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Amplitude dropout in coupled lasers
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We study the entrainment of coupled solid-state lasers by an external injected field. We show that the total
output intensity exhibits unexpected nonmonotonic behavior as a function of the injected field and find the
critical amplitude marking the transition to the low-intensity branch. In addition, we also show that substantial
partial entrainment can be achieved for injected fields much weaker than that required for full entrainment.

PACS number~s!: 42.55.2f, 05.45.Xt, 42.60.Da, 42.60.Fc
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Laser arrays are promising for applications that requ
high optical power from a compact source@1–3#. Both solid-
state@4–7# and semiconductor@8–12# arrays are subjects o
intense research, and various aspects of their dynamica
havior such as chaotic synchronization@13# and chaotic com-
munication@14# have already been reported.

The most efficient mode of operation is realized when
elements are synchronized such that the output interf
constructively and the light intensity is maximized. Unfort
nately, this synchronized state is typically unstable. Inste
the attracting dynamics is the out-of-phase state, leadin
destructive interference resulting in low output intensit
@7,8,11#.

To date, various techniques have been proposed to ob
stable in-phase behavior. A potentially useful technique is
inject a common driving laser field into the laser array e
ments@7,11,15,16#. For sufficiently high driving amplitude
the elements are entrained and interfere constructively;
entrainment of the array is realized above a certain va
determined by the coupling of the array elements@7,11#. On
the other hand, as a practical matter, this technique wo
become more powerful if entrainment were achieved w
relatively low driving amplitudes.

In this paper, we elucidate a newly observed dynam
behavior of a two-laser array under external injectio
namely, a strongly nonmonotonic behavior of the output
tensity as a function of the injected field. We show that s
nificant entrainment can be achieved even for relativ
small injected fields; this feature has obvious practical
evance. To the best of our knowledge, the first numer
evidence of a nonmonotonic response in two coupled la
has been recently reported by Khibniket al. @17#. A non-
monotonic response of the sliding velocity to the appl
force in a two-dimensional~2D! driven array of Frenkel-
Kontorova-type oscillators was recently reported in nume
cal simulations by Braunet al. @18#. Both results suggest tha
nonmonotonocity is intrinsic for a broad range of diver
fields ~such as lasers, atomic scale devices, Josephson
tions! that can be modeled in terms of nonlinear coup
oscillators.

Starting from the complete equations of motion for t
laser array, we first provide a rigorous reduction of the co
plete array dynamics to a simpler description. The redu
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equations fall into a class of dynamical models known
phase models@17,19,20#. Based on the phase model, we pr
vide a complete analytical understanding of the nonmo
tonic behavior of total output intensity of the laser array a
function of the injected field and calculate the strength of
injected field where the abrupt transition to much lower
tensity occurs.

Our starting point is the system of equations describ
the dynamics of two evanescently coupled solid-state las
where the polarization is adiabatically eliminated:

Ėj~ t !5~Gj2a j1ıd j !Ej1k~Ej 111Ej 21!1Ee~ t !,

Ġj~ t !5
tc

t f
@pj2~11uEj u2!Gj #, ~1!

where j 51,2, and free end boundary conditions@E0(t)
5E3(t)50# are imposed. The variablesEj and Gj are the
dimensionless complex electric field and gain for thej th la-
ser. All times and frequencies are scaled relative to the ca
round trip time,tc , and t f is the fluorescence time of th
laser medium;a j andpj are the dimensionless cavity deca
and pump rates for thej th laser, respectively,k is the eva-
nescent coupling constant between the two lasers, andEe(t)
is the slowly varying amplitude of the external field whic
drives each laser@9#. Equations~1! are written in a frame
rotating with frequencyve , at which the external field has
nonzero Fourier component. This frequency is tuned to m
mize the detuning from the cavity resonances. In pract
the output power emitted from an array depends on the
ing of external field to the cavities@16#. The detuningd j
5ve2vc j2GjDv j've2vc j , where vc j is the cavity
resonance frequency for laserj andDv is the atomic detun-
ing from ve in units of the polarization decay rate. For soli
state lasers, the latter dynamic contribution to the detunin
generally ignored. In the following, we allow for a sma
spread in detunings as a way to test the robustness of
entrainment mechanism to a physically reasonable param
spread.

We assumea j5a, pj5p, p.a @7#. SubstitutingEj (t)
5AI j (t)exp„if j (t)…, whereI j (t) andf j (t) are the intensity
©2000 The American Physical Society15-1
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and the phase of laserj and assumingEe(t)5Ee[AI e to be
a constant field, the model equations for two lasers read

İ j52~Gj2a!I j12kAI 1I 2 cos~f22f1!12AI eI j cosf j ,

ḟ j5d j1~21! jk
AI 1I 2

I j
sin~f12f2!2AI e

I j
sinf j , ~2!

