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Abstract

The accuracy of an arti®cial neural network (ANN) algorithm is a crucial issue in the estimation of an oil ®eld's
reservoir properties from the log and seismic data. This paper demonstrates the use of the k-fold cross validation
technique to obtain con®dence bounds on an ANN's accuracy statistic from a ®nite sample set. In addition, we also
show that an ANN's classi®cation accuracy is dramatically improved by transforming the ANN's input feature

space to a dimensionally smaller, new input space. The new input space represents a feature space that maximizes
the linear separation between classes. Thus, the ANN's convergence time and accuracy are improved because the
ANN must merely ®nd nonlinear perturbations to the starting linear decision boundaries. These techniques for

estimating ANN accuracy bounds and feature space transformations are demonstrated on the problem of estimating
the sand thickness in an oil ®eld reservoir based only on remotely sensed seismic data. 7 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Here, we demonstrate the viability of Arti®cial

Neural Network (ANN) algorithms in estimating oil
®eld reservoir parameters from remotely sensed seismic
data. To accomplish this one must ®rst develop a tech-
nique to obtain an unbiased accuracy measure from a

®nite sample set. This measure will allow for meaning-
ful comparisons between di�erent ANN methods and
architectures, as well as meaningful comparisons

between the multitude of di�erent data preprocessing

methods. The objectives of this paper are twofold: (1)
to demonstrate the use of the k-fold cross validation
technique to obtain con®dence bounds on an ANN's
accuracy statistic from a ®nite sample set; and (2) to

demonstrate that an ANN's classi®cation accuracy is
dramatically improved by transforming the data into a
feature space that maximizes the linear separation

between classes.
Usually, the performance of a classi®er is reported

as the accuracy it achieves on a test set of data. This

accuracy measure by itself is meaningless. It represents
a single instantiation of the random variable represent-
ing the accuracy statistic. What we seek is an estimate

of the classi®er's accuracy on all possible samples (the
population) from an unknown probability distribution.
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The data set (training plus test sets) represents a single,
®nite-sized sample set from the population. The ques-

tion we need to answer is: How representative is the
classi®er's sample accuracy of the classi®er's popu-
lation accuracy? The k-fold cross validation approach

is used to answer this question and is described in Sec-
tion 3, and it is applied to all results reported here.
Armed with a meaningful measure of a classi®er's

performance, we can now investigate the e�ects of
di�erent ANN architectures and data preprocessing
methods on the accuracy in estimating oil ®eld reser-

voir parameters. It is often said that the art in obtain-
ing accurate estimates lies in the data preprocessing
techniques. In Section 4, we present a preprocessing
technique that transforms the ANN's input feature

space to a dimensionally smaller, new input space. The
new input space represents a feature space that maxi-
mizes the linear separation between classes. We show

in Section 4 that this improves the ANN's convergence
time and accuracy.
We begin this paper by outlining the parameter esti-

mation problem for oil ®eld reservoirs, and describing
the data set used here to illustrate our approaches to
accuracy estimation and data transformation. Other

previous publications on the use of neural network for
analyzing seismic data are, Aminzadeh et al. (1994), de
Groot (1999) and Wang et al. (2000).

2. Reservoir parameter estimation problem

The overall objective of our research is to demon-

strate the e�ectiveness ANN computing techniques in
providing an accurate estimation of petrophysical par-
ameters that describe reservoir properties. Speci®cally,
can ANNs accurately obtain functional relationships

between perturbations of subsurface rock properties
(e.g., sand layer thickness, e�ective porosity, ratio of
clay to sand, and saturation) and seismic response in-

formation, for example, depth, s- and p-wave vel-
ocities, amplitude-versus-o�set (AVO) and zero o�set
amplitude?

The oil industry acquires and processes large
volumes of seismic data. In conjunction with various
types of geoscience data (e.g., log, core, geochemical,
gravity, magnetic, remote sensing data), attempts are

made to locate prospective places for oil and gas reser-
voirs. This data is extensively manipulated before it is
analyzed and interpreted. Every data manipulation

step is important and data processing can be time con-
suming and expensive. It is imperative that the e�-
ciency of the data manipulation and data reduction be

improved. Thus, it is expected that ANNs can help the
oil industry in two regards: (1) improved e�ciency in
data processing; (2) characterization and prediction of

reservoir properties by training the ANN with known
data.

