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Abstract—The image registration problem of finding a mapping that matches data from multiple cameras is computationally intensive.
Current solutions to this problem [3], [4], [5] tolerate Gaussian noise, but are unable to perform the underlying global optimization
computation in real time. This paper expands these approaches to other noise models and proposes the Terminal Repeller
Unconstrained Subenergy Tunneling (TRUST) method, originally introduced by Cetin et al. [7], as an appropriate global optimization
method for image registration. TRUST avoids local minima entrapment, without resorting to exhaustive search by using subenergy-
tunneling and terminal repellers. The TRUST method applied to the registration problem shows good convergence results to the global
minimum. Experimental results show TRUST to be more computationally efficient than either tabu search or genetic algorithms.

Index Terms—Image registration, sensor fusion, global optimization, terminal repellers, subenergy-tunneling, genetic algorithms, tabu

search.

1 INTRODUCTION

UTOMATED control systems react to the environment

through the data provided by the sensors. Hence, the
transformation of imprecise sensor data into a reliable and
timely model of the environment is an important and
challenging problem. In particular, systems with multiple
sensors (as in Fig. 1) must fuse data from individual sensors
to interpret it correctly. The past 10 years have seen
extensive research in methods for fusing various types of
sensor data [5]. Since real life sensor data contains noise, has
finite accuracy and limited dependability, implementing
multisensor systems is challenging, and often is signifi-
cantly more difficult than single sensor systems.

In autonomous systems with more than one sensor input,
such as a stereo vision, the ability to correlate and calibrate
readings from both sensors is important for anumber of tasks.
Image registration refers to finding a function that maps one
image, the observed image, onto another image, the reference
image. This step is sometimes referred to asimage correlation.
To avoid confusion, we prefer the term registration, since the
former has a more general meaning in the area of signal
processing [10], [13]. Surveys of image registration can be
found in [5], [6], [9]. Our previous work [3], [4], [5] on image
registration formulated it in terms of a global optimization

Y. Chen is with Motorola Incorporated, Shaumburg, IL.

e R.R. Brooks is with the Information Science and Technology Applied
Research Laboratory, The Pennsylvania State University, P.O. Box 30,
State College, PA. 16804-0030. E-mail: rrb@acm.org.

e S.S. Iyengar is with the Department of Computer Science, Louisiana State
University, 298 Coates Hall, Baton Rouge, LA 70803.

E-mail: iyengar@bit.csc.Isu.edu.

e N.S.V. Rao and ]. Barhen are with the Center for Engineering Science

Advanced Research, Oak Ridge National Laboratory, P.O. Box 2008,

Building 6010, MS-6355, Oak Ridge, TN 37831-6355.

Manuscript received 4 Apr. 1998; revised 22 Jan. 1999; accepted 18 Feb. 1999;
posted to Digital Library 12 June 2001.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106449.

problem where images are matched using pixel information.
This approach is justified since high-level features may not
always be present and image noise is best modeled at the pixel
level. We have previously explored the use of genetic
algorithms [3], tabu search [5], and simulated annealing [4]
as global optimization paradigms for image registration.
Unfortunately, these approaches are all computationally
intensive, making them unsuitable for real-time applications.
Registering sensor images in real time requires a new
technique.

In this paper, we propose an efficient global optimization
technique for image registration based on the Terminal
Repeller Unconstrained Subenergy Tunneling (TRUST)
technique proposed by Cetin et al. [7] (and generalized to
lower semicontinuous functions by Baren et al. [1], [2]). We
formulate the registration problem as a global optimization
problem to be solved by TRUST, which avoids both local
minima entrapment and exhaustive search. In particular,
TRUST uses subenergy-tunneling and terminal repellers
techniques to converge to the global minimum. We present a
detailed analysis of TRUST’s implementation for registering
images along with examples. Our experimental results show
the search time required by TRUST to be much lower than for
other methods, such as tabu search and genetic algorithms.
The main advantage of this approach over our earlier efforts
[3], [4], [5] is its increased computational efficiency. We also
further address the basicissues of limited accuracy and image
corruption with noise by discussing the use of this approach
under multiple noise models.

