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Abstract

We investigate the entwined roles that additional information and quantum al-
gorithms could play in reducing the complexity of the global optimization problem
(GOP). We show that: (i) a modest amount of additional information is su±cient
to map the general continuous GOP into the (discrete) Grover problem; (ii) while
this additional information is actually available in some GOPs, it cannot be taken
advantage of within classical optimization algorithms; (iii) on the contrary, quantum
algorithms o®er a natural framework for the e±cient use of this information resulting
in a speed-up of the solution of the GOP.
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1 The Global Optimization Problem

Optimization problems are ubiquitous and extremely consequential. Their theoretical and
practical interest has continued to grow from the ¯rst recorded instance of Queen Dido's
problem [12] to present day forays into complexity theory or large scale logistics applica-
tions (see Refs. [14], [9], [8], [6], and references therein). The formulation of the GOP is
deceptively simple: ¯nd the absolute minimum (maximum) of a given function - called the
objective function or functional - over the allowed range of its variables. Sometimes, the
function to be optimized is not speci¯ed in analytic form and must be evaluated point-wise
by a computer program, a physical device, or other construct. Such a black-box tool is
called an oracle. Of course, the brute force approach of evaluating the function on its whole
domain is either impossible - if the variables are continuous - or prohibitively expensive
- if the variables are discrete, but have wide ranges, in high dimensional spaces. Since in
general each oracle invocation (function evaluation) involves an expensive computational
sequence, the number of function evaluations needs to be kept to a minimum. The number
of invocations of the oracle measures the query complexity of the problem and gives a fair
- although by no means unique - idea of its di±culty or \hardness" [5]. Therefore, the
number of oracle invocations is one of the paramount criteria in comparing the e±ciency
of competing optimization algorithms.

The primary di±culty in solving the GOP stems from the fact that the familiar condi-
tion for determining extrema - namely, annulment of the gradient of the objective function
- is only necessary (the function may have a maximim, a minimum, or not have an ex-
tremum at all !) and local (i.e. it does not distinguish between local and global extrema).
The generic strategy to ¯nd the global minimum involves two main operations, namely: (i)
descent to a local minimum, a deteministic operation, and (ii) search for the new descent
region, a stochastic operation. This simple strategy is marred by severe implementation
problems. First, descent assumes a certain degree of smoothness, which is not always war-
ranted. Second, after determining a local minimum, the algorithm is usually trapped in
it and special operations have to be designed to restart the search. Finally, as the dimen-
sionality of the problem increases, the search of the phase space becomes more and more
complicated and time consuming; as a result, the query complexity of the problem increases
as well. The \hardness" of the GOP is well illustrated by the following example for which
the approach described above seems powerless. De¯ne the function f : [0; 1] ! f0; 1g as
follows:

f(x) =

8><>:
1 for 0 · x · a¡ ²=2

0 for a¡ ²=2 < x < a+ ²=2
1 for a+ ²=2 · x · 1:

(1)

where a 2 (²=2; 1¡²=2). Since the gradient - whenever de¯ned - is alwyas zero, the descent
phase does not make sense. To obtain the minimum of this function, one should evaluate
its values within the ² interval around the unknown number a. If the function is de¯ned
like an oracle (i.e., if one does not know the position of the point a), the probability of
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choosing an x within this interval is ². For the n-dimensional version of this oracle, the
probability becomes ²n, and the complexity of the problem grows exponentially with n (the
dimensionality curse). This and related issues have been deftly discussed by Wolpert and
Macready in connection with their \No Free Lunch" (NFL) theorem [16].

In the light of the previous example, it would seem that without additional knowledge
about (the structure of) the function there is no hope to decide upon an intelligent classical
optimization strategy and one would be left with either strategies that have limited albeit
e±cient applicability or the tantalizing prospective of exhaustive search. However, in the
last few years, a new, promising option has emerged, with quantum computing being hailed
as the potential provider of e±cient solutions to some of the computationally hard classical
problems [10]. Indeed, Grover's [7] and Shor's [11] algorithms have provided such solutions
to the problems of ¯nding a given element in an unsorted set and the prime factorization
of very large numbers, respectively. While no essentially new quantum algorithm has been
proposed to date, the hope is high that, on the one hand, they would, and on the other
hand, the machines needed to implement them would be available in a not too distant
future.