Ġj5~p2Gj2GjI j !v0 ,

where v05tc /t f . Throughout the paper, we seta50.01,
p50.015,k521025, v05531027, and we vary onlyd1 ,
d2, andI e .

Equations ~2! have been studied theoretically forN
coupled lasers@7# and the condition for full entrainment ha
been derived. This condition assumes small deviations in
tunings and small coupling. We denote the dimensionl
amplitude of the injected field byAe5AI e /I , where I
5p/a21. Ideally, to entrain an array ofN identical lasers
requires an injected field amplitudeAentr54uku, or Eentr

54ukuAI . The functional form of the total output intensit
may significantly depend on the parameters of the ar
~such as detunings and the coupling constant!. In Fig. 1, we
show the normalized total intensity@ I tot5(1/4I )u(E1
1E2)u2# of two coupled lasers at the center of the far-fie
lobe as a function ofAe . The injected field frequency ap
proximately corresponds to the average of frequencies
each laser, thus it is tuned to minimize the detunings fr
the cavity resonances. We continuously vary the strengt
the injected field to mimic an experiment where the injec
field is gradually increased. Initially, the total intensity grow
with the injected field. When the injection strength reach
the critical amplitude,Ac , the total intensity drops discon

FIG. 1. The normalized total intensity,I tot5(1/4I )u(E1

1E2)u2, as a function of the strength of the dimensionless injec
field, Ae5AI e /I . The curve was computed by gradually increasi
the amplitude of the injected field. An inset shows theaverage
normalized total intensity,I tot , as a function ofAe . Our statistical
average is based on 500 simulations, each performed using a
ferent set of initial conditions. The other parameters area50.01,
p50.015, k521025, v05531027, d1528.1831027, and
d25226.831027. The entrainment amplitudeAentr/uku54. All
units are dimensionless.
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tinuously to a significantly lower level@21#. We notice that,
just belowAc , the total output intensity of the array is abo
70% of the maximum intensity~at full entrainment!, but re-
quires only about 20% of the entrainment injected fie
Eentr. We estimate that if we apply a different set of initi
conditions, the probability to obtain qualitatively very sim
lar behavior, as demonstrated in Fig. 1, is in the vicinity
60%. Our estimation is based on simulating a sample of
realizations of distinct initial conditions. In the inset of Fi
1, we present theaveragedvalue of the normalized tota
intensity of two coupled lasers versus the dimensionless
plitude of the external field,Ae5AI e /I . The curve is ob-
tained by numerically solving Eqs.~2! for two coupled lasers
and averaging over 500 realizations of the initial conditio

A characteristic feature of independent solid-state las
~i.e., without coupling and external field! is that, for any
initial data their intensities and gains relax to a station
state (I ,G)5(p/a21,a), i.e., the amplitudesuI j2I u and
uGj2Gu decay to zero. Numerical experiments@7#, using
physically realistic parameter values, show similar transi
behavior of intensities and gains in the full laser array syst
~2!, where both coupling and excitation terms are prese
Once these transients have decayed, it turns out that the
namics of the phasesf j no longer depend on intensities
This motivates, at least at a heuristic level, the use of ph
equations in Eqs.~2!, with I j5I , as an approximation mode
to the full system~2!. It turns out that the phase equation
retain the essential features of the dynamics and can be
to explain the nonmonotonic behavior displayed by the so
tion of the complete system~2!.

We first present a derivation of the phase equations ba
on averaging theory@22,23#. Our derivation is somewha
technical, including some rescaling of variables whose m
vation is not obviousa priori. A consequence of this analys
is that it significantly widens the range of validity of th
phase model as compared with an earlier derivation base
singular perturbation techniques@17#. Indeed, the simula-
tions depicted in Fig. 1 correspond to a different~signifi-
cantly expanded! parameter regime, and as we show belo
can be completely understood in terms of the reduced ph
model.

Substituting I j5I (xj11) (xj.21), Gj5byj1a ( j
51,2), t85vVt, d15«VD1 , d25«VD2 , k52«V, A
5(1/uku)AI e /I , and v5a/b with b5A(p2a)v0, and V
5b2/a, we transform system~2! into

dxj

dt8
5yj~xj11!1

2«

v
@2A~xj11!~xj 1111!cos~f j 112f j !

1AAxj11 cosf j #,

dyj

dt8
52xj2

1

v
yj S p

p2a
1xj D , ~3!

df j

dt8
5

«

v FD j2SAxj 1111

xj11
sin~f j 112f j !

