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Abstract

Thermal stresses due to a spheroidal inclusion were investigated using the equivalent inclusion approach proposed by Eshelby. The

temperature inside the spheroid is maintained constant and different from that of the surrounding matrix of an in®nite extent. A new relation

between the Cartesian coordinates and spheroidal coordinates was established. Based on this relation, the solution for a prolate spheroidal

inclusion was readily obtained from that for an oblate spheroidal inclusion. The principal stress inside the spheroid increases with

decreasing m, the ratio of shear moduli of the spheroid and matrix. The value of �I
11 inside the spheroid increases with increasing k, the

aspect ratio, but the trend for �I
33 is opposite. The stress components, �11, along the x1 axis and, �33, along the x3 axis in the matrix decrease

with increasing distance away from the inclusion. For given combinations of m and k, the maximum stress components, �22 and �33, along

the x1 axis and �11 (� �22) along the x3 axis in the matrix are located at certain distances away from the interface. Among all principal

stresses, the maximum tensile stress is located at the interface between the inclusion and matrix. The numerical results are in agreement

with those reported in the literature. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Eshelby [1,2] proposed an equivalent inclusion method to

solve the stress distribution inside and outside a spheroidal

inhomogeneity. The spheroidal inhomogeneity is referred to

a system in which the elastic constants of the spheroidal

inclusion are different from those of the matrix. This method

was also described in the book by Mura [3]. Sadowsky and

Sternberg [4] solved the stress ®eld of a prolate spheroidal

cavity under remote loading based on an extension of

orthogonal curvilinear coordinates of the classical three-

function approach to three-dimensional problems in elasti-

city. Using the same method, Edwards [5] calculated the

stress ®elds inside and outside a prolate spheroidal inho-

mogeneity under remote loading. Shibato and Ono analyzed

the stress distribution due to a prolate spheroidal inclusion

under an applied stress [6] and due to a mis®t interface

bounded by an oblate spheroidal inclusion and the matrix

[7], based upon the Eshelby approach [1,2].

The stresses due to a mismatch in thermal expansion

coef®cients between the inclusion and in®nite matrix have

been extensively analyzed to understand fracture and

mechanical strength of metal alloys and composites [8±

12]. The elastic stresses due to a discontinuity in temperature

in a system containing an oblate or prolate spheroid of the

same material are given in the book by Nowacki [13]. Using

a three function approach, Edwards [5] obtained the thermal

stresses due to a prolate spheroidal inhomogeneity. In this

paper, we solved the thermal stresses due to both prolate and

oblate spheroidal inhomogeneities based on the equivalent

inclusion method.

2. Stress analysis

As an introduction to our model, consider a spheroidal

inhomogeneity in an in®nite matrix subjected to a tempera-

ture change T. Both the spheroid and the matrix are assumed

to be elastically isotropic, and their shear moduli and

Poisson's ratios are denoted by �*, �* and �, �, respectively.

The interface between the spheroid and matrix is assumed to

be perfectly bonded. The spheroid in the Cartesian coordi-

nate system, x1, x2, x3, is de®ned by

Materials Chemistry and Physics 61 (1999) 207±213

*Corresponding author.
1On leave from the Department of Materials Science and Engineering,

Lehigh University, Bethlehem, PA 18015, USA.

0254-0584/99/$ ± see front matter # 1999 Elsevier Science S.A. All rights reserved.

PII: S 0 2 5 4 - 0 5 8 4 ( 9 9 ) 0 0 1 1 8 - 2



x2
1 � x2

2

a2
� x2

3

c2
� 1 (1)

The aspect ratio, k, is de®ned as c/a, and is greater than,

equal to, and smaller than unity for a prolate spheroid,

sphere, and oblate spheroid, respectively. The uniform strain

arising from the temperature change, T, is

eP
11 � eP

22 � eP
33 � ��� ÿ ��T (2)

where �* and � are the coef®cients of thermal expansion of

the spheroid and matrix, respectively.

