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Methods for analyzing nanoindentation load-displacement data to determine hardness
and elastic modulus are based on analytical solutions for the indentation of an elastic
half-space by rigid axisymmetric indenters. Careful examination of Sneddon’s solution for
indentation by a rigid cone reveals several largely ignored features that have important
implications for nanoindentation property measurement. Finite element and analytical
results are presented that show corrections to Sneddon’s equations are needed if accurate
results are to be obtained. Without the corrections, the equations underestimate the

load and contact stiffness in a manner that leads to errors in the measured hardness
and modulus, with the magnitudes of the errors depending on the angle of the indenter
and Poisson’s ratio of the half-space. First order corrections are derived, and general
implications for the interpretation of nanoindentation data are discussed.

I. INTRODUCTION In one form or another, most methods make use of the
i 3
In the past two decades, a great deal of effort hagelatiort
been directed toward the development of techniques for g — 2 E JA 1)
characterizing the mechanical properties of thin films J7 (1 — 1v?) '

and small volumes of material. Load and depth sensing. . ) . . .
indentation, commonly referred to as nanoindentationirg(s)r‘;l;ngsgzzﬁt:lt;l;qﬁg";%g@;f (r)?oLt(s)\llr; 223“;;23;%?:

is one means by which this has been achiévéd. : : _ -
Through the combined use of high resolution testing®" contact of an isotropic elastic half-space by rigid
denters of various geomett:® While originally de-

instrumentation and simple principles of analysis based

on elastic and elastic/plastic contact theory, nanoindedved for indentation by a rigid cone, Bulychestal.
howed that Eq. (1) also applies to spherical and cylin-

tation is now used routinely for small-scale mechanica®"oWe ;
property measurements, sometimes at indentation depthé'cal indenters and speculated that it may hold for other

of only a few nanometers™® geometries as wetf?° Subsequently, Pharr, Oliver, and
Several analytical approaches have been developé%{()tzen showed that the equation applieay indenter

to measure mechanical properties from indentation load &t qanlge described as a solid of revolution of a smooth
displacement dafz®%'2 most of which have focused function:> More recently, Cheng and Cheng have sug-

on the elastic moduluE (Young's modulus), and the gestt_’:)d that Eq. (1) is even more brqadly applicable than
hardnessH. Central to these approaches are the method&reviously thought, applying to elastic-plastic as well as
by which experimentally measurable quantities such aBurely elastic contact. _ .

the indentation loadP, the indenter penetration depth, '€ accuracy with which nanoindentation property
h, and the indentation contact stiffness= dP/dh, are measurements can be made is integrally tied to how well

related to the projected contact aréq,and the elastic Eq. (1) mode_ls.real material be_havior. In this regard, it is
constants of the materidE and» (v = Poisson’s ratio). notable that finite element studies recently have revealed

what appears to be a significant shortcoming in Eq. (1) as
it applies to indentation by a rigid corté?® The conical
geometry is an important one because it embodies the

aAaddress all correspondence to this author at the University ofS€lf-similar geometry _Of sharp pyramidal indenters SUC_h
Tennessee. as the Berkovich, Vickers, and cube-corner used in
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nanoindentation testing. In finite element simulationspunches, and later, Harding and Snedfastablished
the elastic and plastic properties of a material, includingan analytical procedure for deriving load-displacement
Young's modulus, are specified as input, and indentatiomelations for a punch of arbitrary axisymmetric shape. A
load-displacement curves and contact areas are computkey contribution in the work of Harding and Sneddon
as output. By analyzing the output load-displacementvas the realization that the problem could be reduced to
data according to Eq. (1), it is possible to computesolving a pair of integrals falling into a class treated by
Young’s modulus for comparison to the known input TitchmarsR® and Busbridgé! Subsequently, Sneddon
value, thus providing a check on consistency. Bolshakoghowed that the method of Hankel transforms could be
and Pharf? using finite element simulation to model used to simplify the solution procedure.

