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A Light-Fronts Approach to a Two-Center
Time-Dependent Dirac Equation
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The two center time dependent Dirac equation, for an electron in the external field
of two colliding ultrarelativistic heavy ions is considered. In the ultrarelativistic
limit, the ions are practically moving at the speed of light and the electromagnetic
fields of the ions are confined to the light fronts by the extreme Lorentz contrac-
tion and by the choice of gauge, designed to remove the long-range Coulomb
effects. An exact solution to the ultrarelativistic limit of the two-center Dirac
equation is found by using light-front variables and a light-fronts representation.
Previously unexplained experimental results obtained at CERN's SPS are
explained in this way and predictions are made as to where one should look, in
momentum space, and in space-time, if one wants to study and observe non-pertur-
bative electromagnetic pair-production effects in extremely relativistic heavy-ion
collisions.

1. INTRODUCTION

Consider the relativistic scattering problem of an electron in the external
field of two point-like charges (ions), moving on parallel, straight-line tra-
jectories in opposite directions at speeds which approach the speed of light,
and at an impact parameter 2b9 . An external-field approach to the influence
of the ions on the electron is appropriate for peripheral impact parameters,
heavy-ions, and high energies, where, to a very good approximation, the
ions travel on parallel, straight-line trajectories, and ion recoil is negligible.

We review here our recent work on this problem.(1�3) In Sec. 2, follow-
ing Ref. 2, we show that the two center time dependent Dirac equation for
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the electron reduces in the high energy limit to Eq. (26) with the interac-
tions of Eq. (29). In Sec. 3, following Ref. 1, we solve this equation off the
light fronts, i.e., for an electron that both initially and asymptotically is not
co-moving with an ion. The main result of our work is the transition
amplitude given by Eqs. (90) and (67). In Sec. 4, we discuss the application
of this solution to electromagnetic pair production in heavy ion collisions,
which we have used, for example, in Ref. 3, to explain recent experimental
results. We note that one should distinguish between electron-positron
pairs produced so that they are co-moving with the ions and those that are
not. The two cases differ experimentally. They also differ theoretically,
because they are described by different asymptotic boundary conditions.
We have solved the problem only for electron-positron pairs that are not
co-moving with the ions. Our solution to the two center Dirac equation in
the high energy limit was confirmed by different methods, including a
Green function approach, (4) and resummation of the perturbation series.(5)

The application to pair production on the other hand, has raised some
controversy, which is also discussed in Sec. 4. Section 5 concludes.

2. TWO-CENTER DIRAC EQUATION

We are using natural units (c=1, me=1, and �=1). The quantity :
is the fine-structure constant, :� and #� + are Dirac matrices in the Dirac
representation, as in Ref. 6; and I2 , 02 , I4 , and 04 are the 2-dimensional
and 4-dimensional unit and zero matrices.

We study relativistic heavy-ion collisions with a single active electron,
e.g., we neglect electron�electron interactions in comparison to the strong
electron�ion interactions. For electrons distant from both the ions at
asymptotic times, the collider (i.e., center-of-velocity) inertial frame is a
natural choice. In the transverse direction, the origin of the collider frame
is located equidistant from the target and projectile trajectories. The posi-
tion vector of the electron in the collider frame is r� =(x, y, z), and the
associated time is t.

The free-particle Dirac equation has the form

i
�
�t

|,(r� , t)) =H� 0 |,(r� , t)) (1)

where H� 0 is the free Dirac Hamiltonian,

H� 0#&i:� } {9 +#� 0 (2)
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The Dirac plane waves [ |,p(r� , t))=exp(&iEp t) exp(ir� } p� ) |up)] which
satisfy the free Dirac equation are each characterized by the quantum
numbers p#[ p� , *p , sp]; the momentum p� , the sign of the energy Ep=
(&1)*p - p2+1, and the spin sp=\. Explicit forms for the four four-
spinors |up) are given in Refs. 6�8.

The two-center, time-dependent Dirac equation in the collider frame
for an electron interacting with both colliding ions is

i
�
�t

|9(r� , t)) =[H� 0+H� B(t)+H� A(t)] |9(r� , t)) (3)

where |9(r� , t)) is the Dirac spinor wave function of the electron, H� B(t) is
the electron-target interaction, and H� A(t) is the electron-projectile interaction,

H� B(t)#
&ZB:#(I4+;c:� z)

- (r� =+b9 �2)2+#2(z+;c t)2
(4)

H� A(t)#
&ZA :#(I4&;c:� z)

- (r� =&b9 �2)2+#2(z&;c t)2
(5)

2.1. Asymptotic Solution

Consider, in the collider frame, at asymptotic times, an electron dis-
tant from both the target and projectile ions. The electron-projectile and
electron-target distances then have the following asymptotic limits,

lim
|t| � �

rA(r� , t)#r�
A (r� , t)=- (b�2)2+#2(z&;ct)2

(6)

lim
|t| � �

rB(r� , t)#r�
B (r� , t)=- (b�2)2+#2(z+;ct)2

Using these distances, the asymptotic, two-center Dirac equation is

i
�
�t

|8�(r� , t)) =[H� 0+H� �
B (t)+H� �

A (t)] |8�(r� , t)) (7)

where |8�(r� , t)) is the Dirac spinor wave function of the electron
asymptotic channel solution, H� �

B (t) is the asymptotic electron-target inter-
action, and H� �

A (t) is the asymptotic electron-projectile interaction,
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H� �
B (t)#