The stress ®eld is solved using the equivalent inclusion

method proposed by Eshelby [1,2]. The internal stress �I
ij

inside the spheroid is given by

�I
ij � ���ij�eC

kk ÿ eP
kk� � 2���eC

ij ÿ eP
ij� � ��ij�eC

kk ÿ eT
kk�

� 2��eC
ij ÿ eT

ij� (3)

where �* and � are, respectively, the Lame's constants of the

spheroid and matrix, and �ij is the Kronecker delta. Note that

the Einstein summation convention is used throughout this

paper. The constraint strain, eC
ij , is related to the transforma-

tion strain eT
ij by

eC
ij � Sijkle

T
kl (4)

with

S1111 � S2222 � 3

8�1ÿ �� 1ÿ 1� 3M

2�k2 ÿ 1�
� �

� 1ÿ 2�

4�1ÿ �� �1�M� (5a)

S1122 � 1

8�1ÿ �� 1ÿ 1� 3M

2�k2 ÿ 1�
� �

ÿ 1ÿ 2�

4�1ÿ �� �1�M�
(5b)

S1133 � S2233 � 1

4�1ÿ ��
k2�1� 3M�

k2 ÿ 1
ÿ 1ÿ 2�

4�1ÿ �� �1�M�
(5c)

S3311 � S3322 � 1� 3M

4�1ÿ ���k2 ÿ 1� �
�1ÿ 2��M
2�1ÿ �� (5d)

S3333 � 1

2�1ÿ �� 1ÿ k2�1�M�
k2 ÿ 1

� �
ÿ �1ÿ 2��M

2�1ÿ �� (5e)

M � 1=�k2 ÿ 1� ÿ k=��k2 ÿ 1�3=2�coshÿ1�k� for k � 1

1=�k2 ÿ 1� � k=��1ÿ k2�3=2�cosÿ1�k� for k < 1

(
(5f)

m � �
�

�
(5g)

and

eT
ij �

eT
11 0 0

0 eT
11 0

0 0 eT
33

0@ 1A (6)

In Eq. (4), Sijkl is a dimensionless parameter. Lee et al. [14]

reported that Sijkl is proportional to the reciprocal of shear

modulus. S3311 (� S3322) is not equal to S1133 (� S2233), but

the authors treated both as the same quantity [14], that is,

S3311 � S1133.

Assuming � � �* and substituting Eq. (4) into Eq. (3),

we obtain

eT
11 �

Rÿ Q

RPÿ QS
�1� ��m��� ÿ ��T (7a)

eT
33 �

Pÿ S

RPÿ QS
�1� ��m��� ÿ ��T (7b)

in which

P � 2�mÿ 1����S1111 � S1122� � �1ÿ ��S3311� � 2� (8a)

Q � �mÿ 1��2�S1133 � �1ÿ ��S3333� � 1ÿ � (8b)

R � �mÿ 1��S1133 � �S3333� � � (8c)

S � �mÿ 1��S1111 � S1122 � 2�S3311� � 1 (8d)

The stresses inside the spheroid can be obtained from

Eqs. (3), (7a) and (7b), and we have

�I
11 � �I

22 �
2��1� ��m��� ÿ ��T

�1ÿ 2���mÿ 1��RPÿ QS� f�Sÿ m��Rÿ Q�

� �Rÿ �m��Pÿ S�g (9a)

�I
33 �

2��1� ��m��� ÿ ��T
�1ÿ 2���mÿ 1��RPÿ QS� f�Pÿ 2�m��Rÿ Q�

� �Qÿ m� m���Pÿ S�g (9b)

Two special cases are worthwhile to mention. First, when

k approaches 0, the spheroidal inclusion reduces to a penny

shape. The stresses inside the penny inclusion are

�I
11 � �I

22 �
ÿ2m��1� ����� ÿ ��T

1ÿ � (9c)

�I
33 � 0 (9d)

Second, if k reaches in®nity, the shape of inclusion becomes

a circular cylinder. The stresses inside the circular cylinder

are

�I
11 � �I

22 �
ÿ2m��1� ����� ÿ ��T

m� 1ÿ 2�
(9e)

�I
33 �

ÿ2m�1� m���1� ����� ÿ ��T
m� 1ÿ 2�

(9f)

Fig. 1 (a) presents the relation between �I
11 and m for

various values of k. All curves are merging to the same line

when m < 0.3. For a given k, �I
11 decreases rapidly with

increasing m and then reaches a plateau. A similar trend is

observed in the variation of �I
33, as shown in Fig. 1(b). For a

given m, �I
11 increases with increasing k, but �I

33 is in the

opposite trend. Note that a factor of 2 is missed in the

denominator of the last term containing e2, in the expression

of �33 in Eq. (17) of [13].

