur
each time a new mode appears with Vm � Vmax, or
km�N� 	 �VmaxN�2pm�2, in agreement with the obser-
vations from numerical simulations of Eq. (2).
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FIG. 2. A snapshot at one instant of time of the spatiotem-
poral fluctuations cn�t� versus the particle number n. The ¶
symbols represent mode 1 (k � 10), while the 1 symbols rep-
resent mode 2 (k � 2.9). The other parameters are the same as
in the Fig. 1. The strong coherence in the dynamics is evident.
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FIG. 3. Maximal average velocity Vmax as a function of the
coupling k for (a) N � 25 particle array and (b) N � 75
particle array. Note the dynamical scaling with system size
N provided the array coupling k is properly scaled. The
parameters are the same as in Fig. 1.

As k is reduced still further so that V1 , v�2 modes
very close to resonance will always exist and a better
ansatz for their spatial fluctuations will be of the form
cm�t� � bm sin�vmt�2 1 bm� 1 am sin�Vmt 1 am�.
Under these circumstances the amplitude of the periodic
solution of frequency v�2 will be modulated by a beat
frequency of magnitude Vbeat � Vm 2 v�2. Such
predicted beat effects in the dynamics are indeed ob-
served numerically. Finally at low enough values of the
coupling or for large enough arrays we will have the con-
dition VN�2 , Vmin. At this point a transition back to
synchronous motion occurs. This happens for a coupling
strength kmin � �Vmin�2�2, which is independent of the
system size and is again in agreement with numerical
simulations.

In this Letter, we have considered the dynamics
of ultrasmall chains with 10 , N , 100 particles.
These resonance phenomena may disappear for larger
arrays because of the density of states available for
the fluctuations. At the nanoscale, however, chains of
particles, clusters, and indeed more complex atomic
architectures driven across surfaces can be expected to
exhibit a variety of unusual coherent modes of motion
and frictional properties, which may have important
technological implication if such switching between these
dynamical states can be performed in a controlled fashion,
for example by using small additional perturbations close
to the instabilities, or by making small changes in the
material properties of the surface.
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