2A
1

Axj11
sinf j D G ,

d

if-
5-2
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where here and henceforthj 51,2, and cyclic conditions are
imposed (x3[x1).

The advantage of this form is that it makes the separa
of time scales more transparent. We now assume thav
@max(1,«), where v5a/A(p2a)v0, and «52ka/(p
2a)v0. For the set of parameters chosen above~that corre-
spond to experimentally measurable parameters for
Nd:YAG laser @5#!, v5200 and«540. Therefore, we sat
isfy this assumption ifuku!531025 which, indeed, is satis
fied in our simulations since we useuku51025 @24#. Then
system~3! can be regarded as a perturbation, via damp
and coupling terms, of the system with two trivial integra
of motion f15f1

0 ,f25f2
0 and two nontrivial integralsR1

5L(x1 ,y1),R25L(x2 ,y2) @25#, where

L~x,y!5
1

2
y21x2 ln~x11! ~4!

(x.21). Since the level curvesL(xi ,yi)5Ri ( i 51,2) are
ovals surrounding the origin, we can useRi and a polar angle
u i as new coordinates on the (xi ,yi) plane so thatxi
5x(Ri ,u i), yi5y(Ri ,u i). In the perturbed system~3!, we
have dRi /dt85O(1/v), df i /dt85O(1/v), and du i /dt8
5O(1). This allows us to write approximate equations f
the evolution of amplitudesRi and phasesf i by averaging
the true equations over angular variablesu i . The averaged
equations read as follows:

dRj

dt8
52

1

v
K~Rj !1

2«

v
L~Rj !@M ~Rj 11!cos~f j 112f j !

2A cosf j #,
~5!

df j

dt8
5

«

v
$D j1N~Rj !@M ~Rj 11!sin~f j2f j 11!2A sinf j #%,

where

K~r !5
1

2pE0

2p

y2~r ,u!S p

p2a
1x~r ,u! Ddu

@K~r !.0 for r .0#,

L~r !52
1

2pE0

2p x~r ,u!

Ax~r ,u!11
du,

M ~r !5
1

2pE0

2p
Ax~r ,u!11du,

and

N~r !5
1

2pE0

2p 1

Ax~r ,u!11
du.

In the asymptotic limit, (R1 ,R2) tend to (0,0), provided
their initial values lie within certain bounds. Indeed, by co
puting the leading terms ofK(r ), L(r ), M (r ), and N(r )
06381
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near r 50, we getL(x,y)5 1
2 y21 1

2 x21O(r 3/2) yielding x
5A2r cosu1O(r), y5A2r sinu1O(r), and K(r )5 3

2 r
1O(r 2), L(r )5 1

4 r 1O(r 2), M (r )511O(r 2), and N(r )
511O(r 2). Givenp,j,c,r 0 (r 0.0), we can always choos
«.0 ~not necessarily small! such that dR1 /dt8
,0, dR2 /dt8,0 in the domainR1<r 0 , R2<r 0. This im-
plies asymptotic stability of the origin in the plane (R1 ,R2)
for the averaged equations~5!. NeglectingO(r 2) terms in
the averaged equations~5! for phases and redefining param
eters, we obtain the phase model

ḟ15d j1k sin~f22f1!2Ae sinf1 ,
~6!

ḟ25d21k sin~f12f2!2Ae sinf2 .

Equations~6! provide a significantly reduced descriptio
which captures nevertheless the essential dynamics, inc
ing the sudden drop in output intensity depicted in Fig. 1,
we now show. We write Eqs.~6! in the following form:

d

dt
~f11f2!5d11d22Ae~sinf11 sinf2!,

~7!
d

dt
~f12f2!5d12d212k sin~f22f1!

1Ae~sinf22 sinf1!.

The frequency of the external field is tuned to minimi
the detunings from the cavity resonances, thus we may
sume (d11d2)'0. This allows us to reduce the dimensio
ality of the parameter space and essentially carry out
~simplified! analysis of the dynamics and of the fixed poin
in the plane (d12d2 ,k). Thus, with these assumptions@26#,
the stationary form of Eqs.~7! reads

sinf11sinf250,

d12d212k sin~f22f1!1Ae~sinf22sinf1!50. ~8!