elastic-plastic indentation by a rigid cone with a half- Figure 1(a) depicts the geometry for the special case
included angle of 70.3(the angle that gives the same of interest in this work, indentation by a right circular
depth-to-area ratio as the Berkovich indenter), founccone. A cylindrical coordinate system is chosen with
that Young’s moduli derived from Eq. (1) are consis-radial coordinater and axial coordinate. The z-axis
tently 5-15% too high. Ritteet al,>* Gaoet al.?® and  coincides with the axis of symmetry of the indenter,
more recently Cheng and Chéfdave come to simi- and the free surface of the elastic half-space defines the
lar conclusions, although the magnitude of the moduplanez = 0. The variablesus andw are used to denote
lus overestimation is different in each study. On thedisplacements in the and z directions, respectively.
other hand, good agreement between input and deriveéd/hen the indenter penetrates the half-space to a total
values of E was reported by Larsen and Sirflobut  depth, h, contact is made between the indenter and
it has been suggested that the procedure used by thespecimen along a contact depth, at which the radius
investigators to determine the contact stiffness from thef the circle of contact i. From geometrya and 4.
load-displacement data underestimated its true value, arate related by
when corrected, a modulus discrepancy even larger than

that reported by Bolshakov and Pharr is obserfed. a=hctan¢, (2)

The observed discrepancies in finite element resultg‘,hered, is the half-included angle of the indenter. The

led us to conduct a careful investigation of Eq. (1) aspoundary conditions used by Sneddon for the conical
it applies to nanoindentation by conical indenters. Injndentation problem are

the course of the investigation, some largely overlooked

but important subtleties in Sneddon’s solution for in- Tlm0 =0, r>a 3)

dentation of an elastic half-space by a rigid cone were Orl.—0 =0, r>0 4)

discovered that have an important bearing on the inter- wl.—o = —h + cot (¢)r r<a (5)
= )

pretation and application of the solution to nanoindenta-

tion data analysis. In-depth analysis shows that Eq. (1Jhe first condition assures that the free surface outside
and other relations commonly used in nanoindentatiorthe radius of contact has no normal stresses acting on
data reduction require modification if accurate results ard, the second imposes conditions of frictionless contact,
to be obtained. Failure to make the modifications resultand the third forces thedisplacements of the surface to
in an underestimation of the load and contact stiffnes$e consistent with the shape of the conical indenter.

in a manner that can lead to significant errors in the  Two important results of Sneddon’s solution are the
measurement of hardness and modulus. In this paper, tlexpressions for the penetration depthand the inden-
nature of the problem is documented, and approximatéation load,P.1%-18 The penetration depth is given by
methods for correcting it are derived. The corrected solu- P ma

tions are checked for accuracy by comparison to elastic h = B3 he = 2tan ¢’ (6)
finite element simulations, and general implications for

the interpretation of nanoindentation data are discussedhich shows that the ratio of the contact depth to the
total depth is constant, i.e1,/h = 2/7. The expression

for the load is

. BACKGROUND - E o) E
. . P=———qh.= — ———tan ¢ 1’
The mathematical foundations of the problem of 20— 7 -1?)
indentation of an elastic half-space by a rigid punch are - E a2

more than a century old. In 1885, Boussinesq published = > ﬁ —_—, @)
a solution for the problem of contact between a solid of v?) tan ¢

revolution and an elastic continuuthput the solution  which illustrates the parabolic dependence of the load
did not lend itself to application in many problems of on depth, i.e.,P ~ h%. Combining Egs. (6) and (7)
practical interest. Love succeeded in finding a solutiorand noting thatS = dP/dh and A = ma? yields the

for the important cases of coniéaland cylindrical®  fundamental relation of Eq. (1).
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(@) P actual shape of the deformed surface in Sneddon’s prob-
lem. Points on the originally flat surface with coordinates
r = rp andz = 0 move to final positions given by

r=ryg+u (9)

and
Ta To

—~ +
2tan¢  tan ¢’

whereu is defined in Eq. (8). Shifting the origin of the
w| =-h +cot(¢)r;r<a  coordinate system to the point of maximum penetration,
z=0 i.e., the tip of the indenter, the actual shape of the

7= ro<a, (20)

(b) P deformed surface is given by
r=Ztan¢+(1_2y)Z[ln (ztan ¢)/a
RITTTTTTmmssseseSesssemscsoceses 3 41— v) 1+ \/1 — (ztan ¢)2/a2
- 1 — /1 — (ztan ¢)?/a?
- (z tan ¢/ a? } : (11)