This paper is organized as follows: Section 2 presents an
overview of image registration, a statement of the problem,
and functions which can be used in the optimization problem.
The TRUST technique and details of its operation are
presented in Section 3. An approach to image registration
based on TRUST is presented in Section 4. Experimental
results of the proposed algorithm are given in Section 5.
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Fig. 1. Multisensor system (adapted from [5]).

2 IMAGE REGISTRATION

Multiple sensor systems receive readings from different
positions and orientations as in Fig. 1. To fuse multiple sensor
readings, they must first be registered into a common
coordinate system. Thus, image registration has been the
focus of a number of studies over the past decades [4], [5], [6],
[9]. Here, we consider only two-dimensional images without
occlusion and projection effects, although the method
proposed could easily be extended to account for projection.
The class of transformations considered is gruences (transla-
tion and rotation). An addition of scaling would make the
class of transformations include all affine transformations.
The survey in [5] discusses registration methods that have
been proposed for use with other transformations. Occlusion
and projection would require a higher-level knowledge of the
scene structure and interpretation of the sensor data before
registration. It is doubtful that this type of interpretation is
feasible in real time.

Given two overlapped sensor readings as shown in Fig. 2,
we wish to find the position and orientation of the second
sensor relative to the first sensor. F is a function that maps a
reading of sensor 2 to a reading of sensor 1. Sensor 1,
represented by a function S)(x1, s, ...,x,), returns scalar
values withinafiniterangeof z, s, . . . , z,,. Similarly, sensor 2
corresponds to the function Sy(x),z},...,z)). If I is the
mapping function, and sensors 1 and 2 are free of noise, we
have [5]:

Given two images:

observed 82 @ reference S1 G

Find the function that best maps the observed image

to the reference image:

F(S,) =8,

>

F = totate observed image 90
degrees and translate image

Fig. 2. Registration is finding the mapping function F(S2) (adapted

from [3]).

5 inches in the positive y
direction.

O

g

JANUARY/FEBRUARY 2002

%
2,

F(Sy) = Sy. (2.1)

In practice, this equation is almost never exactly satisfied
since sensor readings are corrupted by noise and
measurement error. In Section 2.2, we utilize this equation
to derive a fitness function (objective function) that
provides a metric for global optimization.

2.1 Problem Statement

The problem addressed in this paper was originally posed
in [3]: Given two noisy overlapping sensor readings,
compute the optimal gruence (i.e., translation and rotation)
which maps one to the other. The sensors return two-
dimensional gray level data from the same environment.
Both sensors have identical geometric characteristics. The
sensors cover circular regions such that the two readings
overlap. Since the size, position, and orientation of the
overlaps are unknown, traditional image processing tech-
niques are unsuited to solving the problem. For example,
the method of using moments of a region is useless in this
context [10], [13].

Readings from sensors 1 and 2 are both corrupted with
noise. In [3], [5], we use a Gaussian noise model to derive
the fitness function since it is applicable to a large number
of real-world problems. It is also the limiting case when a
large number of independent sources of error exist. Our
goal is to find the optimal parameters (z7,yr,0) which
define the relative position and orientation of the two
sensor readings. The search space is a three-dimensional
vector space defined by these parameters, where a point is
denoted by the vector w = [wT,yT,Q]T. Fig. 3 shows the
transformation between the two images given (2.2):

z! cos —sinf Xr]|[=x
y | = |sind cosb Yr ||y (2.2)
1 0 0 1 1

2.2 Fitness Function
When noise in the sensor data has a Gaussian distribution,
we have derived the fitness function in (2.3):

Z (rcadl(r,y)fr’cadg(x’,y’))z -
K(W)?

; 2.3
Z ((gray, (z,y)—gray, (z' y))+(noise; (x,y)—noise, (z' ,g/))2 ( )

K(W)?

)
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Fig. 3. Geometric relationship of two sensor readings.

‘Where: w is a point in the search space
K(w) is the number of pixels in the overlap for w
(@) is the point corresponding to (z,y) for

read; (z,y)(reads(x'y')) is the pixel value returned by sensor 1 (2)
at point (,y)((z'y/))
gray: (z,y)(grays (2'y')) is the noiseless value for sensor 1 (2) at (z,y)((2",y'))

noise (x,y)(noises(2',y')) is the noise in the sensor 1 (2) reading at (z,y)(2',y/)).