The characterization and prediction of reservoir
properties is an important application of ANNs in the
oil industry. The input data to the prediction problem

are usually processed and interpreted seismic and log
data and/or a set of attributes derived from the orig-
inal data set. Historically, many ``hydrocarbon indi-

cators'' have been proposed to make such predictions.
Among some of the statistical approaches are: seismic
clustering analysis (Aminzadeh and Chatterjee, 1984)

and fuzzy pattern recognition (McCormack, 1990).
Many of the ANNs developed for this purpose are
built around the earlier techniques for establishing a
relationship between the raw data and physical proper-

ties of the reservoirs.
The research reported here investigates the accuracy

of ANN computing techniques in estimating petrophy-

sical parameters that describe reservoir properties
based on seismic response information. This infor-
mation is derived by perturbing each of the di�erent

reservoir properties. The perturbations in the data set
were obtained from oil ®eld measurements. This data
set will represent a known lithology and will be used

to judge the ANN's estimation accuracy. Once ANN
techniques are developed for this problem and their ac-
curacy determined, they will be applied to areas with
more limited information.

To test the e�ectiveness of our ANNs in predicting
di�erent reservoir properties, we start with a suite of
well logs (seismic velocity and density) from a well in a

known oil ®eld. The ®rst step is to ``block'' the logs, to
generate blocked logs that have a limited number of
layers with constant layer properties, for example

using the method described in de Figueiredo et al.
(1996). Then we generate a suite of elastic models by
perturbing the following reservoir properties in the
depth interval of interest: water saturation, e�ective

porosity, sand thickness, and sand/shale ratio. For
every one of these perturbations we generate the syn-
thetic seismic shot gather. For every gather, we com-

pute di�erent seismic attributes within the time
window. The attributes used in this study are described
below. The reason for describing the attributes in the

form of ``a measure of'' is the fact that in most cases a
particular approximation or transformation of the raw
data has been used to obtain best results. The data

used in this study is the same as those in Patnaik et al.
(1995).

2.1. Seismic attributes

A1 a measure of average velocity from the surface
to the re¯ector position
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A2 a measure of average re¯ection coe�cients for
the ``near o�set traces''

A3 a measure of slope of the amplitude variations
from near to far o�sets

A4 a measure of zero o�set amplitude

A5 a measure of nonzero o�set amplitude
A6 a measure of compressional velocity of sands
A7 a measure of shear velocity of sands

A8 a measure of density of sands

With various perturbations of the reservoir proper-
ties 160 seismic records were generated. Each record

represents a time window with as many as 360 sample
points for each seismic attribute.
Typical reservoir parameters to be estimated are:

sand water saturation; e�ective sand porosity; ratio of
sand/clay; and sand thickness. In this paper we will
demonstrate our results by predicting sand thickness,

to be referred to as B. The input to the neural network
will be parameters A1±A8 described above.
Instead of attempting to estimate the exact value of

B we will estimate the closest value of B to one of the
pre-determined ranges (e.g., 5, 10, 25, 100 ft). Thus,
each range represents a class in a pattern classi®cation
problem. The objective here will be to determine the B

classes (range) from the seismic attributes.

3. Accuracy measure: k-fold cross validation

We want to estimate the ANN performance on all

future samples presented to it after training. This is
clearly impossible unless the underlying probability dis-
tribution that the training samples were drawn from is

exactly equal to the probability distribution from
which the future examples are drawn. The ®nal appli-
cation's probability distribution must also be ``similar''

to the training probability distribution for a measure
of accuracy to have any meaning. This statement is
true for any regression and/or pattern recognition
method.

Even if this caveat is true and the probability distri-
butions are equal, we can only provide an estimate P
of a population parameter p. We must bound our esti-

mate with a con®dence interval because the training
set is ®nite and P is a random variable. One method to
estimate the con®dence interval is to use the de

MoivreÂ ±Laplace theorem and the assumptions it
entails.

3.1. de MoivreÂ±Laplace theorem

This theorem states that the probability that P is
within 2zsP of p with a con®dence d is given by

Pr�ÿzsP < Pÿ p < zsP�1d

where s 2
P is the variance of P. Only in the limit as we

train on all population samples does the con®dence
approach one. Thus, any estimate of a statistic describ-

ing the accuracy of an ANN is a random number and
by itself is meaningless unless it is accompanied by a
corresponding con®dence interval.

