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Abstract
We have implemented screening in the fully relativistic spin-polarized version

of the real-space Korringa± Kohn± Rostoker (KKR) band-structure method.
Exploiting the resulting sparsity of the KKR matrix, we were able to accelerate
the matrix inversions considerably. The factors determining the convergence of
the method as a function of atoms in the cluster are discussed, and we show
results obtained for the magnetic and orbital moment of elemental Ni.

§1. Introduction

An accurate real-space electronic structure method is a requirement for per-
forming calculations with relaxations of the atoms in a solid. The Korringa±
Kohn± Rostoker (KKR) method, a combination of multiple-scattering theory
and Green’s function formalism, can be implemented for any arrangement of
the atomic positions and therefore allows for the study of both disordered and
ordered solids. For a mu� n-tin potential, the KKR method is an exact solution
of the one-electron SchroÈ dinger equation in a solid. In practice, however, the
large amount of linear algebra operations, which have to be performed in the
KKR method for the required matrix inversion, limits the method’s applicability
in real space to small clusters. Recent developments have allowed multiple-scat-
tering equations to be expressed in a tight-binding form. In particular, Zeller et
al. (1995) have shown that, by exploiting the freedom of choice of reference
medium, a set of screened structure constants can be obtained, which are short
ranged, and allow supercell calculations to be performed with the KKR method
(Zeller 1997).

In this paper we investigate the possibility of evaluating, in the real-space
screened representation, all the physical quantities of interest. We do not consider
a lattice Fourier transform of the screened structure constants to make the KKR
matrices ® nite, but we tackle the problem of ìn® nite’ KKR matrices. In the
screened representation these matrices become sparse. We show which algorithms
to implement, which take into account only the non-zero elements of the sparse
matrix and can considerably speed up the matrix inversion. We elucidate the
potential of this approach for realistic applications by a study of the spin and
orbital moments in elemental Ni. In what follows we describe the theory of
screening and show how this can lead to a very e� cient evaluation of the multi-
ple-scattering expressions. We discuss problems related to the structure of the
screened structure constant matrix. Finally, we show preliminary results obtained
for the magnetic moment of Ni.
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§2. Theory

In order to perform real-space calculations, we introduce the concept of a local
interaction zone (LIZ) (Wang et al. 1995), where a central site, situated at R0, is
surrounded by N sites at positions Ri. For simplicity we describe the LIZ in terms of
shells of atoms of constant radius |Ri - R0|. The assumption is that the electronic
structure of the central site is determined by its interaction with the neigbouring
atoms in the LIZ, that is physical quantities, such as the charge density and the
magnetic and orbital moments on the central site, are expected to converge with
increasing number of atoms in the LIZ. The hope is that between 500 and 1000
atoms will give a reliable result.

In the KKR method, all physical information is contained in the Green’s func-
tion of the system. Within the relativistic and spin-polarized extension of the method
(Strange et al. 1991a), the Green’s function in the vicinity of the central site is given
by

G(r + R0,rÂ + R0) =
¸¸Â

Z0
¸(r,E)¿

0,0
¸¸Â

(E)Z0
¸Â

(rÂ ,E) -
¸

Z0
¸ (r<,E)J0

¸ (r>,E) . (1)

Here ¸ stands for the pair of relativistic quantum numbers (·,¹) . ¿
0,0
¸¸Â

(E) refers
to the ( ,̧¸Â ) element of the on-site 2(l + 1)2-dimensional block {¿̧ ¸Â

(E)}0,0 of the
scattering path matrix

s (E) = [t- 1 (E) - G
0 (E)]- 1. (2)

Z0
¸ and J0

¸ are the regular and irregular single-site scattering solutions respectively for
the central potential. The amount of numerical work involved in the inversion of
equation (2) scales as O(N3) , multiplied by a further factor of eight in the relativistic
case. As a result we are limited to a LIZ of about 100 atoms (Beiden et al. 1998).

