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Cracking in Cr–Cr2Nb eutectic alloys due to thermal stresses
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Abstract

The microstructures of the Cr–Cr2Nb two-phase alloy as affected by thermal stresses have been investigated for three different
systems: (1) Cr-rich particles surrounded by the eutectic network; (2) Cr2Nb particles embedded in the Cr-rich matrix; and (3)
Cr-rich particles inside the Cr2Nb matrix. Micrographs of the as-cast and annealed specimens show that microcracks are primarily
located at the interface between the particle and the matrix. These observations are related to the presence of thermal stress field
of elastic inclusions with its maximum tensile and shear stresses located at the interface boundary. The theoretical analyses
presented support the formation of crack embryos at the interface as the local tensile stress exceeds the critical value for crack
nucleation. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Dual-phase alloys based on Cr–Cr2Nb and Cr–Cr2X
(where X is a refractory element, such as Zr, Hf, etc.)
are currently being studied for high-temperature struc-
tural applications. These alloys are of technological
interest because they possess excellent high-temperature
strength, good high temperature oxidation and possible
corrosion resistance [1], and relatively low material
density [2]. The Laves phase, Cr2Nb, with the C15
complex cubic crystal structure has excellent high tem-
perature strength and creep resistance, but it is very
hard (8 GPa) and brittle at room temperature [3]. The
phase diagram of the Cr–Nb system given in Fig. 1.
Takeyama and Liu, and Thoma and Perepezko [3,4]
show the formation of a eutectic structure consisting of
a Cr solid solution phase and a Cr2Nb Laves phase,
with the eutectic reaction occurring around 1668°C at
the composition of 18.5 at.% Nb. This phase relation-
ship suggests the possibility of using the eutectic alloy

for better toughness [3,5–8]. At present, a considerable
effort is devoted to the study of microstructural control
and development of two-phase Cr–Cr2Nb alloys for
structural applications.

In the study of two-phase Cr–Cr2Nb alloys, both
micro and macro cracks were observed in alloy ingots.
Additional cracking was also observed when the alloys
were cooled down from heat treatment at temperatures
below the eutectic temperature. Thermal stresses were

Fig. 1. The Cr–Nb phase diagram.
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Fig. 2. Optical micrograph of an as-cast CN-4 binary alloy. (A)
Cr-rich solid solution; (B) Cr–Cr2Nb eutectic phase, and arrow mark,
microcrack.

croprobe analyses indicated that the Cr-rich patches
contain 5.5 at.% Nb [6], which is almost equal to the
maximum Nb solubility at the eutectic temperature of
1668°C. This observation suggests that the cooling rate
associated with the drop casting of alloy ingots in a
copper mold is high enough to suppress the precipita-
tion of Cr2Nb from the Cr-rich patches. According to
the equilibrium phase diagram shown in Fig. 1, the
Cr-rich phase in the cast alloy is in a highly supersatu-
rated condition which is embrittled by the excess of Nb,
a solute with an atomic size (14.7 nm) significantly
larger than that of Cr (12.8 nm). As shown in Fig. 2,
microcracks, indicated by arrows, are generally nucle-
ated at the interfaces between the Cr-rich patch and the
eutectic network. A microcrack is also formed around
the coarse Cr-rich particles embedded in the Cr2Nb
phase within the eutectic structure. Fig. 3 shows a
microcrack indicated by the arrow in as-cast CN-4
alloy which generally propagated along the interfaces of
the eutectic matrix and Cr-rich patches and in the
eutectic matrix. Similar cracking behavior was observed
in the Cr–Cr2Nb alloys containing 6 at.% Nb [6]. In
general, the frequency of cracking increases with in-
creasing Nb concentration or Cr2Nb volume fraction.
This is because the increase of Nb will increase the
amount of the brittle Cr2Nb phase and reduce the soft
Cr-rich solid solution, which is available to absorb
thermal stresses generated in the material [3,15].