Based on the predictions of Eq. (11), the deformed
surface shape for indentation by a 70c8ne is shown in
da?tual sdhapﬁ of Fig. 2 for three values of Poisson’s ratio. Only in the case
eiormed surface of v = 0.5 is the shape of the surface consistent with the
FIG. 1. (a) Geometry used by Sneddon to describe indentation o70.3 conical geometry; for all other Poisson’s ratios,
an elastic half-space by a right circular cone. (b) Schematic repthe surface is displaced inward from the 70c8ne and
resentation of the a(_:tual shape of 'Fhe c_jeformed surface predlc_teg slightly curved. This means that in most cases of
by Sneddon’s analysis when the radial displacements are taken into : . ) . .
account. practical interes{» < 0.5), Sneddon’s solution applies
not to a perfect cone, but to a cusp-shaped indenter which

. . approximates to a cone. It is also interesting to note that
Another important result of Sneddon’s analysis con- bp g

e . .~ the final radial positions of points near the tip of the
cerns the radial displacements of surface points inside
the circle of contact. These are given'by

0-36 v 1 N 1 M 1 v 1
(1-2») r {1 r/a - Surface7 gggpes
u = =
41 — v) tan ¢ 1+ 41— (r/a)? 0.30 ¢ . i
1 =41 = (r/a) } v =0.00
- 5 ) (8) 0.24 -
(r/a) i v =0.25

The radial displacements, which have been overlooke ® 018l |
in most previous studies, have an important bearing o™ = \
the interpretation of Sneddon’s solution for indentation I v = 0.50
by a cone. Close examination of Eq. (8) shows that the .12} (70.3°cone) -
radial displacements are negative and vanish only whe
Poisson’s ratio is 0.5 (the material is incompressible)
or when the indenter angle is 9C°. Thus, for most 0.06 |- .
cases of practical interestp(< 90° and v < 0.5), the
radial displacements are finite. As a consequence, th o
shape of deformed surface inside the area of contact i 0'000 0.2 04 06 08 1
the problem modeled by Sneddon is not conical, bu ) " ta ’
rather a more complicated geometry like that shown )
schematically in Fig. 1(b). FIG. 2. The actual shape of the deformed surface in Sneddon’s

. . . . ... _analysis of indentation by a rigid cone. The shapes are computed
The radial displacements in Eq. (8), in COI’nbma‘tlonfrom Eqg. (11) for several Poisson’s ratios € 0.0, 0.25, and 0.5)

W_it_h the z-displacements imposed by the boundar.y CONzussuming a 703indenter. Only points in the region of contact are
dition of Eq. (5), can be used to completely describe thehown, i.e., fromz = 0 to z = #,.
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indenter are actuallpegative a physically meaningless (a) A axis of symmetry
situation. The implications of these observations are nov
examined using finite element simulation techniques.

Ill. FINITE ELEMENT SIMULATION
A. Procedures

To explore the consequences of the radial surfac
displacements, the finite element method was used t
examine elastic contact by four different right-circular
cones with half-included angles of 422&0°, 70.32,
and 80. The first angle gives the same area-to-deptt
ratio as a cube-corner indenter, the third is that of the
Berkovich and Vickers indenters, and the other two
angles fill out the range of practical interest.

All calculations were carried out using the axi-
symmetric specimen shown in Fig. 3(a) modeled as i
cylinder 103,000 nm in both length radius consisting
of 2595 quadrilateral elements and 2676 nodes. T
accurately simulate deformation processes in the regio
of contact, the mesh was refined in three stages. A
illustrated in Fig. 3(b), the finest portion of the mesh
was located in the region of contact near the tip of the )
indenter and consisted of square elements 5 nm on a sid(P); @xis of symmetry
Using an isotropic, linear-elastic, constitutive behavior <5 nm
characterized by Young’'s modulus, and Poisson ratio, :
v, simulations proceeded in 1 nm increments of indente 1
displacement to a final contact depth of 50 nm using :
an iterative process which accounts for finite strains :
and rotations. A sensitivity study showed that the mest '
adequately models the behavior of a semi-infinite solid. :