This function has been shown to reflect the problem
adequately when the noise at each pixel follows a Gaussian
distribution of uniform variance. In our experiments, this is
not strictly true. The gray scale is limited to 256 discrete
values. Because of this, when the gray-scale value is 0 (255)
the noise is limited to positive (negative) values. For large

intersections, however, this factor is not significant.
Equation (2.3) is derived by separating the sensor

reading into information and additive noise components.
This means the fitness function is made up of two
components: 1) lack of fit and 2) stochastic noise. The lack
of fit component has a unique minimum when the two
images have the same gray-scale values in the overlap (i.e.,
when they are correctly registered). The noise component
follows a Chi-squared distribution, whose expected value is
proportional to the number of pixels in the region where the
two sensor readings intersect. Dividing the difference
squared by the cardinality of the overlap, we make the
expected value of the noise factor constant. Dividing by the
cardinality squared favors large intersections. For a more

detailed explanation of this derivation, see [3], [4], [5].
Other noise models can be accounted for by simply

modifying the fitness function. Another common noise
model is the salt-and-pepper noise. Either malfunctioning
pixels in electronic cameras or dust in optical systems
commonly causes this type of noise. In this model, the
correct gray-scale value in a picture is replaced by a value of
0 (255) with an unknown probability p(q). An appropriate
fitness function for this type of noise is (2.4):

(ready (z,y) — ready (2, y’))2

W) (2.4)

ready (z,y) # 0
read; (z,y) # 255
reads(z',y') #0

reads (', y') # 255

A similar function can be derived for uniform noise by
using the expected value E[(U; —Uy)?] of the squared
difference of two uniform variables U; and U,. An
appropriate fitness function is then given by (2.5):

5 (reods (5. reas(a, )" o)
E[(U] - U2)2] K(w)

For the rest of this paper, we use (2.3). Depending upon the

noise present in the sensor data, another function may be

more appropriate.

In optimization literature, the function to be optimized is
often called the objective function [1], [2], [7]. In this problem,
we seek the mapping that minimizes the value given by the
fitness function (2.3). The term fitness function is used in
genetic algorithms literature [3], [4], [5], [12] in a manner
similar to the use of objective function in optimization
literature. Mappings are defined by (2.2), which is an affine
transform without scaling. Given two sensor readings and a
mapping, the value of the fitness function (2.3) is well-
defined. Therefore, we seek the values of zr,yr, and 6 that
provide the globally minimal value for (2.3). For this reason,
the terms objective function and fitness function will be
used interchangeably in the rest of this paper.

3 TRrRusT METHOD

The global minimization problem can be stated as follows:
Given a function f over some (possibly vector valued)
domain D, compute Zga ¢ D such that

f@Eem) < f(2),YZ € D.

Usually, but not necessarily, f is assumed to be continuous
and differentiable.

One strategy for global minimum determination is
shown in Fig. 4. Given an initial starting position in the
search space, we find the local minimum closest to this
value. This can be done using gradient descent or a
probabilistic search [8], such as genetic algorithms and
simulated annealing. Once a local minimum is found, it is
reasonable to assume that it is not globally optimal.
Therefore, we attempt to escape the local basin of attraction.

Global optimization research concentrates on finding
methods for escaping the basin of attraction of a local
minimum. Often, the halting condition is difficult to
determine. This means there is a trade-off between
accepting a local minimum as the solution and performing
an exhaustive search of the state space. In certain cases,
global optimization can become prohibitively expensive
when the search space has a large number of dimensions.
Thus, there is a natural trade-off between solution accuracy
and the time spent searching. Additionally, if an analytic
form of the cost function is unknown, as is typically the
case, then this problem is more pronounced.
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Fig. 4. Conventional tunneling method [14] for determining global minimum.

In general, the following characteristics are desirable in a
global optimization method:

e Avoid entrapment in local minimum basins.

e Avoid performing an exhaustive search on the state
space.

e Minimize the number of object function evaluations.

e Have a clearly defined stopping criteria.