The supersaturated Cr-rich solid-solution patches
would precipitate out the fine Cr2Nb particles after
annealing below the eutectic temperature. Fig. 4 is a
scanning electron micrograph showing the fine precipi-
tates formed in a CN-4 specimen annealed for 100 h at
1100°C plus 5 days at 900°C [3]. Note that the Cr2Nb
particles are so fine that they can not be identified by
optical metallography (Fig. 5). Microcracks (or holes),

generated either by cooling from the cast state or heat
treatment at lower temperatures. Generally, the heat
treatment did not cause any change in microstructure,
except for the precipitation of fine Cr2Nb particles in
primary Cr patches and the coarsening of Cr-rich parti-
cles in the eutectic matrix. The presence of thermal
stresses between the Cr-rich and Cr2Nb phases has been
suggested to be a cause of such cracking; however,
there is no theoretical analysis to provide a possible
mechanism for cracking in Cr–Cr2Nb alloys during
casting and subsequent heat treating. It is the objective
of this study to demonstrate that the maximum stresses
generated from thermal mismatch are sufficiently high
to cracking the Cr–Cr2Nb alloy. In the present investi-
gation, a metallographic examination on cracking be-
havior, in conjunction with a theoretical calculation of
thermal stresses, is performed to identify the cause of
crack nucleation and propagation in the dual-phase
alloy.

2. Microstructural features and cracking

The Cr–Nb alloy, used in this study, contains 12
at.% Nb and is designated as the CN-4 alloy. The
experimental procedure is similar to that reported by
Takeyama and Liu [3]. The ingot was prepared by
arc-melting and drop-casting into a chilled copper mold
in an argon atmosphere. It was subsequently heat
treated to obtain various microstructures. Fig. 2 shows
an optical microstructure of the binary alloy of a
hypoeutectic composition: NbB33.3 at.%, where the
patches of Cr-rich solid solution (region A) are sur-
rounded by the interconnected Cr–Cr2Nb eutectic
structure indicated by region B. Previous results using
transmission electron microscopic and electron mi-

Fig. 3. A microcrack (indicated by the arrow) propagates along the
interface between Cr-rich solid solution and eutectic phase and inside
the eutectic matrix in an as-cast CN-4 alloy.
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Fig. 4. A scanning electron micrograph showing fine Cr2Nb particles
in a CN-4 alloy annealed at 1100°C for 100 h and 900°C for 5 days
[3]. Black dots are microcracks indicated by the arrows.

Fig. 6. A macrocrack indicated by the arrow propagates along
interface and in the Cr2Nb network in a CN-4 alloy annealed at
1350°C for 1 h and 900°C for 5 days. Region A is the Cr-rich particle
and region B the Cr2Nb matrix.

Cr2Nb matrix in the eutectic network. The propagation
of these cracks results in the final fracture of alloy
specimens.

3. Results of thermal stress analysis

The occurrence of micro- and macro-cracks in the
Cr–Cr2Nb two-phase alloy can be explained by the
presence of thermal stress generated after the heat
treatment. The two-phase microstructure can be consid-
ered as an inhomogeneous elastic system, in which a
spheroidal inclusion is embedded in an infinite matrix.
The inclusion has a thermal expansion coefficient a*,
shear modulus m* and Poisson’s ratio n*, which are
different from those of the matrix denoted by a, m and
n. Because of the differences in thermal and elastic
response, a thermal stress field would be set up upon a
temperature change. Such a problem has been solved
by Edwards [9]. However, his results are expressed in
the curvilinear coordinates which are inconvenient for
illustration. On the other hand, the same problem can
be more effectively solved in the Cartesian coordinate
system by the method of Eshelby [10–12]. We propose
a new relation between prolate spheroid coordinates
and Cartesian coordinates in which a function can be
easily transformed from the prolate spheroid coordi-
nates to the oblate spheroid coordinates. The new
results derived based on the prolate spheroid coordi-
nates are given in the Appendix A and will be used in
the present analysis of thermal cracking.

