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Abstract

Both analytical modeling and numerical simulations were performed to analyze the stress transfer in platelet-reinforced
composites in a two-dimensional sense. In the two-dimensional model, an embedded elongated plate bonded to a matrix along its
long edges was considered. The system was subjected to both tensile loading parallel to the plate’s long edges and residual thermal
stresses. The ends of the plate can be debonded from or bonded to the matrix during loading, and both cases were considered in
the analysis. Good agreement was obtained between the present analytical and numerical solutions. However, better agreement
between analytical and numerical models was obtained for the case of bonded ends than for debonded ends. © 1999 Elsevier
Science S.A. All rights reserved.
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1. Introduction

Brittle ceramics can be reinforced by incorporating
fibers [1,2], whiskers [3,4] or platelets [5–8]. The me-
chanics of reinforcement relies on stress transfer be-
tween the reinforced phase and the matrix, and
analytical modeling has been developed to analyze this
stress transfer. For fiber (and whisker) reinforcement,
the shear lag model has been used extensively [9–15].
By treating fibers as ellipsoidal inclusions, the stress
transfer problem has also been analyzed using both
Eshelby’s method for an ellipsoidal inclusion in an
infinite matrix and the modification developed by Mori
and Tanaka to account for the effect of finite volume
fractions of inclusions [16,17]. For platelet reinforce-
ment, a two-dimensional (plane stress) stress transfer
model has also been developed [18,19]. To emphasize
the two-dimensional nature of the analysis, ‘plate’ in-
stead of ‘platelet’ is used hereafter. The initial two-di-
mensional stress transfer model [18] was derived by
making the same assumptions and following the same

analysis as used in the classical shear lag model [9]. The
long edges of the elongated plate were assumed to be
bonded to the matrix, and were parallel to the loading
direction. The ends (i.e. short edges) of the plate were
assumed to be debonded from the matrix such that
stress transfer occurred only along the long edges of the
plate [18]. Recently, a more rigorous two-dimensional
stress transfer model was developed, and both cases of
the plate-ends being debonded from and bonded to the
matrix were considered [19]. However, residual thermal
stresses were not included in the analysis. Also, a
comparison between the analytical and numerical solu-
tions has not been made.

The purpose of the present study was twofold.
Firstly, the previous two-dimensional stress transfer
analytical model [19] was modified to include residual
thermal stresses. Secondly, numerical simulations were
conducted on the two-dimensional stress transfer. Then,
comparisons were made between analytical and numeri-
cal solutions.

2. Analytical modeling

The model composite for the two-dimensional stress
transfer analysis is shown in Fig. 1. A plate with a
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width 2a and a length 2t is embedded at the center of a
matrix with a width 2b and a length 2u. The Cartesian
coordinates, x and y, are also shown. A tensile stress, so,
is applied to the composite in the y-direction. The plate
is bonded to the matrix at x=9a. At the ends of the
plate (i.e. at �x �5a and y=9 t), the interfaces can
either be debonded by mode I crack opening or remain
bonded. Stresses transfer between the matrix and the
plate through the interfacial shear stress, ti, at x=9a.
In the case of bonded ends, stress transfer also occurs at
y=9 t. Due to the symmetric geometry in the x–y
plane, only one quarter of the model composite is
required in the analysis.

To simplify analyses in analytical modeling, the width
of the plate was assumed to be much smaller than that
of the matrix. Hence, whereas the x-dependence of the
stress, sy, was considered in the matrix, it was ignored
in the plate [19]. For convenience, sy is designated as sp

and sm for the plate and the matrix, respectively. The
general differential equation governing the stress distri-
bution in the plate along the y-direction, sp, due to
stress transfer has been derived, such that [19]

d2sp

dy2 =
3[asp−bso+ (b−a)sa]

2a(b-a)2(1+nm)
(1)

where nm is Poisson’s ratio of the matrix, and sa is the
matrix stress in the y-direction at the interface (i.e. sm

at x=a). The interfacial shear stress, ti, is related to sp

by [19]

ti= −
adsp

dy
(2)

The general solution of sp from Eq. (1) is contingent
upon the determination of sa.