By constructing a new reference medium, consisting of constant repulsive poten-
tials which ® ll up the mu� n-tin spheres inside the LIZ, we obtain a new set of
structure constants (Zeller et al. 1995) G

sc (E) , related to the free-space values
G

0 (E) by

G
sc (E) = G

0 (E)[I - t
sc (E)G0 (E)]- 1. (3)

These screened structure constants decay exponentially in space, and the resulting
structure constant matrix is sparse. In ® gure 1 we show the screened structure con-
stant matrix for a LIZ of 17 shells (459 atoms) and a screening cut-o� of one shell (13
atoms). Note that the displayed sparsity re¯ ects the tight-binding nature of the
screened structure constants.

Given D t = t
mt - t

sc, where t
mt and t

sc are the single-site mu� n± tin and reference
system scattering matrice respectively, the scattering path operator, in terms of the
screened structure constants, becomes

s D (E) = [(D t)- 1 (E) - G
sc (E)]- 1. (4)

Inserting the above equation into equation (1), together with the relevant regular and
irregular solutions, gives again the Green’s function for the system. The advantage of
this expression, as we shall see in the following section, is the considerable speed-up
related to the sparsity of the matrix that is to be inverted.

Knowing the Green’s function (1) we can calculate such quantities as the density
of states
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n(E) =- 1
p

Im Tr G(r,r,E) d3r, (5)

the spin magnetic moment

mspin =- ¹B

p
Im d3r

EF

Tr b hG(r,r,E) dE (6)

and orbital magnetic moment

morb = - ¹B

p
Im d3r

EF

Tr b LG(r,r,E) dE, (7)

where the trace is over spin space and L is the orbital moment operator.

§3. Sparse matrix inversion

We tested several packages for inverting sparse asymmetric linear systems of
equations, and measured the respective speed-up compared with the conventional
LU decomposition. Most packages work only for very sparse systems, that is with
less than 0.1% of non-zero elements. For our less sparse matrices, by far best results
were obtained with a package from the Harwell Subroutine Library, ME48 (Du�
1996). The central processing unit (CPU) times, measured for cluster sizes between
13 and 321 atoms, with one shell of screening, are displayed in table 1.
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Figure 1. Sparsity pattern of the screened structure constant matrix, for a LIZ of 459 atoms
and a screening radius of one shell.



ME48 is a direct method, based on a sequence of the following three steps.

(a) The analysis phase is where a good pivot order is determined. The energy
dependence of the structure constants implies that the inversion has to be
repeated for each energy but, since the sparsity pattern remains unchanged,
the analysis step has to be executed only once.

(b) The factorization phase is where the permuted matrix is decomposed into
lower and upper triangular matrices L and U respectively.

(c) The solve phase is where the equations are solved by forward and backward
substitution. As we are only interested in the (0, 0) block of the inverted
matrix, we need only to solve for 2(l + 1)2 equations.

As can be seen from ® gure 2, the speed-up is really noticeable, in the screened
case exhibiting now approximately O(N) behaviour.
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Table 1. A comparison of the CPU times and speed-ups for two di� erent inversion packages
for clusters of 13 to 321 atoms, corresponding to di� erent sizes and degrees of sparsity
of the KKR matrix.

Matrix Sparsity CPU time: ME48,
dimension (%) CPU time: LU analyse/factorize/solve Speed-up

416 55.1 7 0/ 1/ 0 7
1256 84.5 260 4/ 6/ 3 20
2696 93.5 3690 24/ 54/13 42
3284 94.9 5314 45/ 63/14 69
3668 95.7 7444 55/ 84/16 74
4244 96.6 11995 89/199/29 52

Figure 2. Sparse matrix inversion times as a function of matrix dimension: (´´´ d ´´ )́, LU

decomposition; ( Ð j Ð ), ME48



§4. The screened structure constant matrix

It follows from equation (6) that the Green’s function has to be calculated for a
whole range of energies in order to determine the magnetic and orbital moments. We
can replace the integral along the real energy axis by a contour integral in the
complex plane (Zeller et al. 1982). At these complex energies the Green’s function
behaves much more smoothly; therefore fewer integration points are needed and,
moreover, the screened structure constants can be interpolated with respect to
energy.