From the experimental observations, three different
inclusion systems as shown in Fig. 7 (i–iii), need to be
investigated: (i) a Cr-rich spheroidal particle in an
eutectic structure; (ii) a Cr2Nb particle in a Cr-rich

indicated by arrows in Fig. 5, were formed in the
eutectic network in this annealed specimen which might
also be nucleated at the interfaces of Cr-rich particles
surrounded by the Cr2Nb matrix (Fig. 4). Fig. 6 shows
an optical micrograph of a CN-4 specimen after anneal-
ing for 1 h at 1350°C and 5 days at 900°C in vacuum
(region A and region B are Cr-rich solid solution and
Cr2Nb network, respectively). A macrocrack has propa-
gated mainly along the interfaces of the Cr-rich patches
and the Cr2Nb phase, and also in the Cr2Nb network.

The above metallographic examination indicates that
the microcracks are primarily nucleated at: (1) the
interfaces between the Cr-rich patches and the eutectic
network; (2) between the fine Cr2Nb particles and Cr-
rich patches; and (3) between the Cr-rich particles and

Fig. 5. An optical micrograph showing microcracks indicated by
arrows in a CN-4 alloy annealed at 1100°C for 100 h and 900°C for
5 days.
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Fig. 7. Three inclusion systems: (i) a Cr-rich particle in a eutectic
structure; (ii) a Cr2Nb particle in a Cr-rich matrix; and (iii) a Cr-rich
particle in a Cr2Nb matrix. The inclusions lie in shaded areas.

structure are calculated as 8.15 mm m−1 K−1 and 234
GPa based on the rule of mixtures. A temperature drop
from 1668 to 25°C leads to the thermal mismatch
(a*−a)T=3.2 mm m−1 [15]. Assuming that both the
inclusion and matrix have the same Poisson’s ratio
n=0.3, we have m=m*/m=1.06.

As shown in the Appendix A, the stresses inside the
spheroidal inclusion are uniform and the maximum
stresses are located at the interface. The principal
stresses at the interface are plotted in Fig. 8(a) with
m=1.06. The superscripts, I and E, refer to the curves
of stress components inside the inclusion and at the
interface when approaching from the matrix, respec-
tively, and the semimajor and semiminor axes (at the
interface) are x1=a and x3=c. It should be noted that
the force is continuous at the interface, that is, s I

11=
sE

11= (x1=a) and s I
33=sE

33= (x3=c). The stresses
(s I

11 and s I
33) inside the inclusion are uniform and

compressive for all aspect ratios, k(=c/a). The value
of s I

11 increases with increasing k, and the trend for s I
33

is the opposite. The curve of sE
33(x1=a) increases to a

maximum, and then decreases with increasing k, but the
values of sE

33(x3=c) and sE
33(x1=a) increase monoton-

ically with k. The magnitude of the stress in the matrix
decreases with increasing distance away from the inter-
face. It is reasonable to assume that if the tensile stress
is greater than the critical tensile stress for creating a
crack nucleus, a crack embryo could be formed. Be-
cause m(a*−a)T is equal to 749 MPa and the maxi-
mum tensile stress is sE

33(x1=a) if k51 and sE
22(x1=a)

if k]1, the maximum tensile stress is greater than 288
MPa (k=1). This value is greater than the tensile
strengths of the Cr-rich (83 MPa) and Cr2Nb (220
MPa) phases. The measured tensile strength 220 MPa
of Cr2Nb is assumed to be the fracture stress in view of
the fact that the alloy is very brittle with little elonga-
tion. When the maximum tensile stress at the interface
(]288 MPa) is greater than the macro fracture stress,
it would be natural for a crack embryo to be nucleated
at this site (interface) than any other sites. As a result,
cracks would be formed at the interface between the
Cr-rich particle and eutectic structure, as indicated by
arrows in Figs. 2 and 5.