The role of Poisson’s effect in analyzing the stress
transfer problem has been addressed previously [20,21].
While Poisson’s effect is important when the interface is
debonded and subjected to Coulomb friction [20], the
error resulting from ignoring Poisson’s effect is negligi-
ble when the interface is bonded [21]. The strain in the
system consists of the thermal strain (which is a stress-
free strain) and the stress-induced strain. The condition
that the plate and the matrix remain bonded at the
interface requires continuity of the strain in the y-direc-
tion. Ignoring Poisson’s effect, this condition is de-
scribed by

apDT+
sp

Ep

=amDT+
sa

Em

(at x=a) (3)

where E and a are Young’s modulus and the coefficient
of thermal expansion, the subscripts p and m denote the
plate and the matrix, respectively, and DT is the temper-
ature change for thermal stress development.

Substituting Eq. (3) into Eq. (1), the general solution
for sp is

sp=
bEpso− (b−a)EpEm(ap−am)DT

aEp+ (b−a)Em

+Aexp(by)

+Bexp(−by) (for 05y5 t) (4)

where

b=
1

b−a
!3[aEp+ (b−a)Em]

2a(1+nm)Ep

"1/2

(5)

The corresponding interfacial shear stress, ti, is

ti= −ab [Aexp(by)−Bexp(−by)] (for 05y5 t)
(6)

Determination of the coefficients, A and B, is contin-
gent upon the boundary condition at the plate-ends.

2.1. The bonded-ends case

When the ends of the plate are bonded to the matrix,
stress transfer occurs such that a finite stress exists at
the bonded ends. The boundary condition at the
bonded ends is defined by the continuity condition at
y=9 t. To satisfy this continuity condition, a tech-
nique of adding imaginary plates to the stress transfer
model has been developed [19]. The matrix connecting
the plate ends to the surface (see the area, �x �5a and
�y �] t, between dashed-lines in Fig. 1) is treated as two
imaginary plates, which have the matrix properties.

Whereas the general solutions of sp and ti in the real
plate are described respectively by Eq. (4) and Eq. (6),
the general solutions of the stress in the y-direction, sp% ,Fig. 1. Schematic showing the two-dimensional stress transfer model.
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and the interfacial shear stress, t i%, for the imaginary
plate can be obtained by letting ap=am and Ep=Em in
Eq. (4), Eq. (5) and Eq. (6), such that

sp%=so+A %exp(b %y)+B %exp(−b %y) (for t5y5u)
(7)

t i%= −ab %[A %exp(b %y)−B %exp(−b %y)] (for t5y5u)
(8)

where

b %=
1

b−a
� 3b

2a(1+nm)
n1/2

(9)

To solve the coefficients, A and B for the real plate
and A % and B % for the imaginary plate, four boundary
conditions are required which are

sp%=so (at y=u) (10a)

sp=sp% (at y= t) (10b)

ti=t i% (at y= t) (10c)

ti=0 (at y=0) (10d)

Eq. (10a) is the loading condition, Eq. (10b) and Eq.
(10c) are the continuity conditions, and Eq. (10d) is the
symmetry condition.

The solutions of A, B, A %, and B % subjected to the
above boundary conditions are

A=
(b−a)(Em−Ep)so+ (b−a)EpEm(ap−am)DT

aEp+ (b−a)Em

×
!

exp(bt)+exp(−bt)

−
b [exp(bt)−exp(−bt)][exp(b %t)−exp(2b %u−

b %t)]b %[exp(b %t)+exp(2b %u−b %t)]
"−1

(11a)

B=A (11b)

A %=
b [exp(bt)−exp(−bt)]A

b %[exp(b %t)+exp(2b %u−b %t)]
(11c)

B %= −A %exp(2b %u) (11d)

The solutions for the bonded-end case are hence
completed.

When the bonded end is sufficiently remote from the
loading surface such that exp(2b %u)\\exp(b %t), the
coefficient A (=B) can be simplified, and sp at the
bonded end has an asymptotic value; i.e.

When the plate is sufficiently long such that
exp(bt)\\0\\exp(-bt), the coefficient A (=B)
can also be simplified, and sp in the central region of
the plate reaches its asymptotic value; i.e.

sp=
bEpso− (b−a)EpEm(ap−am)DT

aEp+ (b−a)Em

(at y

=0 and for t\\0) (13)

Alternatively, the asymptotic value of the stress in
the plate (Eq. (13)) can also be derived from a simple
equilibrium equation; i.e. the stresses in the plate and
the matrix, sp and sm, are uniform and reach their
asymptotic values at y-positions sufficiently remote
from the plate end, and

asp+ (b−a)sm=bso (14)

Also, continuity at the interface requires that

apDT+
sp

Ep

=amDT+
sm

Em

(15)

Combination of Eq. (14) and Eq. (15) yields Eq. (13).