&ZB:#(I4+;c:� z)

- (b�2)2+#2(z+;c t)2
(8)

H� �
A (t)#

&ZA :#(I4&;c:� z)

- (b�2)2+#2(z&;c t)2
(9)

For the solutions of Eq. (7), consider an ansatz of a space-time
dependent phase factor times a Dirac plane-wave state.

|8�(r� , t)) =e&i/(z, t) |,�(r� , t)) (10)

where

/(z, t)#
ZA:

;
ln[#(z&;c t)+- (b�2)2+#2(z&;c t)2]

&
ZB:

;
ln[#(z+;c t)+- (b�2)2+#2(z+;c t)2] (11)

Substituting Eq. (11) into Eq. (7), multiplying from the left by e+i/(z, t), and
collecting like terms gives

i
�
�t

|,�(r� , t)) =_H� 0+\ 1
#2&1+

ZB:#;c:� z

- (b�2)2+#2(z+;ct)2

&\ 1
#2&1+

ZA:#;c :� z

- (b�2)2+#2(z&;c t)2& |,�(r� , t)) (12)

The scalar component of the asymptotic electron-projectile and electron-
target interactions cancel exactly, and the vector component vanishes in the
;c � 1 limit. In this limit, the remaining equation is identical to the free
Dirac equation, Eq. (1), and |,�(r� , t)) � |,(r� , t)) , is a Dirac plane-wave
eigenstate. We conclude that in the extreme, high-energy limit, the ansatz
in Eq. (10) with the Dirac plane wave, is the exact solution to the
asymptotic, two-center Dirac equation, Eq. (7),

lim
;c � 1

|8�(r� , t))=e&i/(z, t) |,(r� , t)) (13)

2.2. Definition of Transition Amplitudes

Following the notation of Ref. 9, let |9 (+)
j (tf )) be the exact outgoing-

wave solution evolving from an initial channel solution |8�
j (t i )) , i.e.,

lim
t � &�

|9 (+)
j (t)) =|8�

j (t)) (14)
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and |8�
k (tf )) be the final asymptotic channel. Then, by definition, the

exact transition amplitude between these two channels is given in the post
form as

A (+)
kj = lim

tf � �
(8�

k (tf ) | 9 (+)
j (tf )) (15)

The prior form of the amplitude is defined at t � &� as the projection of
the exact incoming wave solution |9 (&)

j (t i )) evolving backward in time
from the final channel |8�

k (tf )) , i.e.,

lim
t � �

|9 (&)
k (t))=|8�

k (t)) (16)

onto the initial channel solution |8�
j (t i )) ,

A (&)
kj = lim

ti � &�
(9 (&)

k (ti ) | 8�
j (ti )) (17)

The post and prior forms of the amplitude may be unified using the
time-evolution operator U� (tf , ti ) to relate the full outgoing-wave (incoming-
wave) solution to its initial (final) state as

|9 (+)
j (tf )) =U� (tf , ti ) |8�

j (t i ))
(18)

|9 (&)
k (ti )) =U� -(tf , t i ) |8�

k (tf ))

Inserting Eqs. (18) into Eq. (15) or Eq. (17), one obtains,

A( j )
k = lim

ti � &�
tf � �

(8�
k (tf )| U� (tf , ti ) |8�

j (t i )) (19)

2.3. Short-Range Representation

The factored forms of the asymptotic solutions to the two-center Dirac
equation, Eq. (13), obtained in the previous section, invite the definition
of a new representation for the time-dependent Dirac equation. In this
section, we introduce this representation, which we call the short-range
representation.

Consider the extreme, high-energy limit ;c � 1 of the two-center Dirac
equation in the collider frame, Eq. (3), so that the asymptotic channels for
an electron interacting with a distant target and projectile ion has the
factored form of Eq. (13). We substitute this solution into the expression
for the transition amplitudes for the initial state j and final state k,

A( j )
k = lim

ti � &�
tf � �

(e&i/(z, tf ),(k)(tf )| U� (tf , t i ) |e&i/(z, ti ), ( j )(ti )) (20)
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Rearranging the exponential factors in the expression so that they are
applied directly to the evolution operator, one obtains,

A ( j )
k = lim

ti � &�
tf � �

(, (k)(tf )| e+i/(z, tf )U� (tf , ti ) e&i/(z, ti ) |,( j )(ti )) (21)

Defining the short-range representation,

|9 (S )(r� , t))#e+i/(z, t) |9(r� , t)) (22)

U� (S )(tf , ti )#e+i/(z, tf )U� (tf , ti ) e&i/(z, ti ) (23)

gives the formal expression of a transition amplitude between plane-wave
states,

A( j )
k = lim

ti � &�
tf � �

(, (k)(tf )| U� (S )(tf , t i ) |,( j )(t i )) (24)

To obtain the two-center Dirac equation in the collider frame in the
short-range representation, we begin with Eq. (3), and make the substitution

|9(r� , t)) =e&i/(z, t) |9 (S )(r� , t)) (25)

After multiplying from the left by e+i/(z, t), the equation of motion has the
form

i
�
�t

|9 (S )(r� , t))=[H� 0+W� B(t)+W� A(t)] |9 (S )(r� , t)) (26)

where W� B(t) and W� A(t) are the time-dependent electron-target and elec-
tron-projectile interactions in the short-range representation,

W� B(t)#H� B(t)&
&ZB:#(I4+(1�;c) :� z)

- (b�2)2+#2(z+;c t)2

W� A(t)#H� A(t)&
&ZA:#(I4&(1�;c) :� z)

- (b�2)2+#2(z&;c t)2
(27)

In the high-energy limit, ;c � 1, and

lim
;c � 1

W� B(t)#H� B(t)&H� �
B (t)

(28)
lim

;c � 1
W� A(t)#H� A(t)&H� �

A (t)
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The asymptotic dependence of the time-dependent interaction has been
canceled exactly (in the ; � 1 limit). Likewise, the phase distortion in
the asymptotic channel solutions is canceled by the phase transformation
defining the short-range representation, and the asymptotic channels are
effectively the Dirac plane waves.