For each indenter angle, the displacements of th '
nodes and the total load on the indenter were compute -
as a function of indenter penetration for two different
sets of boundary conditions. First, to simulate exactly the '
problem modeled by Sneddon, the boundary condition
defined in Egs. (3)-(5) were employed. To implement |/ \I/\|/\|/"
this, zdisplacements consistent with the geometry of the
cone were imposed on the surface nodes according to

103,000 nm—m

103,000 n Mm——mm—

720 nm

o
= —h + 12
¢ tan ¢ ’ (12) L ]
where ry is the initial radial position of the nodes in - 720 nm >

the undeformed surfade = 0). However, no constraint G 3. The axi i h used in finite el ¢ simulati

: . . . .o € axisymmetric mesn used In finite element simulations:
was |mpose_d on the radial motion of the nodes; ratheIJ:) overall mesh showing specimen dimensions and boundary condi-
the radial displacements were determined as output Qfons and (b) details of the mesh in the region of contact near the
the simulation for comparison to the predictions ofindenter tip.
Sneddon’s analysis [Eq. (8)]. In the second set of simula-

tions, boundary conditions consistent with indentation byand at the bottom of the specimen, where a frictionless

a truly rigid cone were applied. In this case, the geometry. . )
of the surface in the region of contact was forced tgﬁg'd boundary was assumed [see Fig. 3(a)].

match that of the rigid cone subject to the condition of

frictionless contact, i.e., no shear forces parallel to thd®- Results

interface. In all simulations, roller boundary conditions Figure 4 compares the deformed surface profiles
were imposed along theaxis, as required by symmetry, for the two different sets of boundary conditions for a

J. Mater. Res., Vol. 14, No. 6, Jun 1999 2299



J.C. Hay et al.: A critical examination of the fundamental relations used in the analysis of nanoindentation data

0 p estimation is caused by the fact Eq. (6) is derived on the
Contact 70.32° cone assumption that the deformed surface within the region
Profiles G of contact has the exact profile of the rigid indenter and
10 + 00 thus inherently ignores the radial displacements. Note
L0 ° ce*?® that a 9% overestimation of the contact radius implies a
€ hc 2 o 3 < 19% pverestimation of the cpntact area.
£ 20 hox ) » Figure 5 compares the simulated load-displacement
Qo }cX\ curves for the two different sets of boundary conditions.
P I Also shown in the figure are the predictions of Eq. (7),
.E ast node , ; . ) :
S in contact Sneddon’s analytical expression for tRéh relationship
e -30 - for a conical indenter. The analytical expression matches
Q well with the results computed using Sneddon’s bound-
N . . ary conditions, but the loads for the rigid cone boundary
-40 | : FEM g%fd%%’ﬁeb%‘-’ss conditions are about 12% larger. This is an important
Sneddon analytical result, as it suggests that the analytical result of Eq. (7)
does not apply to deformation by a rigid cone, but to the
50 &—1 . L . L | cusp-shaped indenter obtained when the surface radial
0 20 40 60 80 100 120 140 displacements are taken into account. The larger loads
r-coordinate (nm) also mean that the contact stiffness for indentation by a

rigid cone is greater than that expected from Sneddon’s
FIG. 4. Surface profiles predicted by f!nite element simulation for analysis. Thus, the fundamental relation of Eq. (1) is also
each of the two sets of boundary conditions. in error, a point that will be elaborated upon later.

From a physical standpoint, the larger loads required

to achieve a specific displacement for the rigid cone
material with E = 90.85 GPa andv = 0.0 indented boundary conditions can be understood in terms of the
by a 70.32 cone. For the purposes of illustration, greater contact radii and greatedisplacements needed
a small value of Poisson’s ratio is chosen since itto further deform the curved surface of Sneddon’s analy-
produces the greatest difference in profile for the twosis; that is, larger loads are needed to push the curved
sets of boundary conditions. For the rigid cone boundangurface outward from the cusp-shaped profile to conform
conditions, the deformed surface is straight within thewith the rigid cone geometry (see Fig. 4). From this
region of contact, coinciding perfectly with the geometry
of the 70.32 cone, as it must. However, for Sneddon’s
boundary conditions, the surface is distinctly curved
and displaced inward, thus confirming the suspecter 0.5

radial displacements. For comparison, the surface profil Load-Displacement

predicted by Sneddon’s analytical expression for the Curves .
radial displacements, Eq. (11), is also shown. Within 04 |

the expected accuracy of the numerical results, thi » FEM: rigid cone bc's .