2.2. The debonded-ends case

When the ends of the plate are debonded from the
matrix, stresses cannot be transferred through the ends
(i.e. sp=0 at y= t), and the symmetric geometry re-
quires that ti=0 at y=0. The solutions of sp and ti

from Eq. (4) and Eq. (6) subjected to the above two
boundary conditions are

sp=
bEpso− (b−a)EpEm(ap−am)DT

aEp+ (b−a)Em

�
1

−
exp(by)+exp(−by)
exp(bt)+exp(−bt)

n
(for 05y5 t) (16)

ti

=
ab [bEpso− (b−a)EpEm(ap−am)DT ]

aEp+ (b−a)Em

�exp(by)−

exp(−by)exp(bt)+exp(−bt)
n

(for 05y5 t) (17)

It is noted that sp described by Eq. (16) also ap-
proaches Eq. (13) at y=0 when t\\0.

sp=
so

aEp+ (b−a)Em

!
bEp+

(b−a)b %(Em−Ep)[exp(bt)+exp(−bt)]
b %[exp(bt)+exp(−bt)]+b [exp(bt)−exp(−bt)]

"
+

(b−a)EpEm(ap−am)DT
aEp+ (b−a)Em

!
−1+

b %[exp(bt)+exp(−bt)]
b %[exp(bt)+exp(−bt)]+b [exp(bt)−exp(−bt)]

"
(at y= t and for u− t\\0) (12)
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For the imaginary plate, sp%=0 at y= t because of
the debonded end, and the loading condition requires
that sp%=so at y=u. The solutions of sp% and t i% from
Eq. (7) and Eq. (8) subjected to the above two
boundary conditions are

sp%=so
�

1−
exp(b %y)−exp(2b %u−b %y)
exp(b %t)−exp(2b %u−b %t)

n
(for t5y5u) (18)

t i%=ab %so
�exp(b %y)+exp(2b %u−b %y)

exp(b %t)−exp(2b %u−b %t)
n

(for t5y5u) (19)

3. Numerical simulations

Both a recently developed object oriented finite ele-
ment analysis (OOF) [22] and a conventional finite
element code, ANSYS 5.4 [23], were adopted for nu-
merical simulations. Due to the symmetric geometry
depicted in Fig. 1, only one quarter of the geometry
(05x5b and 05y5u) is required for the simula-
tions. The boundary conditions require fixing both the
x-displacement at x=0 and the y-displacement at y=
0. Loading is applied at y=u.

3.1. OOF

For OOF, a two-dimensional uniform grid was used
and each grid consisted of two triangular elements. The
region of 05x5b and 05y5u in Fig. 1 was digitized
to a portable pixel map (.ppm) format; each pixel then
corresponding to two triangular elements. Hence, mesh-
ing in OOF is obtained simply by converting an image
to a portable pixel map format. The uniqueness of
OOF is that it can operate directly on microstructural
images. However, to achieve high accuracy in the simu-
lated results, many more elements are required in OOF
than in conventional finite element programs (e.g. AN-
SYS). It is noted that loading in OOF is via forces
applied at nodes. To achieve uniform loading stress, the
force applied at the two corner-nodes (i.e. at (x, y)= (0,
u) and (b, u) in Fig. 2a) should be half of the force
applied at other nodes.

3.2. ANSYS

For ANSYS, a two-dimensional quadratic, struc-
tural, higher-order eight-node element, PLANE82, was
used in the present study. Meshing was obtained by
using automatic meshing and followed by refinements
of the elements in the plate-end region. Loading in
ANSYS is via a pressure applied at the element
boundary line.

4. Comparison

In order to make the comparison between analytical
and numerical solutions, b/a=10, t/a=15, u/a=30,
Ep=300 GPa, Em=100 GPa, np=0.3, nm=0.3, so=
100 MPa, ap=3×10−6/oC, am=4×10−6/oC, and
DT= −1000oC were used in the present study. For
OOF, the digitized image for numerical simulations
consisted of 54 200 elements. For ANSYS, the mesh
containing 268 elements (865 nodes for bonded ends
and 877 nodes for debonded ends) is shown in Fig. 2a
while the details in the plate-end region are shown in
Fig. 2b. While the x-dependence of sp (and sp% ) was
ignored in analytical modeling, the solutions for sp

(and sp% ) from numerical simulations were averaged
with respect to 05x5a to compare with analytical
solutions. The distributions of the stress in the loading
direction, sp and sp% , are shown in Fig. 3 and Fig. 4 for
the cases of bonded-ends and debonded-ends, respec-
tively. The boundary between the imaginary and the
real plates (i.e. the position of the plate-end) as well as
the asymptotic stresses in the plate at y=0 (Eq. (13))
are also shown. With the dimension shown in Fig. 2,
the plate-end is sufficiently remote from the loading
surface, and the analytical solution for sp at the plate-
end, y= t, reaches its asymptotic value described by Eq.
(12).