In practice, a good global optimization method judi-

ciously balances these conflicting goals.
A number of approaches have been proposed for solving

global optimization problems (see references in [2]). For
registration, we have explored the use of genetic algo-
rithms, simulated annealing, tabu search, and artificial
neural networks [3], [4]. Here, we show improved perfor-
mance using the TRUST method.

3.1 Convergence Properties

The TRUST method [2], [7] is a deterministic global
optimization method, which avoids local minima entrap-
ment and exhaustive search. This method defines a
dynamic system that uses two concepts: subenergy tunnel-
ing and non-Lipschitz terminal repellers to avoid being
stuck in local minima. TRUST makes the following
assumptions about the cost function f and its domain D [1]:

1. f:D — Risalower semicontinuous function with a
finite number of discontinuities.

2. D C R"is compact and connected.

3. Every local minima of f in D is twice differentiable
except at a finite number of points. Furthermore, for
any local minima x ), we have

of
Ll =ovi=1,2,....d (3.1)
61"" TLM
and
0?
y’ 7{;;“[) y>0,Vy €D,
where azf(;;%“ ) is the Jacobian matrix given by

O f
833‘78.TJ

1'LM:|

In contrast with the conventional tunneling approach
[14], tunneling is performed in TRUST by transforming the
function f into a new function E(z, z*) with similar extrema
properties such that the current local minimum of f at some
value z* is a global maximum of E(z,z*). A value of f
strictly less than f(z*) is then found by applying gradient
descent. The general algorithm is as follows:

1. Use a gradient descent method to find a local
minimum at z*.
2. Transform f into the following wvirtual objective

function
E(z,z%) = Egp(z, %) + Epep(z, ) (3.2)
K ) =1 ! 3.3
@, 2") = log| oGy ) (39)
where
. 3 ' *
Erep(2,27) = =7 ple — 2" P u(f(z) = f(27))  (34)

and E,,, is the subenergy tunneling term and is used to
isolate the function range of f less than the functional
value f(z*). E,, is the terminal repeller term and is
used to guide the search in the next step. In this
term, u(y) is the Heaviside function. Note that
E(z,z*) is a well-defined function with a global
maximum at z*.

3. Apply gradient descent to E(x,z*). This yields the
dynamical system

OE  Of 1
T 9z 0rlteU@ fanra
ple — ) u(f(2) - f(a")).
An equilibrium state of (3.5) is a local minimum of

E(z,z*), which in turn, is a local or global minimum
of the original function f.

xr=

(3.5)
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Fig. 5. TRUST in one-dimensional case.

4. Until the search boundaries are reached, repeat

Step 2 with the new local minima found in Step 3 as
the initial extrema.

Complete theoretical development of FE,, and FE,.,
including a discussion of terminal repeller dynamics, can
be found in Barhen and Protopopescu [1].

3.2 Convergence and Computational Properties

In the one-dimensional case, TRUST guarantees convergence
to the globally optimal value. The reason for this is: The
transformation of f into E(z,z*) and subsequent gradient
descent search generates monotonically decreasing minimal
values of f (see Figs. 5 and 6). This behavior is a result of the
compactness of the domain D (for details, see [1]. When the
last local minimum is found and the method attempts to

1
!
i
i

E(x,xw)

search E(xz,z*), the difference f(x) — f(z*) becomes equiva-
lent to the z-axis. Thus, E(z,z") = E.(z,2*), and the
subsequent search on this curve will proceed until the
endpoints of the domain D are reached.

In the more difficult multidimensional case, there is no
theoretical guarantee TRUST will indeed converge to the
globally optimal value. To address this problem, Barhen
and Protopopescu [1] present two strategies. The first
strategy involves augmenting the repeller term E,., with a
weight based on the gradient behavior of f (basically, this is
the same concept as momentum in conjugate gradient
descent). The effect is to guide the gradient descent search
in Step 3 to the closest highest ridge value on the surface of
E(z,z*). The second strategy is to reduce the multidimen-
sional problem into a one-dimensional problem for which

>

E n(x,x*
The transformation of f(x) is T ()
monotonic
[(x) - [(x*)
a=2 a=0 a=-2

Eqp has the same critical points as f(x)
Equn has the same relative order of minima as f(x)
Equb 1s approximately zero for f(x) = f(x*)

Fig. 6. TRUST: Subenergy tunneling function.
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TRUST is guaranteed to converge by using hyperspiral
embedding from differential geometry.