The free-space reference medium is in® nite, and the corresponding structure
constants, which join the sites of the LIZ to each other, depend only on the relative
distance of the sites, and not on their absolute positions:

G0;i,j
lmlÂ mÂ

(E) = - 4p il- lÂ (E1 /2)
lÂ Â mÂ Â

ilÂ Â CL Â ÂL L Â
hlÂ Â [E

1 /2|Rn - Rm|]Y mÂ ÂlÂ Â
(Rn - Rm ) . (8)

Note that all the sites in the LIZ are equivalent, and the corresponding matrix can be
constructed analytically for each energy. Our screened reference medium, on the
other hand, has constant repulsive potentials inside the mu� n-tin spheres of the
LIZ and free space outside. The scattering environment of those reference sites,
which are situated at the surface of the zone, is completely di� erent from that of
the more central sites. The consequence is that on the surface the screened structure
constants for each site depend on the spatial arrangement of the reference potentials
in neighbouring shells. As a result the screened structure constants lose the property
of translational invariance. This can be visualized by de® ning a relative quantity

D N0,J
llÂ

(|Ri - Rj|; E) = [ mmÂ
|Gsc;0,J

lm,lÂ mÂ
(E) - Gsc;i,j

lm,lÂ mÂ
(E)|2]1 /2

[ mmÂ
|Gsc;0,J

lm,lÂ mÂ
(E)|2]1 /2 . (9)

The above formula is a generalization of a similar formula of Zeller et al. (1995). It
determines the variation of the screened structure constants at ® xed sites at the origin
0 and J with respect to sites i and j, chosen by the condition that Ri - Rj =R0 - RJ .
In ® gure 3 we display D N for di� erent i, in the (100) and (110) directions respectively
with J being a site on the ® rst shell around 0. Two sites, situated opposite to each
other on the same shell k, are in the ® gure referred to as - k and k respectively.

The screened structure constants on sites situated within the ten ® rst shells, are
more or less equivalent, which is re¯ ected by the fact that D N is of the order of 10- 5.
Therefore, translational invariance of the nearest-neighbour screened structure con-
stants is approximately ful® lled for a region of ten shells out of the total of 17 shells.
Moreover, these structure constants can be obtained by inverting equation (3) for as
small a cluster, consisting of a central site and its two neighbour shells, as 19 atoms
in the case of a fcc structure. We can therefore reconstruct the screened structure
constants for the bulk region of the large LIZ by translations of the screened struc-
ture constants of the small cluster. On the surface of the LIZ, D N can be as large as
0.8 (see ® gure 3), and the D N values are di� erent for di� erent directions.
Consequently these structure constants cannot be obtained from translational invar-
iance. These need to be calculated explicitly, taking into account the speci® c scatter-
ing neighbourhood of each site. These clusters are usually small, that is between four
and 12 atoms for one shell screening. Furthermore, l = 3 is used only for the ® rst
three shells of the LIZ; all the others have l = 2 or less (Nicholson et al. 1994).
Therefore it is not time consuming to invert these small matrices.
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Before leaving this section it is useful to compare the present approach with the
standard approach of working with screened structure constants. By lattice Fourier
transforming the screened structure constants to k space, one solves for the in® nite
system where the screened structure constants are translationally invariant. The k-
space screened KKR method has been successfully applied to large-scale supercell
calculations (Zeller 1997) and layered systems (Wilberger et al. 1997). It is our
consideration of a ® nite cluster in real space which destroys translational invariance
of the screened structure constants. This means, of course, that additional screened
structure constants have to be evaluated and in particular all screened structure
constants for the sites in the surface region of the cluster need to be calculated.