4.1. The bonded-ends case

For the bonded-ends case, the solutions for loading
only, residual thermal stresses only, and combined
loading/thermal stresses are shown. While the analytical
solutions are shown in both Fig. 3a and Fig. 3b, the
OOF and ANSYS results are shown in Fig. 3a and Fig.
3b, respectively. Excellent agreement between analytical
and numerical solutions is obtained, and the following
results can be concluded. Firstly, the stress at y=u is
so or zero depending upon whether a load is applied.
The stress transfers between the matrix and the imagi-
nary plate because of the existence of the real plate
underneath. Secondly, at the boundary between the
imaginary and the real plates (i.e. at the plate-end,
y= t), the stress has a finite value. This finite value has
an asymptotic value described by Eq. (12) when the
loading surface is sufficiently remote from the plate
end. Thirdly, the stress continuously transfers between
the matrix and the real plate. The stress in the real plate
reaches an asymptotic value described by Eq. (13) when
the plate is sufficiently long.

4.2. The debonded-ends case

For the debonded-ends case, the solutions for load-
ing only and combined loading/thermal stresses are
shown. The solutions for thermal stresses only are not
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Fig. 2. The finite element mesh used in ANSYS for two-dimensional stress transfer analyses showing (a) quarter of the model composite depicted
by Fig. 1, and (b) details in the plate-end region. The plate-end position is indicated by an arrow.

Fig. 3. The stress distribution, sp and sp% , along the real and the imaginary plates for the bonded-ends case. (a) Analytical and OOF solutions,
and (b) analytical and ANSYS solutions for loading only, residual thermal stresses only, and combined loading/thermal stresses. (lines: analytical
solutions; symbols: numerical solutions; arrows at y=0: asymptotic values).
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shown because the plate-ends are under residual com-
pression, and the free-ends condition is not satisfied.
While the analytical solutions are shown in both Fig.
4a and Fig. 4b, the OOF and ANSYS results are
shown in Fig. 4a and Fig. 4b, respectively. For the
imaginary plate, the analytical solution of sp% shows no
dependence on the residual thermal stresses (see Eq.
(18)). Hence, the analytical solutions of sp% for loading
only and for combined loading/thermal stresses over-
lap in Fig. 4. For OOF, empty elements are used to
simulate the debonded end, and sp=0 at the
debonded end (see Fig. 4a). For ANSYS, two sets of
nodes are assigned at the debonded end with a merged
node at (x,y)= (a,t) allowing a crack to open at the
debonded end when it is subjected to tension. As a
result, two solutions are obtained for sp at the
debonded end. Also, since stresses are derived from
the displacement solutions in ANSYS and the nodal
solution of stress is obtained by averaging the element
values at the shared node, non-zero values (but small
magnitudes) of sp are shown at the debonded end (see
Fig. 4b).

It is noted that excellent agreement is obtained be-
tween the two numerical solutions, OOF and ANSYS.
It is also noted that the agreement between the analyt-
ical and the numerical solutions for the debonded-ends
case is not as good as that for the bonded-ends case,
especially in the region of the plate-ends. This lack of
agreement probably results from the complicated sin-
gularity [24] which occurs at y= t in this case. The
analytical approach based on the shear lag model is
unable to directly handle this singularity. The numeri-
cal approach, if meshed using the singular element
around the crack tip, can approximate the steep stress
gradients near the plate-ends. However, the difference

in ANSYS results between using quadratic element
with refinements of elements in the plate-end region
(see Fig. 2) and adding the singular element is negligi-
ble. This can be due to the fact that the numerical
results of interest are sp (and sp% ) averaged with re-
spect to 05x5a (not the stress intensity factor) to
compare with analytical solutions. Hence, the differ-
ence between the analytical and the numerical solu-
tions for the debonded-ends case is mainly due to the
inability of analytical modeling in handling the singu-
larity problem. Nonetheless, the analytical solutions
derived in the present study provide a simple closed-
form approximation that is not radically incorrect.