The stresses outside the spheroid can be obtained

as follows. Assume the oblate spheroid coordinates
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to be [15]

x1 � f csc� sin� cos (10a)

x2 � f csc� sin� sin (10b)

x3 � f cot� cos� (10c)

in which f �
���������������
a2 ÿ c2
p

> 0 is the focal length. The range of

�, �, and  are

0 < � � �
2

(11a)

0 � � < � (11b)

0 �  < 2� (11c)

Using the displacement-Newtonian potential relation

established by Eshelby [1,2], we obtain the stress compo-

nents outside the spheroid arising from the transformation

strain eT
11:

�
�1�
11 � ÿ

�eT
11

4��1ÿ �� 3�;11 � x2�;112 � 1

f 2
�a2�;11

�
�a2x3�;113 ÿ c2�;33 ÿ c2x1�;331�

	
(12a)

�
�1�
22 �

�eT
11

4��1ÿ �� f�;11 � x2�;112 � 2��;33g (12b)

�
�1�
33 �

�eT
11

4��1ÿ �� 2��;22 � 1

f 2
�a2�;11

�
�a2x3�;113 ÿ c2�;33 ÿ c2x1�;331�

�
(12c)

�
�1�
12 �

�eT
11

8��1ÿ ��
�

x2�;111 ÿ x1�;222 ÿ 2�;12

� 1

f 2
�c2x1�;332 ÿ a2�;12 ÿ a2x3�;123�

�
(12d)

�
�1�
13 �

�eT
11

8��1ÿ ��
�
ÿ x1�;223 ÿ 4�;13

� 1

f 2
�a2x3�;221 ÿ c2x1�;223�

�
(12e)

�
�1�
23 �

�eT
11

8��1ÿ �� x2�;113 � 1

f 2
�c2�;23

�
�c2x1�;123 ÿ a2x3�;112�

�
(12f)

in which

� � 3V

4f
f��3 cot2� cos2�ÿ cot2�� cos2�� 1�

� cot��1ÿ 3 cos2��g (13a)

�;11 � 3V

2f 3

sin2��csc2�� sin2� cos2 �
2g0

ÿ �
� �

(13b)

�;12 � 3V

4f 3g0

sin2� sin2� 2 (13c)

�;13 � 3V

2f 3g0
sin� sin2� cos (13d)

Fig. 1. (a) �I
11 as a function of m for various values of k and (b) �I

33.
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�;112 � 3V cos� sin� sin 

f 4g0

sin2�� �3ÿ4cos2��sin2�cos2 

g0

�
ÿ 4cot2� sin2� cos2 

g2
0

�
(13e)

�;113 � 3Vsin2� cos�

f 4g0

1� �1ÿ cot2��sin2� cos2 

g0

�
ÿ 4cos2� sin2� cos2 

g2
0sin4�

)
(13f)

�;331 � 3Vcos� sin� cos 

f 4g3
0

csc2� sin2�ÿ sin4�ÿ 4csc2� cos2�
� 	

(13g)

�;123 � ÿ 3Vsin2� sin� sin2 

4f 4g2
0

cos2�� 4cot2�

g0

� �
(13h)

g0 � csc2�ÿ sin2� (13i)

V � 4�a2c

3
(13j)

The subscript `,' represents the differentiation of the

function with respect to a coordinate. Functions, �,22, �,23,

�,221, �,223, and �,332 are obtained from �,11, �,13, �,112,

�,113 and �,331 if cos and sin in Eqs. (13a), (13b), (13c),

(13d), (13e), (13f), (13g), (13h), (13i) and (13j) are

exchanged with each other. Since the Laplace equation of

Newtonian potential, �, vanishes outside the spheroid, �,33

and �,111 are found to be

�;33 � ÿ�;11 ÿ �;22 (13k)

�;111 � ÿ�;221 ÿ �;331 (13l)

and �,222 and �,333 are obtained by a cyclic permutation of

(123) in Eq. (13l).