In summary, the characteristics of TRUST that are
desirable for image registration include the following:

1. TRUST is computationally efficient in the number
of function evaluations made during the conver-
gence process. Usually, the most computationally
demanding aspect of global optimization is evalu-
ating the cost function [12]. In Barhen et al. [2],
TRUST was compared to several other global
optimization methods and was found to need far
fewer function evaluations to converge.

2. Popular methods of eluding local minima basins
other than conjugate gradient descent include
simulated annealing and genetic algorithms [11],
[12]. Both of these are probabilistic since their
entrapment avoidance mechanism requires random-
ness. TRUST, on the other hand, is deterministic and
has a well-defined stopping criteria.

4 REGISTRATION ALGORITHM

For the registration problem, we seek the optimal para-
meters (Xp,Yr,f) that define the correct mapping of
sensor 2 to sensor 1. The following is an outline of TRUST
applied to image registration:

Algorithm: TRUST-image-Registration

Inputs: Two sets of noise corrupted sensor readings
S1,52

Parameters x, y, and 6 that map of sensor 2 to
sensor 1.

Output:

Procedures:
Step 1:  Read in sensor readings s1, s2.
Step 2:  Set initial search position.
The initial position as the best position
(Xr, Y, 6)
At each position (x, y, §)
a: calculate new object function value
b: calculate the derivatives on the position
x v,0)
c: if the derivatives (0f/0x, 0f/dy,0/£90)
exceed the threshold (such as 0.01)
c.1: Gradient descent phase, new position
(x + 0f/ox,y + Of /Oy, 0 + 0f /06)
c.2: if f(X*,y*7 9*) < f()(T7 Y, QT):
£(Xr, Yr,01) = £(X*, Y*, 0%)
d: if new position exceed the upper bound go
to Step 4 else go to Step 3.
Print out the results and terminate the program.

Step 3:

Step 4:

Assumptions and approximations described in the
algorithm are as follows:

1. The variables X and Y are discrete offsets; 6 is
continuous.

2. Three-dimensional problem is reduced to one-
dimensional case. Namely, for each objective func-
tion calculation, the changes to Xrt,Yr, and 6 are
calculated, respectively. The results in each dimen-
sion simulate three multidimensional cases.

JANUARY/FEBRUARY 2002

3. The stopping criterion is the border of the search
space. X € (Xmin, Xmax),Y € (Ymin, Ymax), no lim-
it for 6. The starting point is at the lower corner of
the search space (Xmin, Ymin, 0). The perturb para-
meter (¢) for TRUST is (1,1, 0.01), which is one pixel
on X,Y direction and 0.01 degree on 6.

4. To calculate the partial derivatives with respect to X
and Y, five points are taken at one pixel intervals.
Three points are taken to approximate the derivative
with respect to 6, at 0.01 degree intervals. The large
number of samples increases the computational effort,
but it also makes the results less sensitive to noise.

5. The strength parameter p (kappa in program) is
computed from

p=(1.0/(2%9 % (1 + %))

sqrt(x_dot_x* 4 x_dot_y” + x_dot_theta?)
x_dot_x : derivative at x direction
x_dot_y : derivative at y direction

x_dot_theta : derivative at 0 direction.

Since we have more than one dimension, the
magnitude of E and gradient vectors are taken with
the F—defined above, the sum of the squares of the
elements is 2, so to get the cube root of the
magnitude, we take the sixth root. We also use p =
10,5,1,0.1 in the program.

6. Since x and y are discrete variables, of /0%, 0f/dy are
very small, sometimes less than 1. In which case, we
change x and y by the sign of 9f/0x, df/0y.

5 EXPERIMENTAL RESULTS

We have conducted 76 experiments using TRUST image
registration using the synthesized image given by the
equation (Fig. 7):

100.0+(Y100)
(—40x + 45y — 0.003zy 4+ 0.02 22 — 0.01 3* — 20y sin

(T/18) + 35y cos(y/29) — 35sin(Ty — Y/19)

+ 12z cos (333//100) ) .