In this Letter, we present an e±cient solution to the continuous GOP, by developing a
generalization of Grover's algorithm to continuous problems. This generalization requires
additional information on the objective function. In many optimization problems, some
of this additional information is actually available (see below). While other required in-
formation may be more di±cult to obtain in practical applications, it is still important to
understand - from a theoretical point of view - the role played by additional information
in reducing the di±culty of the problem, and to be able to assess a priori what various in-
formation is relevant and for what. To clarify the meaning of the last phrase, assume that
the objective function were an analytic function. Then, the knowledge of all its derivatives
at a given point would allow, in principle, the \knowledge" of the function everywhere else
in the domain of analyticity. However, to actually ¯nd the global minimum, the function
would still have to be calculated everywhere ! In other words, the (additional) knowledge of
all the derivatives at a given point cannot be e±ciently used to locate the global minimum,
although in principle it is equivalent to the knowledge of the function at all points. In fact,
to locate the global minimum, both methods would require exhaustive - albeit di®erent -
calculations.

The remaining of this letter is structured as follows. In Section 2 we present Grover's
quantum algorithm for search in unstructured sets. In Section 3, under certain assump-
tions, we map the continuous GOP into the discrete Grover problem, thereby solving the
GOP by using Grover's algorithm. In the ¯nal Section we present some implementation
considerations and discuss the relaxation of the assumptions.

2 Grover's Quantum Algorithm

A quantum computation is a sequence of unitary transformations on the initial state of the
wave function, Ã. As such, quantum computation is purely deterministic and reversible.

3



It requires the initialization or preparation of the initial state, the actual \computation",
which is the unitary evolution of the initial state along a designed trajectory in the quantum
computer, and the read out of the result e®ected through a measurement of the ¯nal state.
If the algorithm is well designed and e±cient, then, with probability (much) higher than
1=2, the measurement would collapse the ¯nal state onto the desired result. Computer
architectures needed to implement classical or quantum algorithm are realized in terms of
gates. As opposed to classical gates that operate on bits taking values in the set f0, 1g,
quantum gates operate on normalized vectors in a ¯nite-dimensional complex Euclidian
space. In principle, any quantum computer can be viewed as an assembly of elementary
quantum gates, such as the NOT and CNOT gates. The NOT gate is the 2 £ 2 matrixÃ
0 1
1 0

!
. It acts on a qubit, q, which is the normalized state in a two dimensional

Euclidian space, IC2:

q = ®j0 > +¯j1 >; j®j2 + j¯j2 = 1; (2)

by exchanging the level populations. The CNOT gate acts on four dimensional vectors
in IC4. Obviously, some of these vectors can be represented as a tensor product of two
two-dimensional vectors; however other vectors in IC4 cannot be written in this form. These
latter states are called entangled states and play a crucial role in quantum algorithms
[10]. Quantum algorithms are: (i) intrinsically parallel and (ii) yield probabilistic results.
These properties re°ect the facts that: (i) the wave function, Ã, is nonlocal and, in fact,
ubiquituous and (ii) the quantity jÃj2 is interpreted as a probability density.

Grover's original algorithm provides a solution to the following problem. Suppose we
have a set ofN unsorted objects, E = fx1; x2; :::xNg, and an oracle function f : E ! f0; 1g,
such that f(x1) = 1 and f(xi) = 0, i = 2; :::N: Using the oracle, ¯nd the element x1 in the
unsorted set E.

Without loss of generality, we can take N = 2n. On average, the classical solution
of the above problem involves » N=2 » O(N) evaluations of the oracle. The quantum
algorithm proposed by Grover [7] reduces this number to O(

p
N). In a generalized version

of the problem, there may be L \special" elements for which the oracle returns the value

one; then the number of evaluations required to ¯nd one of them is of the order O(
q
N=L).

We give a brief presentation of Grover's quantum algorithm [7]. First, we identify the
set E with the complex Euclidean space ICN and the elements xi 2 E with the unit vectors
in ICN , < xijxj >= ±ij , where ±ij is the Kronecker symbol. Then construct the normalized
average state of all the elements jxi >:

jw >= 1p
N

NX
i=1

jxi >= 1p
N
jx1 > +

p
N ¡ 1p
N

jx?1 > : (3)

In the second representation, the unit vectors orthogonal to jx1 > are lumped together
in the unit vector jx?1 >, which formally reduces the problem to a bidimensional space and
simpli¯es the presentation and interpretation of the algorithm.
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We note that the scalar product < x1jw >= 1p
N
:= cos¯ = sin® where ¯ denotes the

angle between the vectors jw > and jx1 > and ® denotes its complement, i.e. the angle
between the vectors jw > and jx?1 >.