The proportion of successful predictions an ANN
produces on the population, p, is the population par-
ameter we would like to estimate from a ®nite sample

set as our measure of the ANN's accuracy. The pro-
portion of successful predictions P the ANN produces
on a test set Dtst after its weight parameters, w, have
been ®xed to w� by training is given by

P � 1

n

Xn
hxi, yii2Dtst

j� f �Dtrn, w
�, xi 2 X �yi �,

where j is an indicator function that produces a value
of one when a sample xi is drawn from a test set Dtst

and the ANN yields the correct output vector yi, or
otherwise its zero. Simply put, this is the accuracy of
the ANN on the test set Dtst.

3.2. Blind test (holdout method)

The holdout method is an unbiased ®rst-order tech-
nique to validate a population parameter p from a
®nite sample set. The holdout method consists of v
samples drawn from a set D with an unknown prob-
ability distribution to obtain a sample set Dv. The
sample set Dv is divided into a training set Dtrn and a

test set Dtst. The bootstrap and k-fold-cross-validation
techniques are the two main variations of the holdout
method.
The bootstrap method randomly draws members for

the training and test sets by sampling from Dv with
replacement. The ANN is trained from Dtrn and tested
on Dtst. This process is repeated with di�erent training

and test sets to build an estimate of P and its variance
s 2
P: The con®dence interval is determined from s 2

P

accordingly.

The k-fold-cross-validation technique partitions the
data in k mutually exclusive partitions. The ®rst k-1
partitions are used for Dtrn and the kth for Dtst where
the ANN accuracy is computed. Next, partitions {1, 2,

. . . , k ÿ 2, k } are used Dtrn and the k ÿ 1 partition is
used for Dtst; then partitions {1, 2, . . . , kÿ 3, kÿ 1, k }
are used for Dtrn and the k ÿ partition is used for Dtst;

and so on until k accuracy measures have been
obtained along with their variance.
Both of these methods are unbiased in the limit that

training set consists of vÿ1 samples. The test set is the
single remaining example. The accuracy estimate and
variance are computed from all vÿ1 permutations of
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these sets. This is the leave-one-out holdout method.
The unbiased guarantee disappears if these conditions

are not met. In practice, all vÿ1 permutation sets are
seldom used because of the labor involved in evaluat-
ing ANN algorithms for a large number of training

and test sets. Usually, most researchers divide the data
into one training and one test set with an equal num-
ber of samples in each set, or at best a small number

of training and test sets. Thus, one is left with a poten-
tially highly biased ANN accuracy measure with a
tight con®dence bound that may not be remotely close

to the population's accuracy. The researcher may
therefore be led into a false sense of security about the
performance of the ANN's results.
Kahavi (1995) compared the bias and variance tra-

deo� between the bootstrap and k-fold-cross-validation
techniques as a function of the number of samples in
training/test sets. He found that the bootstrap method

has a smaller variance than k-fold-cross-validation, but
the bias is much larger. For this reason, Kahavi con-
cluded that k-fold-cross-validation may provide a bet-

ter operational estimate of a classi®er's accuracy than
bootstrap. In addition, he showed for the k-fold-cross-
validation technique that ten or more partitions are

su�cient for the sample accuracy with a 95% con®-
dence interval to enclose the population's accuracy.
For this reason, we employed the k-fold-cross-vali-
dation technique with a k = 10 partition to estimate

our ANN's accuracy and con®dence intervals.

4. Data transformations and dimensionality reduction

Much of the success with any regression or classi®-
cation algorithm comes in the analysis and preparation
of the input data. Rather than blindly use all seismic

attributes for inputs to the ANN, we carried out an
analysis to determine those attributes that carry a sig-
ni®cant amount of useful information for our problem.

This reduces the input space's dimension. Next, we
scaled all attributes to the same range of values so that
no one parameter dominates the ANN training phase.

These steps, discussed below, are crucial in achieving
the best performance from the ANN.

4.1. Dimensionality reduction

In theory we can use all seismic attributes as an
input to the ANN and it should perform satisfactorily.
The problem with this, in practice, is that the training

time is signi®cantly increased without much perform-
ance improvement. The ANN spends time learning
meaningless correlations amongst a large number of

input variables due to idiosyncrasies in individual
training cases. Reducing the number of input variables
allows the ANN to focus on only signi®cant corre-

lations. The problem is to ®nd those variables involved
in the ``signi®cant correlations''. We used standard

statistical measures to determine the ``signi®cant vari-
ables''.
A principal component analysis (PCA) is tradition-

ally used to determine whether any of the variables are
highly correlated and should be combined. It also indi-
cates those combinations of variables that contain

large spreads in the data on average. Also, it indicates
those variables that are on average approximately con-
stant and can be dropped as a ``signi®cant variable''.