According to the Tresca criterion [12], yielding occurs
when the shear stress reaches a critical value in the
uniaxial tensile test. From the appendix, the shear stress
components at interface are zero. Based on the Mohr
circle, the shear stresses, s13

I = [s11
I −s33

I ]/2, s12
E (x1=

a)= [s11
I −s22

E (x1=a)]/2, s13
E (x1=a)= [s11

I −s33
E (x1=

a)]/2, s23
E (x1=a)= [s22

E (x1=a)−s33
E (x1=a)]/2, and

s13
E (x3=c)= [s11

E (x3=c)−s33
I ]/2, are plotted in Fig.

8(b). The values of s I
13 and sE

13(x3=c) increase
monotonically with k. The curves of sE

13(x3=a) and
sE

23(x3=a) decrease to a minimum, and then increase
with increasing k. The value of sE

13(x1=a) increases

matrix; and (iii) a Cr-rich particle in a Cr2Nb matrix.
The analyses and results are given in the following.

3.1. Cr-rich inclusion in the eutectic structure

We first consider the case of a Cr-rich particle as a
spheroidal inclusion embedded in the eutectic structure
(see Fig. 7(i)). The physical and mechanical parameters
of the Cr–Cr2Nb alloy are listed in Table 1 [13,14].
From the table the thermal expansion coefficients and
elastic moduli of Cr2Nb and Cr are 8.7�11.8 mm m−1

K−1, 220 GPa and 6.2 mm m−1 K−1, 248 GPa,
respectively. We choose the thermal expansion coeffi-
cient of Cr2Nb to be 10 mm m−1 K−1. The thermal
expansion coefficient and elastic modulus of the eutectic

Table 1
Physical and mechanical parameters of Cr–Cr2Nb alloy

Cr2Nb Cr

6.2Thermal expansion coefficient 8.7
(mm m−1K−1)

�11.8
221 248Elastic modulus at 20°C (GPa)
220Tensile strength at 20°C (MPa) 83

Melting point (°C) 1730 1857
1668Eutectic point (°C) –

6.78Lattice constant (A, ) 2.88
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Fig. 8. (a) Principal stresses and (b) shear stresses at the interface between the Cr-rich particle and eutectic structure in a Cr–Cr2Nb alloy.

slightly with increasing k. It is seen from Fig. 8(b) that
for a given k, the maximum shear stress is sE

13(x1=a)
for k51 and sE

13(x3=c) for k]1. That is, the maxi-
mum shear stress is in the range of 2620 MPa (k=
0.019) and 1420 MPa (k=1). Such large shear stresses
would be able to create dislocations and form crack
embryos because the specimens fractured before reach-
ing the yield point. Although the direct observation of
such a dynamic process is a difficult task and has to be
performed in situ in a transmission electron micro-
scope, it is a well-accepted concept that when the
maximum shear stress is greater than the critical stress
to generate dislocations, a dislocation pileup would be
formed. If the stress concentration at the head of the
pileup exceeds the cohesive stress of atoms, a microc-
rack would be nucleated in this region. This model
seems to be valid in this case (Figs. 2 and 5).

3.2. Cr2Nb inclusion in the Cr-rich matrix

We next consider the Cr2Nb phase as the spheroidal
inclusion embedded in the Cr-rich matrix as schemati-
cally shown in Fig. 7(ii). As stated in Section 3.1, the
thermal expansion coefficients and elastic moduli of
Cr2Nb and Cr are estimated as 10 mm m−1 K−1, 221
GPa and 6.2 mm m−1 K−1, 248 GPa, respectively. A
temperature drop from 1100 to 25°C gives (a*−a)T=
−4.085 mm m−1 [16]. At n=n*=0.3, we have m=
m*/m=0.89 with the shear modulus (m or m*) equal to

the Young’s modulus divided by 2(1+n). The variation
of the principal stresses on the interface with m=0.89
is very similar to that in the previous case. The stresses
in the inclusion are always tensile regardless of the
aspect ratio, k. The curve of s I