Applying the sharp limit of ;c � 1, r= , b<<# to Eqs. (28), we obtain
the following factored forms for the time-dependent interaction, (10, 11, 1)

lim
;c � 1

r= , b<<#

W� B(t)=(I4+:� z) ZB:$(t+z) ln _(r� =+b9 �2)2

(b�2)2 &
(29)

lim
;c � 1

r= , b<<#

W� A(t)=(I4&:� z) ZA :$(t&z) ln _(r� =&b9 �2)2

(b�2)2 &
Consider the physical nature of this limit. A $ function over time alone

would indicate a sudden interaction of the ions with the electron. In the
gauge-transformed equation, as they move, the ions are continuously inter-
acting with the electronic wave function. Naturally, this interaction is
singular on the trajectories of the ions, as it was before the ultrarelativistic
limit has been taken; but an additional singularity is induced in the
ultrarelativistic limit by the extreme Lorentz contraction of the field. In this
limit, the interaction is infinite on the two planes perpendicular to the ions
trajectories, and vanishes elsewhere.

The interactions have zero range in the longitudinal direction and a
logarithmic behavior in the transverse direction, similar to the potential of
a line of charge. In the limit ;c � 1, the two ions are moving at the speed
of light and thus the interaction planes described above coincide with the
light fronts, given by z=\t. Finally, we note that (I4\:� z)�2 are orthonor-
mal projection operators. The 4-Dirac spinor wave function of the electron
can be decomposed into two orthogonal components,

|9+(r� , t)) # 1
2 (I4+:� z) |9 (S )(r� , t)) (30)

|9&(r� , t)) # 1
2 (I4&:� z) |9 (S )(r� , t)) . (31)

Each ion interacts directly only with one of these components; ZA with
|9&(r� , t)) and ZB with |9+(r� , t)).

3. LIGHT-FRONTS REPRESENTATION

In this section, the two-center time-dependent Dirac equation will be
further simplified and solved by changing into light-front variables and by

999A Light-Fronts Approach to a Two-Center Time-Dependent Dirac Equation



introducing a new representation for the Dirac spinors, the light-fronts
representation. This is an appropriate choice of variables and representation,
since, in the ultrarelativistic limit the interactions are confined to the two
light fronts.

3.1. Definitions and Notations

In terms of light-front variables, space-time and energy-momentum are
described by the 4-vectors (r� = , {+ , {&) and ( p� = , p+ , p&), where

{\#(t\z)�2 (32)

p\#Ep\pz (33)

p+p&=1+ p2
= (34)

The sign and absolute value of ( p++ p&)�2 are *p and =p , respectively.
Equation (34) defines the energy-shell. These variables were often used pre-
viously for quantization on one of the two light fronts, {+=0 or {&=0.(12)

For the problem considered here, it is useful to keep the symmetry between
{+ and {& .

The projection operators (I4\:� z)�2 acquire a simple form and the
interaction is diagonalized by introducing the light-fronts representation for
the Dirac matrices,

#+
light-fronts=4# +

Dirac4- (35)

4#
1

- 2 \
I2

I2

_̂z

&_̂z+ (36)

4:� z4-=\I2

I2

02

&I2+ (37)

4 _1
2

(I4+:� z)& 4-=\ I2

02

02

02+ (38)

4 _1
2

(I4&:� z)& 4-=\02

02

02

I2+ (39)

4:�� =4-=i \02

|��
&|��

02 + (40)

|�� #(&_� y , _� x) (41)
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With this notation, the gauge-transformed two-center Dirac equation
in the sharp ultrarelativistic limit in the light-fronts representation is

\i�{+
|G+)

i�{&
|G&)+=\$({+) B(r� = , b9 )

h� -
0

h� 0

$({&) A(r� = , b9 )+\
|G+)
|G&)+ (42)

where |G+) and |G&) are the upper and lower bi-spinor components of
the Dirac wave function in the light-fronts representation

\ |G+)
|G&)+#4 |9) (43)

and

h� 0#I2&i|�� } p�^ = (44)

A(r� = , b9 )#ZA : ln _ (r� =&b9 )2

b2 & (45)

B(r� = , b9 )#ZB: ln _ (r� =+b9 )2

b2 & (46)

The upper and lower bi-spinors are coupled by the free Hamiltonian. Each
interacts directly with the external field of one ion and feels the field of the
other ion through its coupling to the other bi-spinor.

Equation (42) has no discontinuities in the transverse direction. It is
therefore useful to Fourier transform its solution with respect to r� = . Two
mixed bi-spinors wave-functions, | g\(q� = ; {+ , {&)) , are then defined by

|G\(r� = , {+ , {&))#| dq� = eir� = } q� = | g\(q� = ; {+ , {&)) (47)

| g+) and | g&), like |G+) and |G&) , are coupled by the free
Hamiltonian.