The construction of the state jw > can be done in log2N = n steps by applying

(in parallel) n Hadamard transformations, H = 1p
2

Ã
1 1
1 ¡ 1

!
on the initial zero state,

j0 > −::::::− j0 >| {z }
n times

. In the fjx1 >; jx?1 >g basis, we construct the operators:

Ix1 := I ¡ 2jx1 >< x1j =
Ã ¡1 0
0 1

!
; (4)

which executes a re°ection (sign inversion) of the x1-component of a vector and

Iw := I ¡ 2jw >< wj =
Ã

1¡ 2=N ¡ 2pN ¡ 1=N
¡2pN ¡ 1=N ¡ 1 + 2=N

!
; (5)

which represents a re°ection (sign inversion) of the w-component of a vector. At the level of
the oracle, the operator Ix1 is implemented by (¡1)f(:)(:), which does not depend explicitly
on the unknown element x1, while the application of the operator Iw is obvious, since the
average state is known. We de¯ne now the amplitude ampli¯cation operator:

Q := ¡IwIx1 =
Ã

1¡ 2=N 2
p
N ¡ 1=N

¡2pN ¡ 1=N 1¡ 2=N
!
=

Ã
cos2® sin2®
¡sin2® cos2®

!
(6)

which, in the compressed, two-dimensional representation of the problem, represents a ro-
tation of the state vector with an angle 2® towards jx1 >. This means that each application
of the operator Q will increase the weight of the unknown vector jx1 > (which explains

the name of the operator Q) and after roughly ¼=2¡®
2®

» ¼=2¡1=pN
2=
p
N

» ¼
4

p
N applications the

state vector will be essentially parallel to jx1 >, whereupon a measurement of the state
will yield the result jx1 > with a probability very close to unity. We mention that for
(and only for) N = 4, the result is obtained with certainty, after only one application. In
general, if one continues the application of Q, the state vector continues its rotation and
the weight of jx1 > decreases; eventually, the evolution of the state is cyclic as prescribed
by the unitary evolution. In the original, N -dimensional representation, the operator Iw
has the representation:

Iw =

0BBBB@
1¡ 2=N 2=N : : : 2=N
2=N 1¡ 2=N : : : 2=N
...

. . .
...

2=N : : : 1¡ 2=N

1CCCCA (7)

Using this representation, one can show explicitly that the algorithm can be implemented
as a sequence of local operations such as rotations, Hadamard transforms, etc. [7]

Finally, it is easy to check that if the oracle returns the same value for all the elements,
i.e. there is no \special" element in the set E, the ampli¯cation operator Q reduces to
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the identity operator I and, after the required number of applications, the measurement
will return any of the states with the same probability, namely 1=N . In other words, the
algorithm behaves consistently.

3 Solution of the Continuous Global Optimization

Problem

Grover's algorithm has been applied previously to a discrete optimization problem, namely
¯nding the minimum among an unsorted set of N di®erent objects. DÄurr and Hoyer
[4] adapted Grover's original algorithm and solved this problem with probability strictly
greater than 1=2 using O(

p
N) function evaluations (oracle invocations).

In this Letter, we map the continuous GOP to the Grover problem. Once this is
achieved, one can apply Grover's algorithm and obtain an almost certain result with
O(
p
N) function evaluations. However, the mapping of the GOP to Grover's problem

cannot be done in general. It requires additional information.

Before spelling out the required information, let us revisit the "pathological" example
(1). Without loss of generality, we can take ² = 1=N and divide the segment [0; 1] into N
equal intervals. By evaluating the function at the midpoint of the N intervals, we obtain a
discrete function that is equal to 1 in N ¡ 1 points and equal to 0 in one point, which - up
to an unessential transformation - is equivalent to Grover's problem. Direct application of
any Grover-like algorithm yields the corresponding result. Of course, generalization to any
dimension d is trivial. Thus, a problem that seems intractable classically becomes much
easier within the quantum computing framework. We shall return to this example after
discussing the general case.

Consider now a real function of d variables, f(x1; x2; ::::; xd). Without restricting gen-
erality, we can assume that f is de¯ned on [0; 1]d and takes values in [0; 1]. Assume now
that: (i) there is a unique global minimum which is reached at zero; (ii) there are no local
minima whose value is in¯nitesimally close to zero; in other words, the values of the other
minima are larger than a constant ± > 0, and (iii) the size of the basin of attraction for
the global minimum measured at height ± is known; we shall denote it ¢.

