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Methods for analyzing nanoindentation load-displacement data to determine hardness
and elastic modulus are based on analytical solutions for the indentation of an elastic
half-space by rigid axisymmetric indenters. Careful examination of Sneddon’s solution
indentation by a rigid cone reveals several largely ignored features that have importan
implications for nanoindentation property measurement. Finite element and analytical
results are presented that show corrections to Sneddon’s equations are needed if acc
results are to be obtained. Without the corrections, the equations underestimate the
load and contact stiffness in a manner that leads to errors in the measured hardness
and modulus, with the magnitudes of the errors depending on the angle of the indent
and Poisson’s ratio of the half-space. First order corrections are derived, and general
implications for the interpretation of nanoindentation data are discussed.
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I. INTRODUCTION

In the past two decades, a great deal of effort h
been directed toward the development of techniques
characterizing the mechanical properties of thin film
and small volumes of material. Load and depth sens
indentation, commonly referred to as nanoindentatio
is one means by which this has been achieved.1–12

Through the combined use of high resolution testin
instrumentation and simple principles of analysis bas
on elastic and elastic/plastic contact theory, nanoinde
tation is now used routinely for small-scale mechanic
property measurements, sometimes at indentation dep
of only a few nanometers.7–10

Several analytical approaches have been develo
to measure mechanical properties from indentation loa
displacement data,2–5,9–12 most of which have focused
on the elastic modulus,E (Young’s modulus), and the
hardness,H. Central to these approaches are the metho
by which experimentally measurable quantities such
the indentation load,P, the indenter penetration depth
h, and the indentation contact stiffness,S ­ dPydh, are
related to the projected contact area,A, and the elastic
constants of the material,E andn (n ­ Poisson’s ratio).

a)Address all correspondence to this author at the University
Tennessee.
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In one form or another, most methods make use of t
relation13

S ­
2

p
p

E
s1 2 n2d

p
A . (1)

This fundamental equation has its roots in elastic cont
theory, specifically, the analyses of Love and Snedd
for contact of an isotropic elastic half-space by rig
indenters of various geometry.14–18 While originally de-
rived for indentation by a rigid cone, Bulychevet al.
showed that Eq. (1) also applies to spherical and cyl
drical indenters and speculated that it may hold for oth
geometries as well.19,20 Subsequently, Pharr, Oliver, and
Brotzen showed that the equation applies toany indenter
that can be described as a solid of revolution of a smo
function.13 More recently, Cheng and Cheng have su
gested that Eq. (1) is even more broadly applicable th
previously thought, applying to elastic-plastic as well a
purely elastic contact.21

The accuracy with which nanoindentation proper
measurements can be made is integrally tied to how w
Eq. (1) models real material behavior. In this regard, it
notable that finite element studies recently have revea
what appears to be a significant shortcoming in Eq. (1)
it applies to indentation by a rigid cone.22,23 The conical
geometry is an important one because it embodies
self-similar geometry of sharp pyramidal indenters su
as the Berkovich, Vickers, and cube-corner used
 1999 Materials Research Society
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nanoindentation testing. In finite element simulation
the elastic and plastic properties of a material, includi
Young’s modulus, are specified as input, and indentat
load-displacement curves and contact areas are comp
as output. By analyzing the output load-displaceme
data according to Eq. (1), it is possible to compu
Young’s modulus for comparison to the known inp
value, thus providing a check on consistency. Bolshak
and Pharr,22 using finite element simulation to mode
elastic-plastic indentation by a rigid cone with a ha
included angle of 70.3± (the angle that gives the sam
depth-to-area ratio as the Berkovich indenter), fou
that Young’s moduli derived from Eq. (1) are consi
tently 5–15% too high. Ritteret al.,24 Gao et al.,25 and
more recently Cheng and Cheng26 have come to simi-
lar conclusions, although the magnitude of the mod
lus overestimation is different in each study. On th
other hand, good agreement between input and deri
values of E was reported by Larsen and Simo,27 but
it has been suggested that the procedure used by t
investigators to determine the contact stiffness from t
load-displacement data underestimated its true value,
when corrected, a modulus discrepancy even larger t
that reported by Bolshakov and Pharr is observed.28

The observed discrepancies in finite element resu
led us to conduct a careful investigation of Eq. (1)
it applies to nanoindentation by conical indenters.
the course of the investigation, some largely overlook
but important subtleties in Sneddon’s solution for i
dentation of an elastic half-space by a rigid cone we
discovered that have an important bearing on the int
pretation and application of the solution to nanoinden
tion data analysis. In-depth analysis shows that Eq.
and other relations commonly used in nanoindentat
data reduction require modification if accurate results
to be obtained. Failure to make the modifications resu
in an underestimation of the load and contact stiffne
in a manner that can lead to significant errors in t
measurement of hardness and modulus. In this paper
nature of the problem is documented, and approxim
methods for correcting it are derived. The corrected so
tions are checked for accuracy by comparison to ela
finite element simulations, and general implications f
the interpretation of nanoindentation data are discuss

II. BACKGROUND

The mathematical foundations of the problem
indentation of an elastic half-space by a rigid punch a
more than a century old. In 1885, Boussinesq publish
a solution for the problem of contact between a solid
revolution and an elastic continuum,29 but the solution
did not lend itself to application in many problems o
practical interest. Love succeeded in finding a soluti
for the important cases of conical14 and cylindrical15
J. Mater. Res., Vol. 1
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punches, and later, Harding and Sneddon16 established
an analytical procedure for deriving load-displaceme
relations for a punch of arbitrary axisymmetric shape.
key contribution in the work of Harding and Sneddo
was the realization that the problem could be reduced
solving a pair of integrals falling into a class treated b
Titchmarsh30 and Busbridge.31 Subsequently, Sneddon
showed that the method of Hankel transforms could
used to simplify the solution procedure.17