3.2. Free Dirac Equation off the Light Fronts

Off the light fronts, i.e., for {+{0 and {&{0, the wave function satisfies
the free Dirac equation and Eq. (42) reduces to two coupled equations for
the mixed bi-spinors | g\(q� = ; {+ , {&)).

i
�

�{+

| g+)=(I2&i|�� } q� =) | g&) (48)

i
�

�{&

| g&)=(I2+i|�� } q� =) | g+) (49)
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The second-order equations decouple

�2

�{+ �{&

| g\)=&(1+q2
=) | g\) (50)

where use was made of

(I2&i|�� } q� =)(I2+i|�� } q� =)=(1+q2
=) I2 (51)

A solution to Eqs. (48), (49) is given, for example, by the plane waves
which in the light-fronts representation are given by

\ |F p
+)

|F p
&)+#4 |,( p)(r� , t)) (52)

|F p
\)#| dq� = eir� = } q� = | f p

\(q� = ; {+ , {&)) (53)

| f p
\(q� = ; {+ , {&))=$(q� =& p� =) e&i({& p+ +{+ p&) |1 p

\) (54)

The bi-spinors, |1 p
\) , (the upper and lower parts of 4 |up) ),

|1 p
\)=

(2?)&3�2

2 - =p(1+=p)
[I2(1+(&1)*p p\)�i|�� } p� =](\_� z)*p |sp) (55)

satisfy the simple relation

|1 p
&)=

I2+i|�� } p� =

p+

|1 p
+) (56)

These plane waves solve Eq. (42) off the light fronts in the limits t � \�.
They do not solve it for finite t, when p� = is no longer a good quantum
number, as the singular interaction with the ions makes the wave function
discontinuous at the light fronts.

3.3. The Discontinuity Across the Light Fronts

The discontinuities of the spinor wave function at the light fronts
(at {+=0 and at {&=0, excluding only {+={&=0) are deduced from
Eq. (42). At one light front, ({+=0, {&{0), Eq. (42) for |G+) reads,

i�{+
|G+)=h� 0 |G&)+B(r� =) $({+) |G+) (57)
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The $-function singularity renders |G+) discontinuous at {+=0, as can be
seen by integrating both hand sides of Eq. (57) with respect to {+ from &=
to = and taking the limit = � 0,

|G+({+=0+)){|G+({+=0&)) (58)

An auxiliary bi-spinor can be defined by a piece-wise gauge transformation,

|G� +) #exp[iB(r� =) %({+)] |G+) (59)

Direct substitution gives,

i�{+
|G� +)=exp[iB(r� =) %({+)] h� 0 |G&) (60)

The auxiliary bi-spinor is continuous at {+=0, as can be seen by operating
on both sides of Eq. (60) with lim= � 0 �=

&= d{+ , obtaining

|G� +({+=0+))=|G� +({+=0&)) (61)

The continuity of |G� +) at {+=0 ({&{0), implies a discontinuity of
|G+):

|G+({+=0+)) =e&iB(r� = , b9 ) |G+({+=0&)) (62)

Likewise, the continuity of

|G� &) #exp[iA(r� =) %({&)] |G&) (63)

at {&=0, ({+{0,) implies the discontinuity of |G&):

|G&({&=0+)) =e&iA(r� = , b9 ) |G&({&=0&)) (64)

This Heavyside step-function, space-dependent, phase discontinuity
was previously obtained in Ref. 11. In earlier work, (10) a gauge transforma-
tion was used to establish the fact that the electromagnetic field of a charge
which is moving at the speed of light can be equivalently given by gauge
potentials with a $-function singularity at the light front, or by gauge
potentials with only a step-function discontinuity there. The wave function
of a particle interacting with this field is discontinuous or continuous,
depending on the gauge choice. We choose to work with such a gauge that
would give a sharp interaction and a discontinuous spinor wave function,
yet we have used here other gauges to find the discontinuities in an explicit
form.
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3.4. Momentum-Transfer Distribution

Due to the space dependent phase-shift of Eqs. (62) and (64), the
transverse momentum is not conserved. The Fourier components of
Eq. (47) are mixed when the singularities at the light fronts are crossed,

| g+(q� = ; {+=0+)) =| dp� = Q&b9
ZB

( p� =&q� =) | g+( p� = ; {+=0&)) (65)

| g&(q� = ; {&=0+)) =| dp� = Qb9
ZA

( p� =&q� =) | g&( p� = ; {&=0&)) (66)

where the distribution for this momentum change, given by Qb9
Z(}� ),

contains all the dynamics of the ion-electron interaction,

Qb9
Z(}� )#

1
(2?)2 | dr� = e ir� = } }� _ (r� =&b9 )2

b2 &
&i:Z

(67)

Note that here }� and b9 are two-dimensional vectors in the (x, y) plane. The
continuity is recovered in the limit Z � 0, as Qb9

Z(}� ) � $(}� ). Integrating first
over the angular variable, we find

Qb9
Z(}� {0)=

1
2?

exp(i}� } b9 )
}2(b})&i2:Z |

!>0
d! J0(!) !1&i2:Z (68)

where b=|b9 |, }=|}� |, and J0 is the Bessel function.
The distribution Qb9

Z(}� ) in general diverges even though the integral
over this distribution is convergent and normalized � d}� Qb9