Then our implementation paradigm is the following: (i) instead of f(:), consider the
transformation g(:) := (f(:))1=m. For su±ciently large m, this function takes values very
close to one, except in the vicinity of the global minimum, which maintains its original
value, namely zero. Of course, other transformations can be used to achieve essentially the
same result. We calculate m such that ±1=m = 1=2. To avoid technical complications that
would not change the tenure and conclusions of the argument, we assume that ¢ = 1=M
where M is a natural number, and divide the hypercube [0; 1]d in small d-dimensional
hypercubes with sides ¢. At the midpoint of each of these hypercubes, we de¯ne the
function h(x) := int[g(:) + 1=2] (here int denotes the integer part). The function h(:) is
de¯ned on a discrete set of N points, N =Md, and takes only values one and zero; by the
hypotheses on the function f and our choice of constants, the region on which h takes the

6



value zero is a hypercube with side ¢. Thus we have reduced the problem to the Grover
setting. Application of Grover's algorithm to the function h(:), will result in a point that
returns the value zero; by construction, this point belongs to the basin of attraction of
the global minimum. We return then to the original function f(:) and apply the descent
technique of choice that will lead to the global minimum. If the basin of attraction of the
global minimum is narrow, the gradients of the function f(:) may reach very large values
which may cause overshots. Once that phase of the algorithm is reached, one can apply
a scaling (dilation) transformation that maintains the descent mode but moderates the
gradients. On the other hand, as one approaches the global minimum, the gradients may
become very small and certain acceleration techniques based on non-Lipschitzian dynamics
may be required [1, 2]. If the global minimum is attained at the boundary of the domain,
the algorithm above will ¯nd it without additional complications.

4 Practical Implementation Considerations

Conditions (i)-(iii) imposed on the functions f(:) are rather strong, su±cient conditions,
that we have considered mainly for convenience. We note however that: (a) these conditions
are both satis¯ed and explicitly given for the academic \golf course" example mentioned
before; (b) while they do not help reduce the complexity of the classical descent/search
algorithm, they make a remarkable di®erence in the quantum framework; and (c) they can
be replaced by weaker conditions.

Condition (i) is in fact satis¯ed by a large class of important practical problems, namely
parameter identi¯cation encountered e.g. in remote sensing, pattern recognition, and,
in general, inverse problems. In these problems the absolute minimum, namely zero, is
attained for the correct values of the parameters, matching of patterns, and ¯tting of
output to input. Condition (i) can be relaxed in the sense that the function may have
multiple global minima, all equal to zero. Functions with multiple global minima will
simply result in Grover problems with multiple \special" elements and can be treated
accordingly if the number of global minima is known.

Condition (ii) can be replaced with the much more reasonable assumption that f has
a ¯nite number of local minima. This would prevent the value of any local minimum to be
in¯nitesimally close to the value of the global minimum.

Condition (iii) is the most di±cult to ful¯ll in practical problems. However, this as-
sumption could also be relaxed with no signi¯cant performance loss if more e±cient (e.g.
exponentially fast) unstructured search quasntum algorithms were available. Recently,
Chen and Diao [3], proposed such an algorithm which was supposed to achieve an expo-
nential (as opposed to polynomial) speed-up of the unstructured search. Unfortunately,
substantial complexities subtly hidden in one of the steps of the algorithm renders it even
less e±cient than Grover's [13].

Strong as it may seem, condition (iii) is essentially reasonable, since it roughly requires
that the basin of attraction of the global minimum of the function f be su±ciently nar-
row, but not too narrow. Indeed, if the basin is narrow, condition (iii) would discourage
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unproductive exhaustive search and warrant the application of a parsing algorithm, like
Grover's. On the other hand, if the basin were in¯nitesimally narrow, then any algorithm,
no matter how fast, would still require a number of evaluations in excess of any prescribed
bound. The bottom line is that without any additional information at all, there could be
no general e±cient algorithm for the GOP [15].

Despite their scarcity and still very elusive implementation prospects, quantum algo-
rithms could bring very e±cient solutions and eventually practical implementations to hard
computational problems. It seems safe to assume that - like the two algorithms proposed
so far [11], [7] - future quantum algorithms will be much more \problem tailored" than
their classical counterparts. Therefore, speci¯c additional information is both needed and
expected. While this information may be di±cult to obtain, its role is crucial and its
bene¯ts could signi¯cantly outweigh its cost.
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