11 increases with increas-
ing k, but the trend of s I

33 is reversed. The stress
components, sE

22(x1=a), sE
33(x1=a) and sE

11(x3=c),
are compressive for all values of k. The curves of
sE

22(x1=a) and sE
11(x3=c) increase to a maximum, and

then decrease with increasing k, but the variation of
sE

33(x1=a) is opposite. The magnitude of the stress in
the matrix decreases with increasing distance away
from the interface (see Appendix A). The value of
m(a*−a)T is equal to 389 MPa. The maximum tensile
stress is s I

11 if k51 or s I
33 if k]1. As a result, the

maximum tensile stress is greater than 490 MPa (k=1).
Again, assume that the fracture stress is equal to the
tensile strength (=220 MPa) of the Cr2Nb listed in
Table 1. Since the value of maximum tensile stress is
greater than the assumed macro fracture stress, a crack
embryo would prefer to be formed inside the Cr2Nb
inclusion or along the interface, but not in the Cr-rich
matrix. This is because that there is no tensile stress
inside the ductile Cr-rich matrix during the high tem-
perature annealing. The explanation is supported by the
observation of black dots shown in Fig. 4 in which the
crack embryos were formed along the interface of the
Cr2Nb particle and the Cr-rich matrix as indicated by
arrows.
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Using the method of the Mohr circle, the shear
stresses, s I

13, sE
12(x1=a), sE

13(x1=a), sE
23(x1=a), and

sE
13(x3=c), were determined, and their variations are

similar to those in Fig. 8(b). Both sE
13(x1=a) and

sE
23(x1=a) decrease to a minimum, and then increase

with increasing k, while the components, s I
13 and

sE
13(x3=c) increase monotonically with k. On the other

hand, the variation of sE
12(x1=a) is almost indepen-

dent of k. For a given k, the maximum shear stress
is sE

13(x1=a) if k51 and sE
13(x3=c) if k]1. This

is equivalent to the maximum shear stress having a
range of 1.35 GPa (k=0.022) and 700 MPa (k=1).
Using the argument given in the preceding subsection,
a dislocation pileup would be formed and subsequently
induce the formation of crack nuclei when the
maximum shear stress is greater than the critical stress
for generating dislocations. The interface would be
the preferred site to produce microcracks because of
the presence of the maximum shear and normal
stresses.

3.3. Cr-rich inclusion in the Cr2Nb matrix

In the third case, the Cr-rich particle is considered as
a spheroidal inclusion embedded in the Cr2Nb phase, as
shown in Fig. 7(iii). The physical parameters are the
same as those in the previous subsections. A tempera-
ture drop from 1350 to 25°C gives (a*–a)T= −5.03
mm m−1 [15]. Using the same Poisson’s ratio, n=0.3,
we have m=m*/m=1.12. The variations of principal
stresses at the interface are similar to those for m=
1.06. The stresses inside the inclusion are uniform
and compressive for all k. The maximum tensile stress
is sE

33(x1=a) if k51 and sE
22(x1=a) if k]1. Because

the value of m(a*−a)T is equal to 429 MPa, the
maximum tensile stress is greater than 553 MPa (k=1).
Again, assume that the fracture stress is equal to the
tensile strength (=220 MPa) of the Cr2Nb. As the
maximum tensile stress is greater than the critical ten-
sile stress for fracture, a crack embryo is nucleated.
This prediction is supported by the micrograph shown
in Fig. 6 in which a crack is passing through the
interface between the Cr-rich particle and Cr2Nb ma-
trix.

From the Mohr circle, the shear stresses, s I
13,

sE
12(x1=a), sE

13(x1=a), sE
23(x1=a), and sE

13(x3=c),
are calculated at m=1.12 and their variations are
similar to those in the previous cases. For a given k, the
maximum shear stress is sE

13(x1=a) for k51 and
sE

13(x3=c) for k]1. That is, the maximum shear stress
is in the range of 831 MPa (k=1) and 1605 MPa
(k=0.018). As mentioned in the preceding subsections,
we may assume that the stress concentration at the
head of a dislocation pileup would create a crack
embryo, and the preferable place for the pileup is at the
interface where the shear stress is maximum.