This image has several periodic and nonperiodic compo-
nents. In these tests, TRUST showed convergence to the
global minimum within the specified parameters. The results
show the influence of both the gradient and repeller parts of
the algorithm. We have run similar tests on a nonsynthesized
image of vegetation, with similar results. We present results
using the synthesized image here, in order to allow
comparison with our previously published results [3], [5].

5.1 One-Dimensional Case

In the one-dimensional case, TRUST is guaranteed to find the
global minimum of f. We chose to use the rotation parameter
6 for the one-dimensional test. f is a continuous variable. Two
sensor readings are cut from the terrain image (Figs. 8a and
8b). Sensor one is centered at (256,256), sensor two is centered
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Fig. 7. Terrain model.

at (347,347) with rotation 2.74889 radians (157.5 degrees). In
this report, we discuss the use of TRUST to register the data
and compare these results with existing data for tabu search
[5] and an elitist genetic algorithm [3].

The parameter values in Table 1 are the best answers
found by TRUST. From the results (Table 1 and Fig. 9), we
can see that TRUST finds local minima and climbs out of
their basin of attraction quickly to find the global minimum.
The result has been compared to tabu search and elitist

genetic algorithm using the same starting position, 0 var-
iance noise and sensor readings (Fig. 14). After 300 runs,
tabu search is not even close to the global minimum. TRUST
(Table 4) and the elitist genetic (Table 5) algorithm have
almost the same quality except TRUST has reached its
termination criteria. The fact that TRUST has definite
termination criteria, increases our confidence that the
algorithm has found the global minimum.

(@)

(b)

Fig. 8. (a) Sensor 1 Reading (256,256,0). (b) Sensor 2 Reading (256,256,2.87979).
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TABLE 1
TRUST Search Results

Sensor | position: x=0,y=0,0=0.0 (x =256, y =256 in terrain model)

Sensor 2 relative position: x=0,y=0,0=2.87979 (164.999817)

Starting point: x=0,y=0,0=0

afPole strength): 2

p (Repeller strength): 1

noise level® 0
Tteration™* Current 0 Current Error Best 6 Best error
1 0.060603 0.173321 0.000000 0.172828
15 21.579254 0.227272 -0.76610 0.170642 (local min)
30 50.870132 0.232877 -0.76610 0.170642 (local min)
45 58.825268 0.221911 -0.76610 0.170642 (local min)
60 66.101639 0.213194 -0.76610 0.170642 (local min)
75 88.053581 0.212771 -0.76610 0.170642 (local min)
90 121.599899 0.200787 -0.76610 0.170642 (local min)
105 152.440674 0.048031 152.440674 0.048031
120 164.931702 0.019233 164.169876 0.018294
135 164.940079 0.019328 164.617737 0.016797
150 164.642975 0.016843 164.617737 0.016797
165 163.842865 0.018778 164.625298 0.016780 (global min)
180 179.566132 0.056133 164.625298 0.016780 (global min)
190 489.318420 0.170217 164.625298 0.016780 (global min)
192 Out of bounds

*noise level is measured by variance
**Number of iterations of the algorithm

Fig. 9 shows the objective (fitness) function, which is
being minimized, versus the angle of rotation 6. The
objective function is given by (2.3), the mean square error
of the pixels in the intersection of the two images divided by
the number of pixels in the intersection. Since the terrain
model has significant periodic components, there are
several local minima in the diagram. The valley containing
the global minimum is very deep.

The search space for the one-dimensional case is from 0
to 360 degrees, which covers the entire range of 6. The
starting point (z*) was chosen as 6 = 0, the lower bound of
6. The search is started by placing a repeller at 2* and
adding a disturbance ¢. This gives a dynamic system with
initial conditions z* + . Table 1 gives the results. 6§ is given

in degrees.

Errar(x 1000) noise variance = 0.0

+ sensor] at (256,256,0)

L sengord at { 0,0, 2.37979)
2801
240r A

L \\ Pt e \// xé_
200 _ -
150t A
f2ar
S0 T
g0 r

¢ g0 i20 80 240 360 360 degree

Fig. 9. Objective function.



CHEN ET AL.: EFFICIENT GLOBAL OPTIMIZATION FOR IMAGE REGISTRATION

Fig. 10. Path taken by TRUST search sensor at 164.999817.