The stress ®eld �
�2�
ij in the matrix arising from the

transformation strain, eT
22, can be found from Eqs. (12a),

(12b), (12c), (12d), (12e) and (12f) if subscripts, 1 and 2, are

exchanged. The stress components in the matrix arising

from the transformation strain, eT
33, are

�
�3�
11 �

��eT
33

2��1ÿ ���;22 � �eT
33

4��1ÿ ��f 2

fa2�;11 � a2x3�;113 ÿ c2�;33 ÿ c2x1�;331g (14a)

�
�3�
33 �

�eT
33

4��1ÿ ��f 2
f�4c2 ÿ a2��;33 � c2�x1�;331 � x2�;332�

� a2x3�;333g (14b)

�
�3�
12 � ÿ

��eT
33

2��1ÿ ���;12 � �eT
33

4��1ÿ ��f 2

fa2�;12 � a2x3�;123 ÿ c2x1�;332g (14c)

�
�3�
13 �

�eT
33

8��1ÿ ��f 2
f5c2�;13 � 2a2x3�;331

� c2�x1�;113 � x2�;223 ÿ x1�;333�g (14d)

The components, �
�3�
22 and �

�3�
23 , are found from �

�3�
11 and

�
�3�
13 in Eqs. (14a) and (14d), if subscripts 1 and 2 are

exchanged. The total stress components outside the spheroid

are, then, given by

�ij � ��1�ij � ��2�ij � ��3�ij (15)

in which �
�1�
ij and �

�3�
ij are expressed in Eqs. (12a), (12b),

(12c), (12d), (12e) and (12f) and Eqs. (14a), (14b), (14c)

and (14d), respectively.

The above equations are also valid for the prolate spher-

oid coordinates, if f and � are replaced by if and i� where the

range of � is (0,1) and i � �������ÿ1
p

. Therefore, the solution

based on the oblate spheroid coordinates can be easily

transformed to that based on the prolate spheroid coordi-

nates. The conventional prolate spheroid coordinates

(u1,u2,u3) in terms of Cartesian coordinates (x1,x2,x3) are

[4,5,16]

x1 � a sinhu1 sinu2 cosu3 (16a)

x2 � a sinhu1 sinu2 sinu3 (16b)

x3 � a coshu1 cosu2 (16c)

The oblate spheroid coordinates are obtained from the

prolate spheroid coordinates, if sinhu1 and coshu1 in

Eqs. (16a), (16b) and (16c) are exchanged with each other.

However, if a function cannot be explicitly expressed in

terms of coshu1 and sinhu1, it is very dif®cult to transform

the function from the prolate spheroid coordinates to oblate

spheroid coordinates, or vice versa. For example, u1 and its

polynomial can be expressed either by coshÿ1(coshu1) or by

sinhÿ1(sinhu1), but they have no unique expression on

sinhu1 and coshu1. Sadowsky and Sternberg [4] and

Edwards [5] used the prolate spheroid coordinates

(u1,u2,u3) to express the stress components instead of famil-

iar Cartesian coordinates. Using Eqs. (16a), (16b) and (16c)

with the Cartesian coordinates and spheroidal coordinates to

express the stress components and functions, respectively,

Shibata and Ono solved the elastic inclusion of a prolate

spheroid [6] and an oblate spheroid [7], separately. In this

paper, we use the new relation between the Cartesian

coordinates and spheroidal coordinates, Eqs. (10a), (10b)

and (10c) to replace Eqs. (16a), (16b) and (16c), and employ

the Cartesian and spheroidal coordinates to express the

stress components and functions. Then, the solution for

prolate spheroid coordinates is readily transformed to that

for oblate spheroidal coordinates.

Fig. 2 (a) shows the curves of �11 outside the spheroid

versus x1 at m � 2 with various values of k. The �11

increases monotonically with increasing x1. Considering

the points near the spheroid, the larger the slope of |d�11/

dx1|, the smaller the k. At the interface, �11 is continuous

along the x1 direction regardless of k and m. Fig. 2(b)

presents the relation of �22 and x1 with various values of

k and m � 2. As shown in Fig. 2(b), �22 decreases mono-

tonically with increasing x1 for k � 0.5 and increases to a

maximum and then decreases with increasing x1 for k � 0.2.