4. Discussion

The numerical calculations presented above show
that the principal stresses and maximum shear stresses
at the interface have similar characteristics for all three
cases with difference in magnitude and sign. From the
Tresca criterion, plastic deformation will occur when
the shear stress is greater than the critical resolved
shear stress. This also implies the generation of disloca-
tions. The point where the maximum shear stress is
located is most probably the source of dislocations. A
dislocation pileup would be formed here against the
interface and induce a crack embryo [17,18]. Stroh [19]
quantitatively analyzed that if the stress concentration
at the head of the dislocation pileup is not relaxed by
plastic deformation, then the enhanced tensile stress at
the head of the piled-up group would exceed the cohe-
sive strength and lead to nucleation of microcracks.
The dislocation structure in C15 Cr–Cr2Nb alloy has
recently been studied by Kumar and Liu [15]. Evi-
dently, in the absence of strong pinning centers, the
dislocation pileups were not observed in the specimens.

We have assumed that in our proposed model, a
single inclusion is placed in an infinite matrix, even
though it deviates from the real system we observed.
The deviation is caused by two geometrical effects. The
first is the surface effect, which however, would relax
the induced thermal stress and reduce embrittlement.
Furthermore, Seo and Mura [20] have pointed out that
when the free surface is situated from the inclusion at a
distance three times of the particle size, its effect would
be negligible. The second effect is concerned with the
spacing between the neighboring inclusions. A finite
separation would yield a higher thermal stress. Thus the
calculated results presented above should be considered
as the lower limits for the real system.

The thermal stress model presented above is valid
only before the crack is formed. After the crack nucleus
appears, the problem should be treated using the linear
elastic fracture mechanics. According to fracture me-
chanics, a crack would propagate when the stress inten-
sity factor at the crack tip is greater than the stress
intensity factor for crack growth [21–23]. The growth
direction is always toward the region of the tensile
stress. Therefore, the crack would grow along the inter-
face of the Cr-rich patch and eutectic structure and
within the eutectic structure as shown in Fig. 3. Or the
crack would grow along the interface between the Cr-
rich particle and Cr2Nb matrix and within the Cr2Nb
matrix as exhibited in Fig. 6.

Although the thermal expansion coefficient is a func-
tion of temperature, we have chosen the thermal expan-
sion coefficient of Cr2Nb as 10 mm m−1 K−1 instead of
the lower bound of 8.7 mm m−1 K−1 and upper bound
of 11.8 mm m−1 K−1 as listed in Table 1. If we use
both of the limits to calculate the thermal stresses for
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the above three cases, the trend will be the same except
for slight changes of the magnitude.

It has been noted that the frequency of cracking
increases with increasing Nb concentration in hypo-eu-
tectic alloys [3]. The cause is obvious. From the phase
diagram in Fig. 1, the amount of Cr-rich phase is
decreased at a higher Nb concentration, and the alloy
becomes less ductile. On the other hand, the addition of
more Nb also increases the brittle eutectic phase. As a
result, the alloy would undergo a larger thermal expan-
sion, being more susceptible to cracking.

5. Summary and conclusions

The microstructure of Cr–Cr2Nb intermetallic alloys
as affected by thermal stresses has been analyzed.
Cracking was observed in both as-cast and annealed
specimens and was explained in light of the thermal
stresses generated by spheroidal inclusions. Three cases
for the inclusion systems were studied: the first is the
Cr-rich particle embedded in the eutectic structure; the
second, the Cr2Nb inclusion in the Cr-rich matrix; and
the third, the Cr-rich particle in the Cr2Nb matrix. The
numerical results show that the stress components at
the interface for these cases are similar in characteris-
tics, but different in magnitude and sign. The maximum
tensile stresses are located at the interface when ap-
proaching from the Cr2Nb phase in case two and case
three and from the eutectic structure in case one. The
maximum shear stress is always located at the semima-
jor axis approaching from the matrix. For all three
cases, the calculated thermal stresses are sufficiently
high to generate cracks in Cr–Cr2Nb alloys.
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Appendix A