Z(}� )=1. This is
so, because Eq. (29) describes an interaction which continually increases in
strength for large r= (or large b). In this very same regime, however, the
limit that is taken in its derivation does not apply. When the integral is
regularized so as to avoid contributions from large, transverse distances, i.e.,
from !>}#, by several different regularization schemes one gets (for }� {0)

Qb9
Z(}� ) �

&i:Z
?

exp(i}� } b9 )
}2 _1 (&i:Z)

1 (+i:Z) \
b}
2 +

+i2:Z

& (69)

where arguments presented in Ref. 13 at pp. 385, 393, and 401, can be
used for an exponential, a Gaussian, and a Bessel function regularization,
respectively. In the perturbative limit, :Z<<1, the leading order correction
to the $-function is then given by

lim
:Z<<1

Qb9
Z(}� )=$(}� )&

i:Z
?

1
}2 exp(ib9 } }� ) (70)
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Note that the perturbative expression violates unitarity while the exact
expression does not.

Is the regularization procedure leading to Eq. (69) correct? As we
wrote in Ref. 3, implicit in its application is an assumption that contributions
from large transverse distances and large impact parameters can be neglected.
Clearly this is not always true. Furthermore, for Eq. (69) to apply, self con-
sistency requires that the regulated integral of Eq. (67) must converge to
the expression of Eq. (69) for ! such that |r� =&b9 |<<#. The case of small
coupling, :Z<<1, was studied in Ref. 1 and does not present any special
problem. The case of large :Z can be considered by the method of station-
ary phase. Expansion of Eq. (67) around the stationary point r� =&b9 =
2:Z}� �}2 confirms Eq. (69) for this case. The procedure is consistent if the
stationary point is located at small distances from the ion, i.e., if and only
if

|}� |>>
2:Z

#
(71)

It is interesting to find that Eq. (71) is trivially satisfied in two very dif-
ferent limits: in the perturbative limit of :Z � 0 and in the high-energy
limit of # � �. This issue, previously discussed by us in Ref. 3 was ignored
by other works on this subject. This, we believe, has caused much confusion.
We discuss it below, in Sec. 4.

3.5. A Piecewise Solution

The singular interaction on the planes perpendicular to the trajectories
of the ions, cut space-time along the light fronts into four regions. A piece-
wise solution is defined off the light fronts by | g\(q� = ; {+ , {&)) =
| g (i)

\(q� = ; {+ , {&)), where (i)=I for {+<0 and {&<0, (i)=II for {+>0
and {&<0, (i)=III for {+<0 and {&>0, and (i)=IV for {+>0 and
{&>0. In each region, the wave function is continuous and solves the local
free Dirac equation. At any time, except for t � \�, the wave function
extends in space through three (or two, at t=0) of these regions. The solu-
tion presented here is not complete in the sense that it does not include the
solution on the light fronts; {+=0 and {&=0 are excluded.

3.5.1. Initial Condition and Intermediate States

Consider the initial condition of a single plane wave with the quantum
numbers j=[ }� , *j , sj ], or, using light-front variables, j=[ }� = , j+ , j& , sj ],
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with the constraint j+ j&=1+ j 2
= . The continuity off the light fronts gives

the solution in region I,

| gI
\(q� =)) =$( }� =&q� =) e&i({& j++{+ j&) |1 j

\) (72)

where the bi-spinors |1 j
\) are defined as in Eq. (55).

The solution in regions II and III is obtained by first applying Eq. (65)
for the discontinuity across {+=0 and Eq. (66) for the discontinuity across
{&=0 and then solving the coupled equations (48) and (49) inside each of
the intermediate space-time regions. We obtain in region II

| g II
+(q� =))=exp _&i{& j+&i{+ \1+q2

=

j+ +& Q&b9
ZB

( }� =&q� =) |1 j
+)

(73)

| g II
&(q� =))=\I2+i|�� } q� =

j+ + | g II
+(q� =))

and in region III,

| gIII
&( p� =)) =exp _&i{+ j� i{& \1+ p2

=

j& +& Qb9
ZA

( }� =& p� =) |1 j
&)

(74)

| gIII
+( p� =)) =\I2&i|�� } p� =

j& + | g III
&( p� =))

It is now apparent why the Fourier transform with respect to r� = and
the definition of | g\(q� = ; {+ , {&)) in Eq. (47) were needed. The simple
discontinuity condition (62) at {+=0 applies only to |G+) . The other
bi-spinor |G&) is influenced indirectly by the field at {+=0 through its
coupling to |G+). Likewise, at {&=0 the simple discontinuity condition
(64) for |G&) induces a non-trivial change in |G+). The coupling between
|G+) and |G&) in free space on either sides of the singular interaction is
best described by Eqs. (48) and (49) for their Fourier components with
respect to r� = . Thus, while the discontinuity conditions (65) and (66) for
| g\) seem more complicated than the discontinuity conditions (62) and
(64) for |G\) , using | g\) allows for a simple derivation of the complete
spinor wave function in regions II and III.