o FEM: Sneddon bc's
Sneddon analytical

finite element and analytical predictions are essentially
indistinguishable. These results thus confirm that th(i 0.3
problem modeled by Sneddon is indeed different fromg '
that of deformation by a truly rigid cone. 5
Other important insight is gained by comparing s
the contact depthk., and the contact radius, with -
Sneddon’s analytical results of Eq. (6). The position of
the last node in contact in the finite element simulations
is shown along with the contact profiles in Fig. 4. Close 0.1
inspection of the numerical results shows that lboth
sets of boundary conditions, the contact depth is relate
to the total penetration depth within about 1% of Sned- 0
don’s analytical predictionf. = 2h/7. On the other
hand, Sneddon’s prediction for the contact radiuss 0 10 20 30 40 %0 60
2h tan ¢ /7, works well only for the rigid cone; for
Sneddon’s exact boundary conditions, this relation overgig. 5. Load-displacement curves predicted by finite element simu-
estimates the contact radius by about 9%. The overation for each of the two sets of boundary conditions.

(

Displacement (nm)
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perspective, the magnitude of the increase in load abovsolution and thereby provide a more accurate mathemati-
Sneddon'’s prediction in Eq. (7) is expected to depend ogal description of indentation by a rigid cone. Here,
the angle of the indented;, and Poisson’s ratio;, since  three separate methods for modifying the solution are
the radial displacements depend on these parametepsesented. Since each is only approximate, the predictive
in the manner prescribed by Eq. (8). It is convenientcapabilities are assessed by comparison to finite element
to characterize the magnitude of the relative increase inesults.

load by the ratio of the load determined in the rigid

cone finite element simulations to the load predicteda. Contact radius matching

by Sneddon’s analysis evaluated from Egq. (7). This
ratio, designated/, can then be used to correct Eq. (7)
to provide a more accurate description of the load
displacement relationship for deformation by a truly rigid
cone. The corrected load-displacement relationship is

2

Perhaps the simplest approach to correcting Sned-
don’s solution to account for the radial displacements is
shown schematically in Fig. 7. The basic idea is to apply
Sneddon'’s results to an indenter that has a slightly larger
effective cone anglep.s;, chosen so that when the radial
P E tan (13) displacements are taken into account, the final contact
Yo (1 - v?) ‘ radius matches exactly that occurring by indentation with
. - . . arigid cone of angleg. As shown in the figure, this
Values ofy determl_ned by f|n!te el?ment_ S'!““"”?“O” approach yields the correct contact radius and area of
are plotted as a f_unctlon .Of Poisson’s ratlooln Fig. 6'contact, but the profile of the deformed surface is still
Results for four dlffe.rent indentersp . 42.28°, 60, displaced inward from the actual desired rigid cone
70.3Z, and 80, are mcluqled: '”SPGFt'O'? of the data geometry at all points except the tip of the indenter and
ShOW.S that”. decre_ases’wnh ncreasing mdenter anglethe contact edge. Since a larger load would be needed to
and increasing Poisson’s ratio and tends to unityas displace the curved surface outward to the perfect conical
approaches 0.5 a_nd/@;if approaches _90These obser-_ eometry, this solution would appear to provide a lower
vations are consistent W'th the notion that the radia ound on the indentation load. The attractiveness of this
displacements in Sneddon’s problem vanish whes approach is that Sneddon’s analytical expressions can

0.5 andfor¢ = 90° [see Eq. (8)]. be applied directly to the analysis, and simple closed-
form solutions are easily obtained. The approach takes
IV. MODIFICATION OF THE SOLUTION advantage of the observation from the finite element

By making a limited number of simplifying assump- studies that the contact depth is a constant fraction of the
tions, it is possible to obtain closed-form analytical ex-total depth &./h = 2/7), independent of the boundary
pressions fory which can be used to modify Sneddon’s conditions.