Since initially f(z* 4 ¢) > f(z*) in the neighborhood of
z*, the repelling term of TRUST is active. The algorithm
climbs out of a valley. The gradient of the objective function
is uphill (positive), but the subenergy surface is relatively
flat. With the help of a sufficiently large repeller strength p,
the repeller at z* forces the system uphill. This, in turn,
forces the system out of the basin of attraction of the local
minimum. In Table 1, the system is in the basin of attraction
of the local minimum from 6 = 21.579254 to 121.599899. It
then enters the basin of attraction of the local minimum
located at approximately 65 degrees. The search does not
fall into the basin of attraction around 65 degrees, since this
basin is more shallow than the one located at -0.76610. The
search space remains flattened. The system remains in the
repelling phase until it reaches a point where f(x) < f(z*).
At which point, it has reached a basin of attraction deeper
than any already encountered.

L Error {x 1000)
360
20t 7 "
280
240 7,
200
160
120

&0

40

87

Fig. 11. Path taken by TRUST search sensor 2 at 100 degree.

In Table 1, this occurs at approximately 100 degrees. The
gradient descent phase becomes active. The algorithm then
tries to minimize f(x). The system finds a new minimum,
and this becomes z*. The function value at that point is the
new f(z*). The value of the new f(z*) is less than the
previous one. In this example, this occurs from § = 100 to
the global minimum of 164.625298.

After reaching a minimum at 164.625298, the system
recommences a cycle of tunneling. This continues until a
lower basin of attraction is reached or the upper bound is
exceeded. In this example, the upper bound at 27 is
exceeded and the algorithm stops.

The stopping criteria of TRUST occur when the bounds
of the search space are reached. In this case, 27 is the upper
bound. When the system passes this point, the entire search
space has been searched. The last local minimum is
therefore the global minimum.

sensorl at (256, 256, 0.0)
sensor 2 at {0,0,2.87979)

noise level

Fig. 12. Objective function under different noise levels.

180

240
degree

300 360
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Fig. 10 shows the path taken by TRUST in this example.
The white dotted line denotes the rotation angle of sensor 2.
The gray straight line crosses the image where the best match
was found. Fig. 11 shows another path taken, when the
sensor 2 was rotated by 100 degrees. These images illustrate
the suitability of TRUST for image registration problems. The
system moves from starting point # = 0. It moves faster in the
tunneling phase, as shown in the image by there being fewer
white dots. During the gradient descent phase, the system
moves more slowly and more points are tested. After the
global minimum is found, the subenergy surface is flattened
from that point until the upper bound is reached. The system
re-enters a tunneling phase and quickly reaches the upper
bound. In Figs. 10 and 11, few points are tested after the global
minimum is located.

Using the same parameters as in Table 1, several tests have
been run with varying levels of noise. Fig. 12 shows the
objective function under various noise levels. As noise

JANUARY/FEBRUARY 2002

TABLE 2
TRUST One-Dimensional Search Results
under Different Noise Levels

Noise level* | 6 value Function value
0 164.625198 0.016780
20 164.226196 0.030003
40 164.576996 0.063540
60 164.847275 0.112951
80 184.856637 0.166876

*noise level is defined by variance

increases, so do the objective function values. The increase
is faster in regions with lower values. As a result, the objective
function surface flattens as noise increases. The minima
become less significant and the search becomes more
difficult. But as shown in Table 2, TRUST handles noise well
in the one-dimensional case. The search results deviate little

even in the presence of sizable amounts of noise.

Fig. 13. Path taken by TRUST in the three-dimensional case with noise variance 0.0.
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TABLE 3
Multidimensional TRUST Optimization

Sensor | position: x=0,y=0,0=0.0(x =256, y = 256 in terrain model)

Sensor 2 relative position: x =91,y =091, 0=2.748891

Starting point: x=0,y=0,0=0

afPole strength): 2

p (Repeller strength): 1

noise*: 0
Iteration™®* X value Y value 0 value Function value
1 0 0 0 0.338814
20 0 0 0 0.338814
40 16 16 0.734952 0.237387 (local min)
60 16 16 0.734952 0.237387 (local min)
80 16 16 0.734952 0.237387 (local min)
100 16 16 0.734952 0.237387 (local min)
120 99 95 2.704663 0.066328 (local min)
140 92 88 2.746054 0.039967 (global min)
160 922 88 2.746054 0.039967 (global min)
180 92 88 2.746054 0.039967 (global min)
200 92 88 2.746054 0.039967 (global min)
220 92 88 2.746054 0.039967 (global min)
240 92 88 2.746054 0.039967 (global min)
256 Out of bounds

* noise level is defined by variance
**Number of iterations of the algorithm.