The solution of the free Dirac equation in region IV is complicated by
the non-trivial boundary conditions on the light fronts. Applying Eq. (65)
again for the discontinuity across {+ and Eq. (66) for the discontinuity
across {& , we cross from regions II and III into region IV to obtain on the
hyper-surfaces adjacent to the light fronts,
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| gIV
&(k9 = ; {&=0+))=| dq� = exp _&i{+ \1+q2

=

j+ +& Qb9
ZA

(q� =&k9 =)

_Q&b9
ZB

( }� =&q� =) \I2+i|�� } q� =

j+ + |1 j
+) (75)

| gIV
+(k9 = ; {+=0+))=| dp� = exp _&i{& \1+ p2

=

j& +& Q&b9
ZB

( p� =&k9 =)

_Qb9
ZA

( }� =& p� =) \I2&i|�� } p� =

j& + |1 j
&) (76)

Instead of solving now for | gIV
\ ) at any {\>0, the transition amplitudes

are obtained in the next section by defining the transition current and by
applying Gauss' theorem for this current.

3.5.2. Transition Current and Gauss' Theorem

The transition amplitudes A ( j )
k were defined in Eq. (24),

A ( j )
k # lim

tf � � | dr� ,(k) -(r� , tf ) 9 ( j )(r� , tf ) (77)

where

9 ( j )(r� , tf )=U� (S )(tf , t i ) |,( j )(t i )) (78)

The integrand is a component of a 4-vector transition current density:

J (k, j )
0 #,(k) - 9 ( j )

(79)
J9 (k, j )#,(k) - :�� 9 ( j )

An equivalent form for the transition current in terms of light-fronts
representation wave-functions includes

J (k, j )
\ #J (k, j )

0 \J (k, j )
z =2F k-

\G ( j )
\ (80)

We prove first that the transition 4-current density defined in Eq. (79)
is conserved. In fact, any two solutions of the free Dirac equation can be
used to define a conserved current in a similar way. This proof is very
similar to the one found in textbooks proving the probability current to be
conserved.(6) Both ,(k) and 9 ( j ) solve in region IV the free Dirac equation
in the Dirac representation
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i
�
�t

9 ( j )(r� , t)=[&i:� } {9 +#� 0] 9 ( j )(r� , t) (81)

i
�
�t

,(k)(r� , t)=[&i:� } {9 +#� 0] ,(k)(r� , t) (82)

Multiplying Eq. (81) from the left by the adjoint of ,(k), multiplying the
Hermitian conjugate of Eq. (82) from the right by 9 ( j ) and subtracting
gives

�
�t

(,(k) - 9 ( j ))=&{9 } (,(k) - :� 9 ( j )) (83)

where the Hermiticity of the Dirac matrices has been used. Using the
definition of the transition current in Eq. (79), Eq. (83) is reveled as the
continuity equation

�
�t

J ( j, k)
0 +{9 } J9 ( j, k)=

�J +

�x+=0 (84)

proving the transition-current density to be conserved.
Integrating over any empty space-time hyper-volume, V, and applying

Guass' theorem to convert the volume integral into a surface integral over
the hyper-surface S enclosing V, in general gives,

|
S

d_ J +n+=0 (85)

where the unit 4-vector n+ is defined as the outward pointing normal to S.
For our purposes, it is useful to apply Eq. (85) to the space-time region IV,
defined by {\>0. The closed hyper-surface S enclosing region IV is made
of the following open hyper-surfaces: (i) t=tf � +�, (ii) {+=0+, {&>0,
(iii) {&=0+, {+>0, (iv) x � \�, and (v) y � \�. Writing Eq. (85) for
this surface gives

0= lim
tf � � | dr= |

&�

+�
J0(r� , tf )

&2 | dr= |
0+

+�
d{& J+(r� = , {+=0+, {&)

&2 | dr= |
+�

0+
d{+ J&(r� = , {+ , {&=0+) (86)
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where use was made of the fact that in any physical situation, i.e., for a
square-integrable wavepacket, the currents vanish as r� = � �. The hyper-
surfaces (iv) and (v) do not contribute to the integral. The factors of 2 arise
from the Jacobian relating the original differentials to the differentials for
the light-front variables, and the negative sign in the second and third
terms arise because the unit normal vectors n̂\ are directed outside the
volume V, i.e., J } n̂\=&J\ . The transition currents J (k, j )

\ are

J (k, j )
\ (r� = , {+ , {&)=2 | dp� = | dl9 = exp[ir� = } (l9 =& p� =)]

_( f k
\( p� = ; {+ , {&) | g IV

\(l9 = ; {+ , {&)) (87)

Integrating over r� = and using the explicit expression for the plane waves,

A( j )
k =16?2 |

�

0+
d{& ei{& k+ (1 k

+ | gIV
+(k9 = ; {+=0+, {&))

&16?2 |
�

0+
d{+ ei{+ k& (1 k

& | gIV
&(k9 = ; {+ , {&=0+)) (88)

The amplitudes are finally obtained by substituting Eqs. (75), (76) and
integrating over {\ . The integration over {\ would have given a $-function
conservation law for the light-front momenta, had it been on the complete
line &�<{\<�. Instead, the integrals on the half lines 0<{\<� are
regulated in the usual way with an infinitesimal small constant, '.(14)

|
�

0+
d{ exp(i{})=

i
}+i'

(89)

3.6. Transition Amplitudes

The transition amplitudes corresponding to the exact solution of the
sharp Dirac equation off the light fronts are

A ( j )
k =

i
? | dp� = {

_ j
k( p� =) Qb9

ZB
(k9 =& p� =) Qb9

ZA
( }� =& p� =)

p2
=+1& j& k+

&
_k-

j ( p� =) Qb9
ZA

( p� =&k9 =) Qb9
ZB

( p� =& }� =)

p2
=+1& j+ k& = (90)
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which is the main result of our work. The spinor part is

_ j
k( p� =)#(2?)3 (uk | (I4&:� z)(:� } p� =+#� 0)(I4+:� z) |uj )

#(2?)3 (1 k
+| I2&i|�� } p� = |1 j

&) (91)

and Qb9
Z(}� ), defined in Eq. (67), is the Fourier transform of the phase shift

at the light front.