Consider a spheroidal inhomogeneity in an infinite
matrix subjected to a temperature change T. Both the
spheroid and the matrix are assumed to be elastically
and thermally isotropic, and their shear moduli, Pois-
son’s ratios and thermal expansion coefficients are de-
noted by m*, n*, a* and m, n, a, respectively. The
interface between the spheroid and matrix is assumed

to be perfectly bonded. The spheroid in the Cartesian
coordinate system (x1, x2, x3) is defined by

x1
2+x2

2

a2 +
x3

2

c251 (1)

where a and c are the semimajor and semiminor axes,
respectively.

Assuming n=n*, the stress field is derived using the
equivalent inclusion method proposed by Eshelby
[10,11]. The internal stress components s ij

I inside the
spheroid are constant, given by

s11
I =s22

I

=
2m(1+n)m(a*−a)T

(1−2n)(m−1)(RP−QS)
{(S−m)(R−Q)

+ (R−nm)(P−S)} (2a)

s33
I =

2m(1+n)m(a*−a)T
(1−2n)(m−1)(RP−QS)

{(P−2nm)(R−Q)

+ (Q−m+mn)(P−S)} (2b)

where

P=2(m−1)[n(S1111+S1122)+ (1−n)S3311]+2n (3a)

Q= (m−1)[2nS1133+ (1−n)S3333]+1−n (3b)

R= (m−1)(S1133+nS3333)+n (3c)

S= (m−1)[S1111+S1122+2nS3311]+1 (3d)

S1111=S2222=
3

8(1−n)
�

1−
1+3M

2(k2−1)
n

+
1−2n

4(1−n)
(1+M) (3e)

S1122=8
1

(1−n)
�

1−
1+3M

2(k2−1)
n

−
1−2n

4(1−n)
(1+M)

(3f )

S1133=S2233=
1

4(1−n)
k2(1+3M)

k2−1
−

1−2n

4(1−n)
(1+M)

(3g)

S3311=S3322=
1+3M

4(1−n)(k2−1)
+

(1−2n)M
2(1−n)

(3h)

S3333=
1

2(1−n)
�

1−
k2(1+M)

k2−1
n

−
(1−2n)M
2(1−n)

(3i )

M=
1

k2−1
−

k
(k2−1)3/2 cosh−1(k) for k]1

=
1

k2−1
+

k
(1−k2)3/2 cos−1(k) for kB1 (3j )

m=
m*
m

(3k)

Note that the aspect ratio, k, defined as c/a, is greater
than, equal to, and smaller than unity for a prolate
spheroid, sphere, and oblate spheroid, respectively.
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The stress components outside the spheroid can be
obtained as follows. Assume the oblate spheroidal coor-
dinates (u, f, c) to be

x1= f csc u sin f cos c (4a)

x2= f csc u sin f sin c (4b)

x3= f cot u cos f (4c)

in which f=
a2−c2\0 is the focal length. The range
of u, f, and c are

0Bu5p/2 (5a)

05f5p (5b)

05cB2p (5c)

Using the equivalent inclusion concept of Eshelby [10–
12], the thermally induced stress components are ob-
tained, in terms of the transformation strain
components, which are given by

e11
T =e22

T =
R−Q

RP−QS
(1+n)m(a*−a)T (6a)

e33
T =

P−S
RP−QS

(1+n)m(a*−a)T (6b)

The thermal stress components outside the spheroid
arising from the transformation strain eT

11 are obtained
as:

s11
(1)= −

me11
T

4p(1−n)
!

3F,11+x2F,112

+
1
f 2 (a2F,11+a2x3F,113−c2F,33−c2x1F,331)

"
(7a)

s22
(1)=

me11
T

4p(1−n)
{F,11+x2F,112+2nF,33} (7b)

s33
(1)=

me11
T

4p(1−n)
!