1.25 , .
“. Finite Element Simulation Contact Radius Matching
u

- N A A
>‘ \\ ’l ’/
ol T . g actual deformed
g LIS E “e0e £ surface S a ag
c A \\‘\ \\\ E s /,
'9 Tee \\. \\ 8 1, ,/
S 110 F 70.32° RN 5] bet S
(0] N 1 . P AN c
= e SR N Ry rigid cone,
bl A angle ¢
o *- RREIURAN o . ’ g

7800 - X
1.05 i"‘—\‘__<_ \\\"\. . .
\j_\. Ry 4 rigid cone,
4 angle gt > ¢
1.00 : : ' ' S v
0 0.1 0.2 0.3 0.4 0.5
Poisson's ratio, v r-coordinate

FIG. 6. Dependence of the correction factoron Poisson’s ratio/ FIG. 7. Schematic representation of solution modification by contact
and the indenter anglé as determined by finite element simulation. radius matching.
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The effective cone anglé.s:, is found by increasing the indentation load above Sneddon’s analytical result
the contact radius, by the magnitude of the anticipated is predicted.
radial displacement at the contact edge determined by
evaluating Eq. (8) at = a. This yields a contact radius

for the effective indenterg., given by B. Modified indenter shape
(1 - 20) A solution that potentially provides a more accu-
degt = a[l + m} , (14) rate approximation ofy is achieved by considering an
-V

indenter whose shape deviates from the perfect conical

(see Fig. 8). Since the effective cone angle is defined bgeometry in the manner shown schematically in Fig. 8.

duit The modified indenter is constructed by taking the per-

tan gepp = Rt (15) fect conical geometry and increasing the radius at each

¢ point by an amount equal to the radial displacements

combination of Egs. (6), (14), and (15) yields computed from Eq. (8). The rationale is that since the
(1 = 20) radial displacements in Sneddon’s solution are negative,

tan degr = [1 + —} tan ¢ . (16) increasing the radius of the perfect cone at all points

4(1 — v)tan ¢ along the contact interface by an amount equal to the

Replacing tan ¢ in Eq. (7) by the above expression radial displacements should, to a first approximation,

yields a modified indentation load-depth relation produce a deformed surface having a geometry close to
the ideal conical shape. Using Eq. (8) to determine the

p— [1 L (=20 } [ 2_E ¢h2} . magnitude of the radial displacements, the shape of the

41 - v)tang J L 7 (1 — »2) modified indenter is given by
(17)
S . . (1 —2v) (ztan ¢)/a
which is precisely the form of Eq. (13) if r=ztan¢ — 40 — )z In -
v l—i-\/l—(ztan¢>)/a2
=1+ M (18)
Y 41 — v)tan ¢ B 1 — \/1 — (ztan ¢)2/a2j| )
Note that forr = 0.5 or ¢ = 90°, y = 1 and Sned- (z tan ¢)*/a? '

don’s equations require no modification because ther
are no radial displacements. However, for alk 0.5
and¢ < 90°, y is greater than unity, and an increase in

3pplying Sneddon’s procedures for analyzing indenta-
tion by a rigid punch of arbitrary axisymmetric profile
leads to a load-displacement relation exactly of the form
of Eq. (13) with

/4 + 0.15483073 cot ¢ Sm

Modified Indenter Shape y =

(20)

_ 2
(77/2 — 0.83119312 cot ¢ Efaf,’j;)

The constants appearing in this expression result from
the numerical evaluation of integrals and are accurate
to the number of digits showi.

Following this same general approach, a slightly
simpler expression fol is obtained by assuming the
curvature of the modified shape in Fig. 8 is small, in
rigid cone, h which case the indenter can be modeled as a cone of

angle ¢ larger effective angleg.;. Using linear regression to
approximate the modified indenter profile of Eq. (19),
modified methods identical to those used in the contact radius
shape matching solution yield

shape in
Sneddon's

analysis
\/".: ‘ J

z-coordinate

tan ¢y = y tan ¢, (21)

- where
r-coordinate

1 —2v
FIG. 8. Schematic representation of solution modification using a y=1+ ¥<3 -
modified indenter shape. 4(1 — v)tan ¢