However, for our pattern classi®cation problem,
those ``insigni®cant variables'' may represent the great-
est separation between the classes, whereas the ``signi®-
cant variables'' may represent highly overlapping class

distributions.

4.2. Data transformation

The ANN estimation of the B parameter was treated
as a pattern classi®cation problem because it took on

only six discrete ranges of sand thickness. Each range
was treated as a class. To reduce the dimensionality of
the ANN's input space, we seek a nonsingular trans-

form that preserves the class separation while it trans-
forms the original input space X into a lower
dimensional space Y. (This section follows the notation

of Fukunaga, 1990.)
We seek a solution to a criteria function J that

rewards maximal separation among the classes. There
are many criteria functions that may be chosen, the

one we use is given by

J � tr�S ÿ1w Sb�

where the within-class scatter Sw of samples from class
ot around their expected class mean vectors Mi are
expressed by

Sw �
XL
i�1

PiEf�X ÿMi ��X ÿMi �Tg j oi,

the between-class scatter Sb is expressed by

Sb �
XL
i�1

Pi�Mi ÿM0��Mi ÿM0�T,

and the expected vector of the mixture distribution is

M0 � EfXg �
XL
i�1

PiMi:

We are looking for a transform A from an n-dimen-
sional space X to an m-dimensional space Y (m< n );

Y � ATX:
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The optimization of the criteria function is given by
the following three steps:

Express J in terms of the m-dimensional Y-space,

J�m� � tr�S ÿ1wYSbY� � trf�ATSwXA�ÿ1�ATSbXA�g

take the derivative with respect to A and set it to zero,

@J�m�
@A

� ÿ2SwXAS
ÿ1
wYSbYS

ÿ1
wY � 2SbXAS

ÿ1
wY � 0

and solve for the optimum nonsingular transform A,

�S ÿ1wXSbX�A � A�S ÿ1wYSbY�:

We want to diagonalize the above equation to those
eigenvalues and their associated eigenvectors that con-
tribute the most to the separation of the classes. Diag-

onalizing this equation is equivalent to simultaneously
diagonalizing the two matrices Sw and Sb. To see this
we choose a transform A such that

ATSwXA � I and ATSbXA � K

is satis®ed. In general, K is not diagonal. The ®rst

equation above is satis®ed if it is chosen to be

A � Lÿ1=2A FA

where LA and FA are the eigenvalue and eigenvector
matrices for SwX. Next, we seek to diagonalize K by

solving for its eigenvalue and eigenvector matrices, LK

and FK,

FT
KKFK � LK and FT

KIFK � I:

Substituting in for K above yields

ATSbXAFK � ATSwXALKFK

or

S ÿ1wXSbX�Lÿ1=2A FA�FK � �Lÿ1=2A FA�LKFK:

This transforms and projects the input space X onto
the m eigenvectors of S ÿ1wXSbX that optimize J. This
projection is closely related to Fisher's Linear Discri-

minant. The linear discriminant boundaries are perpen-
dicular to the line connecting Mi and Mj for ij in this
m-dimensional space.

We will transform all the input vectors for the esti-
mation of B according to the transformation,
�Lÿ1=2A FA�FK:

5. Results

The B parameter took on only six range values (5,
10, 25, 50, 100, 200 ft) for a very wide range of input

parameter values. We treated each of the six values as
members of six di�erent classes and used the ANN to

predict the B class given its input values. The adjoint
analysis (Toomarian and Barhen, 1992) indicated that
a fully connected, feed-forward, multi-layered ANN is

an appropriate architecture for this pattern classi®-
cation problem.
The ANN input space initially consisted of A1, A2,

A3, A4, A5, A7 and A8 seismic parameters. A trans-
formation to an eigenspace (as discussed in Section 4)
reduced the number of inputs to ®ve eigenvectors. The

entire data set was projected into this space and line-
arly scaled to the [0, 1] interval.
The ANN's output consisted of six nodes, one for

each class. All hidden layer nodes used the tanh acti-

vation function with a response range of [ÿ1, 1], while
the output nodes used a sigmoid activation function
with a range of [0, 1].