2nF,22

+
1
f 2 (a2F,11+a2x3F,113−c2F,33−c2x1F,331)

"
(7c)

s12
(1)=

me11
T

8p(1−6)
!

x2F,111−x1F,222−2F,12

+
1
f 2 (c2x1F,332−a2F,12−a2x3F,123)

"
(7d)

s13
(1)=

me11
T

8p(1−n)
!

−x1F,223−4F,13

+
1
f 2 (a2x3F,221−c2x1F,223)

"
(7e)

s23
(1)=

me11
T

8p(1−n)
!

x2F,113

+
1
f 2 (c2F,23+c2x1F,123−a2x3F,112)

"
(7f )

where

F=
3V
4f

{u(3 cot2 u cos2 f−cot2 u+ cos2 f+1)

+cot u(1−3 cos2 f)} (8a)

F,11=
3V
2f 3

!sin 2u(csc2 u+sin2 f cos 2c)
2go

−u
"

(8b)

F,12=
3V

4f 3go

sin 2u sin2 f sin 2c (8c)

F,13=
3V

2f 3go

sin u sin 2f cos c (8d)

F,112=
3V cos u sin f sin u

f 4go

!
sin2 u

+
(3−4 cos2 u)sin2 f cos2c

go

−
4 cot2 u sin2 f cos2 c

go
2

"
(8e)

F,113=
3V sin2 u cos f

f 4go

!
1+

(1−cot2 u)sin2 f cos2 c

go

−
4 cos2 u sin2 f cos2 c

go
2 sin4 u

"
(8f )

F,331=
3V cos u sin f cos c

f 4go
3 {csc2 u sin2 f−sin4 f

−4 csc2 u cos2 f} (8g)

F,123= −
3V sin 2f sin f sin 2c

4f 4go
2

!
cos 2u+

4 cot2 u

go

"
(8h)

go=csc2 u−sin2 f (8i )

V=4pa2c/3 (8j )

Here f is the Newtonian potential and a subscript j
after a comma represents the differentiation of the
function with respect to the jth coordinate. Functions,
F,22, F,23, F,332, F,223, and F,332 are obtained from F,11,
F,13, F,112, F,113 and F,331 if cos c and sin c in Eq. (8)
are exchanged with each other. Because the Newtonian
potential F outside the spheroid satisfies the Laplace
equation, F,33 and F,111 are found to be

F,33= −F,11−F,22 (8k)

F,111= −F,221−F,331 (8l)

and F,222 and F,333 are obtained by a cyclic permutation
of (123) in Eq. (8l).

The stress field s ij
(2) in the matrix arising from the

transformation strain, e22
T , can be found from Eq. (7) if

subscripts, 1 and 2, are exchanged. The stress compo-
nents in the matrix arising from the transformation
strain, e33

T , are
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s11
(3)=

mne33
T

2p(1−n)
F,22

+
me33

T

4p(1−6)f 2 {a2F,11+a2x3F,113−c2F,33

−c2x1F,331} (9a)

s33
(3)=

me33
T

4p(1−6)f 2 {(4c2−a2)F,33+c2(x1F,331+x2F,332)

+a2x3F,333} (9b)

s12
(3)= −

mne33
T

2p(1−6)
F,12

+
me33

T

4p(1−6)f 2 {a2F,12+a2x3F,123−c2x1F,332}

(9c)

s13
(3)=

me33
T

8p(1−n)f 2 {5c2F,13+2a2x3F,331

+c2(x1F,113+x2F,223−x1F,333)} (9d)

The components, s22
(3) and s23

(3), are found from s11
(3) and

s13
(3) in Eqs. (9a) and (9d), if subscripts 1 and 2 are

exchanged. The total stress components outside the
spheroid are, then, given by

sij=s ij
(1)+s ij

(2)+s ij
(3) (10)

The above equations are also valid for the prolate
spheroid coordinates, if f and u are replaced by if and
iu where the range of u is (0,�) and i=
−1. There-
fore, the solution based on the oblate spheroid coordi-
nates can be easily transformed to that based on the
prolate spheroid coordinates.
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