Fig. 14. Path taken by TRUST in the three-dimensional case with noise variance 30.0.



90 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 1,

JANUARY/FEBRUARY 2002

TABLE 4
TRUST Search Results under Different Noise Levels
Noise level* | X value Y value 8 value Function value
0 92 88 2.746054 0.039967
10 94 88 2.710349 0.052626
20 124 126 -0.378215 0.181336
30 93 87 2.703995 0.102064
50 93 89 2.723450 0.195911
70 92 92 2.651406 0.325892
90 0 0 0 0.369969

* noise level is defined by variance
0.5
0.4
0.3
Error

0.2

0.1

Iteration (x 50)

Tabu Search
TRUST
Elite GA

OElite GA MTRUST EMTabu Search

Fig. 15. Average answer value for Elite GA, TRUST, and Tabu search in three-dimensions.

5.2 Multidimensional Case

The search space in the three-dimensional case is:
—255 < x < 255,255 <y < 255,0 < § < 27. Fig. 13 shows
the path taken by TRUST under the conditions given in
Table 3. The line from the center (0,0) goes to bound
(255,255) and the search stops. Table 3 and Fig. 15 illustrate
the ability of TRUST to find local minima and quickly climb
out of their basins of attraction. After 300 iterations, the
results of tabu search are not even close to the global
minimum. The results from TRUST and Elite Genetic
Algorithms are almost identical, except TRUST has concrete
stopping criteria that it has satisfied. It has finished
examining the search space. We can be more certain that
a global minimum has been located.

We have tested TRUST using noise with seven different
variances under different conditions. We compare the
results with the elitist genetic algorithm. The results in
Table 4 use the same parameters as Table 3, except for the
amount of noise. These results are compared with those
from an elitist genetic algorithm in Table 5.

From Tables 4 and 5, both the elitist genetic algorithm
and TRUST can handle noise with a variance of up to 30.
The algorithms do not always find the global minima. But

the TRUST results show the optimal value can be found
even in the presence of large amounts of noise. When the
noise reaches levels such as 70, or 90 as shown in Tables 3
and 4, it obscures the images and it becomes impossible to
find the correct answer.

6 CONCLUSIONS

This paper discussed use of the TRUST method (proposed by
Barhenetal. [2],[7]) as a deterministic optimization algorithm

TABLE 5
Elite Genetic Search Results under Different Noise Levels [3], [5]

Noise level* | X value Y value 8 value
0 89 91 2.74744
10 92 92 0

20 91 91 2.74744
30 89 89 274744
50 86 -18 2.79768
70 -48 6 6.02138
90 0 5 1.23297

* noise level is defined by variance
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to solve an image-processing problem. TRUST shows very
good results in optimizing one-dimensional optimization
problems. It approaches optimization by phrasing the
problem as a differential equation. It uses terminal repellers
to create a subenergy tunneling equation. The subenergy
tunneling equation creates a dynamic system, which finds the
globally optimal answer. We use TRUST to solve a multi-
dimensional problem, with very encouraging results. TRUST
finds globally optimal answers even in the presence of large
amounts of noise. This is especially noteworthy since the
effect of noise is usually magnified by differentiation. It is
possible that the objective function’s evaluation of error using
a large number of pixels performs an implicit integration,
which counteracts this effect.

Though convergence to a global minimum in the multi-
dimensional case has not been proven mathematically, our
results indicate that it performs at least as well as elite genetic
algorithms. The computation required by TRUST is signifi-
cantly less than required by genetic algorithms, and it has a
well-defined halting criteria. Our previous work [3], [5] has
compared elite genetic algorithms with classic genetic
algorithms, tabu search, and simulated annealing, and found
the results returned by elite genetic algorithms superior.
TRUST was found to work well in the presence of large
amounts of noise.
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