The entire transformed and scaled data was ran-
domly partitioned into 10 subsets. These partitions
were combined according to the k-fold-cross-validation

procedure into 10 training and testing pairs, such that
Training set No. 1=partitions {1, 2, . . . , 9} and test

set No. 1=partition {10}; training set No. 2=par-

titions {1, 2, . . . , 8, 10} and test set No. 2=partition
{9}; . . . ; training set No. 10=partitions {2, 3, . . . , 9}
and test set No. 10=partition {1}.
These sets were used to obtain all accuracy estimates

and their associated con®dence intervals.
The number of hidden layers and the number of

nodes per hidden layer in the ANN's architecture was

determined experimentally. Initially, a single hidden
layer was used with 10 nodes. All weights were initia-
lized with values between 20.1 and training set No. 1

shu�ed for presentation to the ANN. The ANN's
error on test set No. 1 was monitored along with the
training set's error as a function of the number of
epochs (1 epoch=1 full presentation of the training

set's examples). As the number of epochs increases

Fig. 1. Mean accuracy is displayed along with its 95% con®-

dence intervals for ANNs with single (solid) and two (dashed)

hidden layers. No transformation was applied to input data.
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both the training set error and test error decrease, up
to a point where the training set error continues to

decrease and the test set error starts to increase. Just
prior to this point we extract the error on test set No.
1 and use this value in our accuracy estimate. This

process is repeated for the remaining sets. The 10 accu-
racy estimates are then averaged, variances extracted,
and their 95% con®dence intervals are computed

according to the formulas outlined in Section 3. This
process is repeated for each ANN of a given size.
Fig. 1 displays the mean accuracy and 95% con®-

dence intervals for ANNs with one and two hidden
layers and with a di�ering number of nodes in the hid-
den layers. The input space used to generate these
points was not transformed to the eigenspace, but was

the seven seismic parameters discussed above. The
lower curve represents the mean accuracy for an ANN
with 10, 20, 30, and 40 nodes in a single hidden layer.

The upper curve represents the mean accuracy for an
ANN with 10 (5 � 5), 20 (15 � 5), 25 (15 � 10), 30 (20
� 10), and 40 (25� 15) nodes in two hidden layers.

The two layer ANN architecture provides a higher
accuracy than a single hidden layer ANN.
Fig. 2 displays the mean accuracy and con®dence

intervals for ANN's two hidden layers and where the
input data were transformed into the eigenspace.
These results show that the transformed data con-

sistently yields a higher accuracy than the untrans-

formed data and that the ANN size is smaller. In the
course of this investigation, we also found that the
number of iterations needed to reach convergence is

reduced by about a factor of 2/3. This is due to the
fact that the ANN started from an eigenspace that
already linearly separates the classes and the ANN

provides nonlinear perturbations to the linear decision
boundaries.
Our results indicate that a two hidden layer ANN

with 15 nodes in the ®rst hidden layer and 10 nodes in

the second will be approximately 94%2 1% accurate

on any future examples drawn from the probability
distribution that was used to generate the training/test

data. Thus, one can expect roughly similar accuracy
for any B estimates generated a similar population
probability distribution as those used in this study.

6. Conclusions

Our approach focuses on quantitative measures to

determine the accuracy of ANNs in obtaining func-
tional relationships between reservoir properties and
seismic response data. A simulation program provided

precise and unambiguous data for this study. The seis-
mic response data which is used as input to the ANN
is transformed so that di�erent features do not domi-

nate and bias the ANN's results. The k-fold-cross-vali-
dation method is used to estimate the accuracy and its
con®dence interval for all ANNs used in this study.
The number of free parameters (size) in the ANN are

determined by con®dence interval measures.
We also show that an ANN's classi®cation accuracy

is dramatically improved by transforming the ANN's

input feature space to a dimensionally smaller, new
input space. The new input space represents a feature
space that maximizes the linear separation between

classes. Thus, the ANN's convergence time and accu-
racy are improved because the ANN must merely ®nd
nonlinear perturbations to the starting linear decision
boundaries. These techniques for estimating ANN ac-

curacy bounds and feature space transformations are
demonstrated on the problem of estimating the sand
thickness in an oil ®eld reservoir based only on remo-

tely sensed seismic data.
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