5. Concluding remarks

Whereas the analytical stress transfer model has
been well established for fiber-reinforced composites,
its use for platelet-reinforced composites has not been
developed to the same extent. Analytical solutions for
two-dimensional stress transfer are provided in the
present study to simulate stress transfer in platelet-re-
inforced composites. In the paucity of existing theoret-
ical analyses and experimental measurements for the
stress transfer phenomena in platelet-reinforced com-
posites, two-dimensional numerical simulations were
also performed in the present study to verify the
present analytical solutions. The present analytical so-
lutions provide a basis in analyzing stress transfer in
platelet-reinforced composites. However, they are two-
dimensional and are, hence, preliminary. A more com-
prehensive model is hoped to emerge in the future by
considering the three-dimensional nature of platelet-re-
inforced composites.

Fig. 4. The stress distribution, sp and sp% , along the real and the imaginary plates for the debonded-ends case. (a) Analytical and OOF solutions,
and (b) analytical and ANSYS solutions for loading only, and combined loading/thermal stresses. (lines: analytical solutions; symbols: numerical
solutions; arrows at y=0: asymptotic values).



C.H. Hsueh et al. / Materials Science and Engineering A268 (1999) 1–7 7

Acknowledgements

The authors thank Dr T.J. Chuang for running AN-
SYS with singular elements, and Drs P.F. Becher, M.J.
Andrews, E.Y. Sun, and R.B. Clough for reviewing the
manuscript. CHH acknowledges support of the US
Department of Energy, Division of Materials Sciences,
Office of Basic Energy Sciences, under contract DE-
AC05-96OR22464 with Lockheed Martin Energy Re-
search Corp. ERF acknowledges support of the
Alexander von Humboldt Foundation.

References

[1] J.J. Brennan, K.M. Prewo, J. Mater. Sci. 17 (1982) 2371–2383.
[2] H. Kodama, H. Sakamoto, T. Miyoshi, J. Am. Ceram. Soc. 72

(4) (1989) 551–558.
[3] P.F. Becher, G.C. Wei, J. Am. Ceram. Soc. 67 (12) (1984)

C267–C269.
[4] K. Jakus, S.V. Nair, Ceram. Eng. Sci. Proc. 9 (7-8) (1988)

767–776.
[5] M.R. Piggott, Load Bearing Fiber Composites, Pergamon Press,

Elmsford, NY, 1980, p. 141.
[6] K.H. Heussner, N. Claussen, J. Euro. Ceram. Soc. 5 (1989)

193–200.

[7] D. Baril, M.K. Jain, Ceram. Eng. Sci. Proc. 12 (7-8) (1991)
1175–1192.

[8] Y.S. Chou, D.J. Green, J. Am. Ceram. Soc. 76 (6) (1993)
1452–1458.

[9] H.L. Cox, Br. J. Appl. Phys. 3 (1952) 72–79.
[10] P. Lawrence, J. Mater. Sci. 7 (1) (1972) 1–6.
[11] A. Takaku, R.G.C. Arridge, J. Phys. D: Appl. Phys. 6 (1973)

2038–2047.
[12] Y.C. Gao, Y.W. Mai, B. Cotterell, J. Appl. Math. and Phys.

(ZAMP) 39 (7) (1988) 550–572.
[13] B. Budiansky, J.W. Hutchinson, A.G. Evans, J. Mech. Phys.

Solids 34 (2) (1986) 167–189.
[14] C.H. Hsueh, J. Mater. Sci. Lett. 7 (5) (1988) 497–500.
[15] C.H. Hsueh, Mater. Sci. Eng. A125 (1) (1990) 67–73.
[16] C.H. Hsueh, J. Am. Ceram. Soc. 72 (2) (1989) 344–347.
[17] C.H. Hsueh, P.F. Becher, Mater. Sci. Eng. A212 (1996) 22–28.
[18] W.R. Tyson, G.J. Davies, Br. J. Appl. Phys. 16 (1965) 199–205.
[19] C.H. Hsueh, Compos. Eng. 4 (10) (1994) 1033–1043.
[20] C.H. Hsueh, J. Mater. Sci. Lett. 8 (1989) 739–742.
[21] C.H. Hsueh, J. Mater. Sci. Lett. 10 (1991) 29–32.
[22] S.A. Langer, W.C. Carter, E.R. Fuller, Object Oriented Finite

Element Analysis for Materials Science, Center for Theoretical
and Computational Materials Science and the Information Tech-
nology Laboratory at the National Institute of Standards and
Technology, 1997.

[23] ANSYS Release 5.4, SAS IP, Inc., Houston, PA (1997).
[24] Y. Weitsman, H. Zhu, J. Mech. Phys. Solids 41 (2) (1993)

351–388.

.