§5. Results and Discussion

In our calculations with the screened real-space method, we were concerned with
the convergence of the magnetic and orbital moments of Ni with respect to the size of
the LIZ. First we analysed the relative in¯ uence of the surface. When the same
screened structure constants were placed on every site of the cluster, including
those of the surface, the calculated magnetic moment showed no convergence,
even for a cluster of 1200 atoms. This could be assigned to the fact that, even for
a cluster of 1000 atoms, what is considered as a surface constitutes more than 50% of
the atoms in the cluster. To achieve convergence, the prescription of the preceding
section was implemented. The latter takes into account the fact that the ® nite cluster
destroys the translational invariance of the screened structure constants and there-
fore involves calculating these screened structure constants for every surface atom.

The convergence of the magnetic moment for Ni is shown in ® gure 4. A screening
potential of 4 Ryd was used. Even with nearest-neighbour screening only, the
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Figure 3. Relative variation in the screened structure constants as a function of shell num-
ber. D N is measured with respect to the structure constants joining the central site to
its nearest-neighbour shell.

(- k,k)



convergence is apparent but does not give an accurate result within a cluster size of
800 atoms. For two shells of screening, implemented for all the sites of the cluster,
the result is much more satisfying, concerning both the convergence and the value of
the magnetic moment which is in agreement with other calculations (® gure 4). The
result obtained with a screening radius of two shells for the bulk atoms but only one
shell screening for the surface atoms shows unsatisfactory convergence, indicating
the overall importance of an accurate evaluation of the screened structure constants
for the surface region, which similarly to the bulk also needs two shells of screening.

Another indication for having con® dence in the accuracy of these real space
calculations, with two nearest neighbour shells of screening, is the calculated value
of 0.052¹B for the orbital moment on the central site of a cluster of 603 Ni atoms.
This value is close to the experimental value of 0.05¹B (Wein 1988). Since, the change
in reference medium is simply an identity transformation of the multiple-scattering
equations, in the limit of no cut-o� , exactly the same results should be found for the
screened and unscreened version of our real-space method. A value of 0.545¹B

(Beiden et al. 1998) was found for the spin magnetic moment of Ni when calculated
with the unscreened real space code, with a cluster size of 135 atoms. Our results for
the same cluster size and with respectively one and two shells of screening are
0.614¹B and 0.595¹B. The result for three shells of screening is around 0.57¹B.
Thus the screened result is steadily converging towards the unscreened result. It
also shows that for these small cluster sizes, where most atoms can actually be
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Figure 4. Convergence of the Ni magnetic moment as a function of real-space cluster size:
(´´´ d ´´ )́ , screening radius of one shell for all the sites of the cluster; (Ð j Ð ),
screening radius of two shells for all the sites of the cluster; (± - ± e ± - ± ), result
obtained for two shells of screening in the bulk, and one shell of screening in the
surface area; ( Ð Ð ), from top to bottom, lines referring respectively to the results of
Trygg et al. (1995), Strange et al. (1991b) and Guo et al. (1991) and to experiment
(Wein 1988).



considered as part of the surface, a higher screening radius is needed if we are to
reproduce the unscreened results. Note that in the unscreened calculations it
becomes impractical, from a computational point of view, to consider clusters
beyond the size of 135 atoms, in which case the magnetic and orbital moments of
Ni have not been fully converged (Beiden et al. 1998). However, for the screened
calculation we readily performed calculations for 603 atoms and could converge the
magnetic and orbital moments of Ni to a much higher accuracy.

In conclusion, we have presented a new real-space methodology which allows
electronic properties to be calculated to a high accuracy. It is based on the screened
representation of the multiple-scattering theory combined with the powerful sparse
matrix technology for matrix inversion. It allows one to study systems of more than
600 atoms in a spin-polarized and relativistic multiple-scattering framework. In the
latter case we have been able to converge the magnetic and orbital moments of Ni to
a higher accuracy than previous unscreened multiple-scattering calculations.
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