4. APPLICATION TO PAIR-PRODUCTION

Electron�positron pair production in extremely relativistic heavy-ion
collisions has lately received a lot of attention. Recent and ongoing
experiments at CERN's SPS, (15�17) as well as upcoming experiments at
RHIC and LHC, combine with the fundamental aspects of this process to
make its investigation an important field of research.

The transition amplitudes, A ( j)
k , is the amplitude for electron scattering

from the initial state at t i � &�,

e&i/(z, ti ), ( j )(t i )) (92)

to the final state at tf � �,

e&i/(z, tf ),(k)(tf ) (93)

Note that these asymptotic forms at ti � &� and tf � � are correct only
in the limit ; � 1. When *k=0 and * j=1, A ( j )

k is an amplitude for a tran-
sition from the negative continuum to the positive continuum, i.e., an
amplitude for pair production. The probability for pair production off the
light fronts will then be given by an integral over the transition amplitudes
squared, |A ( j )

k |2. This integral, however, does not give the total cross section
for pair production. Pairs for which either the electron or the positron are
moving at the velocity of an ion, are not accounted for. It is possible that
these ``left out'' pairs dominate the total cross section for pair production.
In fact, this integral can only give a prediction for an observable within a
wave-packet formulation of of both initial and final states. This is also
consistent with the physical nature of a scattered particle. One can avoid
the light fronts, experimentally by placing the detector away from the ions'
trajectories, and theoretically by forming a wave packet from the distorted
plane waves of Eq. (92).
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4.1. The Perturbative Limit

The small-charge perturbative-limit of the pair-production amplitude
was calculated in Ref. 18. To leading order in :Z (second order), the
amplitude is given by a sum over two diagrams, where each diagram
describes a two-photon exchange process. Despite the completely different
derivation, here and in Ref. 18, the perturbative limit of our amplitude
obtained by substituting Eq. (70) in Eq. (90) exactly reproduces the ultra-
relativistic limit, of ; � 1 and large #, of the perturbative result of Ref. 18.
Both give

| dp� = e&ib9 } (2p� =& }� =&k9 =) i8(:ZA)(:ZB)

( p� =&k9 =)2 ( p� =& }� =)2

(1 k
+| I2&i|�� } p� = |1 j

&)
j&k+&(1+ p2

=)

&| dq� = eib9 } (2q� =& }� =&k9 =) i8(:ZA)(:ZB)

(q� =&k9 =)2 (q� =& }� =)2

(1 k
&| I2+i|�� } q� = |1 j

+)
j+ k&&(1+q2

=)

(94)

4.2. Nonperturbative Effects

The nonperturbative effects are probably the most interesting subject
of this research. It is important to give predictions as to both the
magnitude and nature of nonperturbative effects in pair production.

Substituting the transverse-momentum transfer distribution induced
by a single ion, Qb9

Z(}� ), as it is, with no regularization applied, into Eq. (90)
the amplitude is given by three nested two-dimensional integrations, two of
which diverge. As discussed in Ref. 3 and in Sec. 3.4 earlier, this divergence
is a result of applying the approximation r= , b<<# outside its range of
validity. A regularization may be applied to overcome this divergence. It
would be best to apply a physically motivated regularization and actually
calculate the complete integral. We have not attempted to do that. Instead,
motivated by recent experiments in CERN, we have limited our calculation
to observed yields of electron positron pairs within a certain range of trans-
verse momenta for which, we have shown, contributions from large trans-
verse distances and large impact parameters can be safely neglected.

We had first integrated over p� = to obtain simple combinations of the
Bessel functions of the third kind, K0 and K1 . Note that the convergence
of the p� = integration to the Bessel functions occurs only for pair-produc-
tion amplitudes for which 1& j\ k�>0, and is directly related to the mass
gap between the two continua and should be reconsidered for transitions
within the same continuum. We have then used the condition that one of
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the two transverse momenta, }� = or k9 = , is much larger than 2:Z�# to apply
a stationary phase calculation to one of the coordinate integrations. The
last integral, over the other coordinate-integration variable, converges due
to the Bessel functions which drop exponentially for large values of their
arguments. Having thus proved that contributions for the 6-fold integral of
Eq. (90) from large, transversal coordinates can be neglected, we have
made the substitution of Eq. (69) and obtained

A ( j )
k � _\b

2+
+i2:(ZA+ZB ) 1 (&i:ZA)

1 (+i:ZA)
1 (&i:ZB)
1 (+i:ZB)&

_
i

?3 :2ZAZB | dp� =( p� =&k9 =)&2 ( p� =& }� =)&2

_{ _ j
k( p� =)

p2
=+1& j&k+

eib9 } ( }� =+k9 =&2p� =)[ | p� =&k9 = | i2:ZA | p� =& }� = | i2:ZB ]

&
_k-

j ( p� =)

p2
=+1& j+k&

e&ib9 } ( }� =+k9 =&2p� =)[| p� =&k9 = | i2:ZB | p� =& }� = | i2:ZA]=
(95)

We emphasize, that naively substituting the regularized result of
Eq. (69) in Eq. (90) is generally incorrect and so is therefore Eq. (95). In
particular, it induces mistakes when Eq. (71) does not apply. Note, for
example, that the branch-point singularities for the intermediate momen-
tum p� ==k9 = or }� = are an artifact of using Eq. (69) for }� =0, Eq. (90) has
no such singularities, and an additional regularization at these points is
then needed.