The first equation in Eqs.~8! implies that either~a! f2
2f15(2m11)p, or ~b! f11f252pm, where m is an
integer (m50,1,2, . . . ). Solutions of class~a! imply sin(f2
2f1)50, yielding sinf15d1 /Ae, sinf25d2 /Ae, and sin(f1
2f2)5 sin@sin21(d1 /Ae)2 sin21(d2 /Ae)#Þ0, i.e., inconsis-
tency. Hence, the only possibility is the class~b! of solutions
which, in turn, can be divided into two subclasses:m even
and m odd. For m even, the second equation in Eqs.~8!
becomes

f ~f![2d22k sinf22Ae sin
f

2
50, ~9!

where we substitutedd5d12d2 andf5f22f1.
For small values ofAe , this equation has two solutions

one stable and one unstable. By increasing the strength o
injected fieldAe , a saddle-node bifurcation occurs at a cri
cal value,Ac .

For Ae.Ac , Eq. ~9! has no real solution. To deter
mine Ac , we solve the systemf (f)50 and f 8(f)50,
5-3
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namely, 2d22k sinfc22Ac sin(fc/2)50 and 22k cosfc
2Ac cos(fc/2)50. Making a substitution tan(fc/2)5z and
eliminating Ac , we obtainz31(d/4k)z21(d/4k)50, with
the solution z5@2(q/2)1AD#1/31@2(q/2)2AD#1/3

2d/12k, whereD5(p/3)31(q/2)2, p52d2/48k2, and q
5(d/4k)1(d3/864k3). Substituting the expression forz in
the equations above yields an expression forAc :

Ac522k
12z2

A~11z2
. ~10!

Omitting the ~very small! higher order terms ind/k yields
the simple but accurate approximationzc5(d/24k)1/3

2(d/12k).
For m odd, the second equation in Eqs.~8! reads

g~f![2d22k sinf12Ae sin
f

2
50. ~11!

A similar analysis shows that this equation has two so
tions, one close tof'0 and the other close tof'p. The
stability of these solutions is determined by checking
sign of g8(f). Sinceg8(0).0 andg8(p),0, the solution
f'0 is unstable, whilef'p is stable. At small values o
the amplitude of the injected fieldAe , the system has two
stable solutions, one close top/2 that solves Eq.~9! and one
close top that solves Eq.~11!. Since the total output inten
sity is given byI tot54 cos2(f/2) @27#, one solution has high
intensity while the other one has low intensity.

Each of these stable solutions has a basin of attraction
the selection of the solution depends, of course, on the in
conditions. WhenAe5Ac , the high-intensity solution disap
pears at the saddle-node point and for higher values oAc
only the low-intensity solution remains.

FIG. 2. The critical amplitude,Ac , as a function of the coupling
strength,k. The solid line is the theoretical curve, while the poin
are the results of numerical calculations@Eq. ~2!#. The other param-
eters are the same as in Fig. 1. All units are dimensionless.
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In Fig. 2, we show the critical amplitudeAc as a function
of the coupling strengthk for fixed z. The solid line is ob-
tained based on the analytical expression@Eq. ~10!#, while
the points are determined from the solution of the full set
equations@Eqs. ~2!#. We notice that the fit between the nu
merical and analytical expressions is excellent. We also
culated the dependence of the critical amplitudeAc on the
diffference in detuningsd12d2[d. The outcome is pre-
sented in Fig. 3, where the solid line shows the analyti
expression@Eq. ~10!# while the points are the result of th
numerical simulations. As in Fig. 2, we obtain an almo
perfect agreement.

In summary, we have demonstrated that the far-field to
intensity at the center of the lobe,I tot , exhibits nonmono-
tonic behavior as a function of the injected field. Initially th
total intensity grows but, at a critical injection amplitud
Ac , it undergoes a sharp transition to a lower intens
branch. This behavior can be analytically explained by
reduced ‘‘phase model’’ of the array. For the parameter v
ues considered in this paper, one can achieve a signifi
partial entrainment of the array—up to 70% of the maximu
intensity—with injected fields about five times smaller th
the saturation entrainment field,Eentr. This could result in
significant reductions of the power required to entrain la
arrays by injection, thereby removing one of the main o
stacles that limit the applicability of this technique.

We thank Dr. L. Zhang for his helpful comments an
suggestions on the manuscript. This work was partially s
ported~Y.B. and V.P.! by the Engineering Research Progra
of the DOE Office of Basic Energy Sciences under Contr
No. DE-AC05-96OR22725 with UT-Battelle, LLC, and b
the Office of Naval Research~Y.B.!. A.I.K. acknowledges
the DOE, Grant No. DE-FG02-93-ER251.

FIG. 3. The critical amplitude,Ac , as a function of the differ-
ences in detuning,d5d12d2. The solid line is the theoretica
curve, while the points are the results of numerical calculations@Eq.
~2!#. The other parameters are as in Fig. 1. All units are dimens
less.
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M. Möller, B. Forsmann, and W. Lange, Chaos, Solitons Fr
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