210 S. Lee et al. / Materials Chemistry and Physics 61 (1999) 207±213



It is also seen that for a given x1 and m � 2, �22 increases

with increasing k. Fig. 2(c) shows the �33 as a function of x1

with various values of k and m � 2. �33 decreases with

increasing k for x1 � a, and the trend is opposite for large

value of x1. The slope of d�33/dx1 drops at a greater rate

when k is small. Note that for a rigid inclusion (m �1) with

k � 0.5, �33 increases to a maximum and then decreases

with increasing x1 (not shown in the above ®gures). Com-

paring Fig. 2(a±c), the longitudinal stress (�11) is compres-

sive, and transverse stresses (�22 and �33) are tensile along

Fig. 2. The stresses outside the inclusion along x1 axis at m � 2. (a) �11 with various values of k; (b) �22; and (c) �33.
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the x1 axis in the matrix. The curves of �11 (��22) and �33

versus x3 in the matrix are similar to those of �22 (or �33) and

�11 along the x1 axis, respectively.

In experimental studies [8], cracks were often observed

along the interface between the inclusion and matrix. As

stated in the preceding paragraph, the transverse stresses in

the matrix (�22 and �33 along x1 axis, �11 and �22 along x3

axis) are always tensile and, generally, their magnitude

decreases with increasing distance away from the spheroid,

if (� ÿ �*)T is greater than zero (but not always, for

Fig. 3. Transverse stresses at the interface (a) �22 at x1 � a; (b) �33 at x1 � a; and (c) �11 at x3 � c.
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example, the curve for m � 2 and k � 0.2, as shown in

Fig. 2(b)). Among the three principal stresses, the max-

imum tensile stress is always located at the interface. The

�11 along the x1 axis and �33 along the x3 axis are continuous

across the interface, but �22 and �33 along the x1 axis and �11

(��22) along the x3 axis are not necessarily continuous at the

interface. The �11 (� �I
11) at x1 � a and �33 (� �I

33) at

x3 � c are shown in Fig. 1. We plot the stress components,

�22 and �33, at x1 � a and �11 at x3 � c in Fig. 3(a±c),

respectively. It can be seen from Fig. 3(a) that �22 is always

positive for k > 0.3 regardless of m, and changes from

negative to positive with increasing m for k < 0.2. It is

always positive regardless of k for m � 1 and changes from

negative to positive with increasing k for m > 1. As shown in

Fig. 3(b), �33 is always positive in the range of

ÿ3 � log(k)�2 for m � 2 and partly negative for m � 5.

It increases to a maximum and then decreases with increas-

ing k for m � 1, and oscillates with k for m � 5. All curves

in Fig. 3(b) meet at point k � 3.65 � 10ÿ3. �11 at x3 � c is

always positive regardless of k for 0.5 � m � 2 (see

Fig. 3(c)). It increases to a maximum, then decreases with

increasing k, and ®nally reaches a plateau for m � 4. For

m � 2, �11 is of the S shape. Our results at points, (a,0,0) and

(0,0,c), agree with those obtained by Edwards [5].

3. Summary and conclusions

Thermal stresses due to a spheroidal inclusion were

analyzed based on the equivalent inclusion method pro-

posed by Eshelby. A spheroidal inclusion in an in®nite

matrix is subjected to a temperature change T. A new

relation between Cartesian coordinates and spheroid coor-

dinates is established. Based on this relation, a given func-

tion expressed in prolate spheroid coordinates is easily

transformed to that in oblate spheroid coordinates, or vice

versa. Thus, the present solution is suitable for both prolate

and oblate spheroidal inhomogeneities. The magnitude of

the principal stress inside the spheroid increases with

increasing m, the ratio of shear moduli of spheroid and

matrix. The value of �I
11 inside the spheroid increases with

increasing k, the aspect ratio, but the trend for �I
33 is

opposite. The numerical results show that the maximum

tensile stress is located at the interface between the spheroid

and the matrix if (�* ÿ �)T is greater than zero where �*

and � are the coef®cients of thermal expansion of the

spheroid and matrix, respectively. They are in good agree-

ment with those reported in the literature.
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