%) (22)
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1.50 1.25
— (=] — (o]
. Eq. 20 0=42.28 .. ¢ =60
S 140K o120
@] @]
= +2 ® Eq. 22
3] | Eq. 22 S -
& 130 Ea 8 115 Eq. 20
[ [ ] [
2 120} Eq.18 2 1.10f Ea-18
O (&3
o ° o
- t
o 1.10f FEM S 1.05|
(& (&
[ ]
1.00 : ' ' ' 1.00 : ' ' :
0 01 02 03 04 05 0 01 02 03 04 05
Poisson's ratio, v Poisson's ratio, v
1.14 1.08
j— o —_ o
11240, 22 0=70.32 . 6 =80
- - . Eq. 22
S 1101 o 1.06
S Eq. 20 5
8 1.08| ° 8 Eq. 20
c Eq. 18 c 1.04 -
O 1.06 .0 Eq. 18
E 1.04 | E P
O 1.02F o
1.00 | 1 ] [ 1.00 1 i | 1
0 01 02 03 04 05 0 01 02 03 04 05
Poisson's ratio, v Poisson's ratio, v

FIG. 9. Comparison of the correction factgrevaluated from Egs. (18), (20), and (22) with finite element simulation results.

Note that Eqg. (22) is mathematically similar to Eq. (18),V. IMPLICATIONS FOR NANOINDENTATION

differing only by the facton3 — =/2). DATA ANALYSIS
The fact that loads larger than those predicted by
C. Comparison to finite element simulations Sneddon’s solution are needed to describe indentation

To assess the predictive capabilities of the variousg1 xaall Esrililyo;Igr:gn%?ggez?;timpggg ngmp{ﬁ:tﬁgzgaietgint
analytical approximations, the dependenciesyobn v Y

; f hardness and elastic modulus by nanoindentation
and iven by Egs. (18), (20), and (22) are resented L )
in ng.gg for c){)mgarigon) tc() the finit((e e?emenrt) results.methOdS' The implications are most readily seen by con-

The finite element results are shown as discrete datsélidering the ianuence_ of the correction factprop t.he
points atv = 0, 0.2, and 0.4. Although the general contact stiffnessS Since S = dP/dh, differentiation

. . of Eq. (13) with respect td in combination with the
trends in the data are captured by all three equatlon%bservation thats, /h — 2/ leads to
the expression that most accurately predicts the magni- ¢
tude of y depends on the cone angle. For the largest 2 E —
angle,¢ = 80°, Eqg. (22) provides the best description, S=v \/—F 1= 12 VA,
while for ¢ = 70.32° it is Eq. (20), and for¢p = 60°,

Eq. (18). For the smallest cone anglg,= 42.48°, all ~ Comparison with Eqg. (1) shows that the stiffness, like the
three expressions overestimatebut Eq. (18) provides a load, is larger than predicted by Sneddon’s analysis by
reasonably close approximation. Why a given expression factor ofy. In light of this, Eq. (23) is expected to be
works well in a specific range ab is not clear, but in a more accurate representation of the contact stiffness
light of these observations, it is recommended that théor elastic deformation by geometrically similar sharp
best approximation fory for the two sharp indenters indenters like the cone.

used most often in nanoindentation experiments, the Exactly how this impacts nanoindentation measure-
Berkovich (equivalent cone angke 70.32) and cube ments depends on the way in which the stiffness equation
corner (equivalent cone angte 42.28), are given by is used in analysis procedures. The most obvious is in
Egs. (20) and (18), respectively. the measurement of elastic modulus from experimentally

(23)
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determined contact stiffnesses and contact areas. Sué&g. (24). Errors will occur in the modulus measurement
measurements frequently are made using Eq. (23) ionly if Poisson’s ratio for the material differs from that

the form used in the shape function calibration material. If the
1 J7 S ) two Poisson’s ratios are the same, the measurement
E=—-"+——F(0-7v), (24)  procedure gives the correct value for the modulus, even
y 2 JA L
_ _ _ . though the shape function is wrong.
with y = 1. However, sincey > 1, failure to include Lastly, two words of caution are in order with

the correction factor in the analysis leads to an overrespect to the application of these observations to nano-
estimation ofE, the extent of which depends on the conejndentation measurements. The first caution stems from
angle of the indenter and Poisson’s ratio of the specimethe fact that the relations derived in this work formally
in the manner approximated by Egs. (18), (20), and (22)apply only to indentation of amlastic half-space. For