This substitution, however, is correct and useful when applied with
care and within the appropriate restricted experimental conditions. In
Ref. 3 we apply it to recent experiments in CERN SPS, where, to the best
of our knowledge, these conditions do indeed apply. Based on this substitu-
tion, we were able to explain previously unexplained experimental results.
We have shown that the nonperturbative solution and second-order pertur-
bation theory give exactly the same results, in the high-energy limit, for
production yields, integrated over the impact parameter, of electron-
positron pairs that are not co-moving with the ions, as long as the trans-
verse-momenta transferred in the collision from the ions to the electron are
much larger than 2:Z�# or as long as one only counts what Baltz and
MacLerran had called ``centrally produced pairs.'' The Z 2

BZ 2
A charge

dependence of the single-positron yields, even for very large charges, observed
in these experiments is consistent with the charge dependence we have thus
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obtained for the nonperturbative, high-energy limit. It agrees with pertur-
bation theory, but is not a perturbative effect.

The basis of this picture is the division of space-time to free regions
and phases between them where the interaction acts. This also tells us
where one should look, in momentum space, and in space-time, if one
wants to study and observe non-perturbative effects, either:

v on the light fronts,

v at other observables than total yields,

v at transverse distances larger or momenta smaller than required by
the sharp limit of Eq. (71).

An interesting example for such an observable may be multiple pair
production. The two-photon exchange diagrams of second order perturba-
tion theory were replaced in our amplitude by a two ``kicks'' mechanism in
which a photon exchange is replaced by a space dependent phase shift.
Higher orders in the coupling constant appear in these phase shifts instead
of in higher order diagrams. New predictions for multiple-pair production
because of these nonperturbative phases were considered in Ref. 19.

4.3. Controversy

In Refs. 20 and 21, Ivanov, Schiller, and Serbo, calculated corrections
to the Born cross section for the inclusive process

Z1Z2 � Z1Z2 e+e& (96)

and obtained large negative corrections for the total pair-production cross
sections. The authors also referred to our work which they interpreted as
leading to the conclusion that no such corrections exist and thus claimed
a disagreement with our work. Several suggestions were made as to the
resolution of this controversy.

We have claimed that no real disagreement was shown.(22) Reference
20 calculates the total cross section. We considered only electron-positron
pairs produced so that neither the electron nor the positron is asymptoti-
cally co-moving with an ion, and we have neglected contributions from
small momentum transfer. We have not calculated the complete cross sec-
tion for electron-positron pair production in heavy-ion collisions, and we
have certainly not claimed that the complete cross section is given by
second order perturbation theory. On the contrary, we have emphasized
that our amplitude is restricted to part of the total phase-space. To be more
specific, we have written the transition amplitude of Eqs. (90) and (67) in
Refs. 1 and 2 yet we have not integrated over it to obtain a total cross section.
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Our approach distinguished between electron-positron pairs produced
so that they are co-moving with the ions and those that are not. This is
because these two cases correspond to two essentially different asymptotic
boundary conditions for the electron-positron pair. We have also noted
that it is straight-forward to distinguish between these cases experimentally.
In Ref. 3 we have integrated over the amplitude only under the restrictions
discussed above and in the context of specific experimental conditions.

As for the total cross section, we did not calculate it within our
approach nor were we able to show that the discrepancy between the total
cross section of Refs. 20 and 21, and the integral over our amplitude can
indeed be attributed to that parts of the total cross section that our
amplitude does not account for. It seems that this was recently shown by
Lee and Milstein in Ref. 23. They use our amplitude but improve it by
correcting for the neglected contributions from small momentum transfer.
They show that neglecting this regime can be misleading and prove a
remarkable result, namely, that this very same contribution to the cross
section which we have not calculated compensates exactly for the difference
between our result and the total cross section obtained by Ivanov, Schiller,
and Serbo in Ref. 20.

In Ref. 24 a different resolution of the so-called puzzle was suggested,
namely that the amplitude for pair production and the amplitude for elec-
tron scattering are no longer related by a simple crossing symmetry in the
high energy limit. Hence, according to Ref. 24 it is incorrect to use our
amplitude, formally derived for electron scattering, to the direct calculation
of pair-production cross sections. They suggest an indirect calculation
based on this amplitude and unitarity.

5. CONCLUSION

We have shown that the two-center time-dependent Dirac equation for
an electron in the classical external field of two colliding ions reduces in the
limit in which the ions are moving at the speed of light to an equation,
which can be solved off the light fronts exactly and in closed form. This
special equation and its solution were further considered by several groups.
Independent research has been published which is by-and-large in agree-
ment with our work.(4, 5) Using different methods different research groups
have all arrived at the same results. On the other hand, the application of
this solution to pair-production has caused some confusion and contro-
versy that is still in debate. What makes the debate so difficult yet so
fascinating, is that each group, coming from different fields of physics, and
building on different traditions and concepts, uses a different framework
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and a different language. Nevertheless, we believe that the different
approaches are likely to converge to a single result as is already being
hinted in Ref. 23.
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