Itis instructive to consider how large the overestima-the more realistic case dflastic-plastic deformation,
tions of elastic modulus may be in typical experimentalthe situation is considerably more complex and difficult
situations. Using Eq. (20) to provide a value pffor  to analyze. In this regard, it is noteworthy that finite
use with a Berkovich indenter (equivalent cone angle element simulations of conical indentation of elastic-
70.32), the elastic modulus of a material with Poisson’splastic materials have shown that problems similar to
ratio » = 0.25 is overestimated by about 8% if is  those identified here are also observed in elastic-plastic
taken to be unity. This is the origin of the 5-15% dis- materials?? In fact, the finite element results show that
crepancy between moduli input into finite element simu-or very plastic materials, as characterized by large
lations and those derived from the load-displacemenyalues of the modulus-to-yield strength ratiy,o-,, even
output?>?* Note that the modulus overestimation is |arger values ofy may be needed to obtain accurate
even larger for smaller indenter angles; for the cubeneasurements d£.22 The second caution relates to the
corner indenter (equivalent cone angte 42.28), for  fact that the relations derived here apply to deformation
which Eq. (18) gives the best description ¢f the by arigid cone; i.e., elasticity in the indenter is not
overestimation ofE is about 18% when it is assumed considered. While this assumption is reasonable when
that y = 1. the modulus of the indenter is much greater than that

A less obvious but equally important impact con- of the specimen, as is often the case when diamond
cerns the determination of indenter shape functions (oihdenters are employed, it is probably not so reasonable
area functionsj.In one common procedure, shape func-when the modulus of the indenter and the specimen are

tions are determined using Eq. (23) rewritten as: similar, as would be the case when testing diamond or
o2 diamond films. Further examination of these issues is
1 « [ S v?)
A= ——| ——— (25) currently underway.
v? 4 E

By performing experiments in a calibration material

of known modulus (fused quartz is frequently used),VI. CONCLUSIONS

Eq. (25) can be used in conjunction with experimental  \yhen the radial surface displacements in Sneddon’s
measurements of the contact stiffness to deduce thg,tion for penetration of an elastic half-space by a
contact area as a function of depth, from which the shapggnica| indenter are taken into account, the shape of the
function is derived. Note, however, that if the correction yoformed surface is subtly curved in a manner that is not
factor y is ignored, i.e.,y = 1 as in Eq. (1), the areas yngjstent with deformation by a rigid cone. Finite ele-
deduzced from this procedure are too large by a factofyent simulations show that indentation by a rigid cone
of y*. Using Egs. (20) and (18) to estimajefor in-  raqyires larger loads than those predicted by Sneddon’s
dentation in fused quartz/(= 0.17), failure to account  gnavsis. As a consequence, the fundamental relation
for the factorl/y* in Eq. (25) leads to an overestimation penyeen contact stiffness, elastic modulus, and contact

of the shape function area by 20% for the Berkovichyeq ysed frequently in nanoindentation measurements
indenter and 49% for the cube corner indenter. Since thF'equires modification to the form

hardness depends inversely on the area deduced from
the shape function througtt = P/A, the shape function

. ) s : ) 2 E
error will result in an error of similar magnitude in the S=y——— \/Z,
hardness. Curiously, however, the modulus measured Jr (1= v?)
using the incorrect shape is not necessarily subject to
the same error. This is because when areas too largeherey is a correction factor that depends on the half-
by a factor ofy? are used to compute the modulus byincluded angle of the indenteg,, and Poisson’s ratio;,
means of Eq. (1), the net effect is to reduce the calculatedf the indented material. Analytical approximations for
modulus by a factor ofl/y, exactly as prescribed in derived by applying simple modifications to Sneddon’s
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solution yield: 7.

/4 + 0.15483073 cot ¢ {7 8.

Y= (1-20)\2
(/2 = 0.83119312cot ¢ 24 ) 2
(Berkovich indenter ¢ = 70.32°) 11
12.
and 13.

(1 -2v»)

=14+ — 14.
Y 4(1 — v)tan ¢ 15.

(cube-corner indenter¢p = 42.28°)

for the Berkovich and cube-corner indenters used frel’:
guently in nanoindentation experiments. These values for®

y can be used to provide more accurate measuremenjs
of hardness and elastic modulus from nanoindentation
load-displacement data.
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