Figure 1(a) depicts the geometry for the special ca
of interest in this work, indentation by a right circula
cone. A cylindrical coordinate system is chosen wi
radial coordinater and axial coordinatez. The z-axis
coincides with the axis of symmetry of the indente
and the free surface of the elastic half-space defines
planez ­ 0. The variablesu and w are used to denote
displacements in ther and z directions, respectively.
When the indenter penetrates the half-space to a to
depth, h, contact is made between the indenter a
specimen along a contact depth,hc, at which the radius
of the circle of contact isa. From geometry,a and hc

are related by

a ­ hc tan f , (2)

wheref is the half-included angle of the indenter. Th
boundary conditions used by Sneddon for the conic
indentation problem are

szzjz­0 ­ 0 , r . a (3)

srzjz­0 ­ 0 , r . 0 (4)

wjz­0 ­ 2h 1 cot sfdr , r , a (5)

The first condition assures that the free surface outs
the radius of contact has no normal stresses acting
it, the second imposes conditions of frictionless conta
and the third forces thez-displacements of the surface t
be consistent with the shape of the conical indenter.

Two important results of Sneddon’s solution are th
expressions for the penetration depth,h, and the inden-
tation load,P.16–18 The penetration depth is given by

h ­
p

2
hc ­

pa
2 tan f

, (6)

which shows that the ratio of the contact depth to t
total depth is constant, i.e.,hcyh ­ 2yp . The expression
for the load is

P ­
p

2
E

s1 2 n2d
ahc ­

2
p

E
s1 2 n2d

tan fh2

­
p

2
E

s1 2 n2d
a2

tan f
, (7)

which illustrates the parabolic dependence of the lo
on depth, i.e.,P , h2. Combining Eqs. (6) and (7)
and noting thatS ­ dPydh and A ­ pa2 yields the
fundamental relation of Eq. (1).
4, No. 6, Jun 1999 2297
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FIG. 1. (a) Geometry used by Sneddon to describe indentation
an elastic half-space by a right circular cone. (b) Schematic r
resentation of the actual shape of the deformed surface predi
by Sneddon’s analysis when the radial displacements are taken
account.

Another important result of Sneddon’s analysis co
cerns the radial displacements of surface points ins
the circle of contact. These are given by18

u ­
s1 2 2nd
4s1 2 nd

r
tan f

"
ln

rya

1 1

q
1 2 sryad2

2
1 2

q
1 2 sryad2

sryad2

#
. (8)

The radial displacements, which have been overlook
in most previous studies, have an important bearing
the interpretation of Sneddon’s solution for indentatio
by a cone. Close examination of Eq. (8) shows that
radial displacements are negative and vanish only wh
Poisson’s ratio is 0.5 (the material is incompressib
or when the indenter anglef is 90±. Thus, for most
cases of practical interest (f , 90± and n , 0.5), the
radial displacements are finite. As a consequence,
shape of deformed surface inside the area of contac
the problem modeled by Sneddon is not conical, b
rather a more complicated geometry like that show
schematically in Fig. 1(b).

The radial displacements in Eq. (8), in combinatio
with the z-displacements imposed by the boundary co
dition of Eq. (5), can be used to completely describe t
2298 J. Mater. Res., Vol. 1
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actual shape of the deformed surface in Sneddon’s pr
lem. Points on the originally flat surface with coordinate
r ­ r0 andz ­ 0 move to final positions given by

r ­ r0 1 u (9)

and

z ­ 2
pa

2 tan f
1

r0

tan f
, r0 , a , (10)

whereu is defined in Eq. (8). Shifting the origin of the
coordinate system to the point of maximum penetratio
i.e., the tip of the indenter, the actual shape of t
deformed surface is given by

r ­ z tan f 1
s1 2 2nd
4s1 2 nd

z

∑
ln

sz tan fdya

1 1

q
1 2 sz tan fd2ya2

2
1 2

p
1 2 sz tan fd2ya2

sz tan fd2ya2

∏
. (11)

Based on the predictions of Eq. (11), the deform
surface shape for indentation by a 70.3± cone is shown in
Fig. 2 for three values of Poisson’s ratio. Only in the ca
of n ­ 0.5 is the shape of the surface consistent with t
70.3± conical geometry; for all other Poisson’s ratios
the surface is displaced inward from the 70.3± cone and
is slightly curved. This means that in most cases
practical interestsn , 0.5d, Sneddon’s solution applies
not to a perfect cone, but to a cusp-shaped indenter wh
approximates to a cone. It is also interesting to note th
the final radial positions of points near the tip of th

FIG. 2. The actual shape of the deformed surface in Sneddo
analysis of indentation by a rigid cone. The shapes are compu
from Eq. (11) for several Poisson’s ratios (n ­ 0.0, 0.25, and 0.5)
assuming a 70.3± indenter. Only points in the region of contact ar
shown, i.e., fromz ­ 0 to z ­ hc.
4, No. 6, Jun 1999
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indenter are actuallynegative, a physically meaningless
situation. The implications of these observations are n
examined using finite element simulation techniques

III. FINITE ELEMENT SIMULATION

A. Procedures

To explore the consequences of the radial surfa
displacements, the finite element method was used
examine elastic contact by four different right-circul
cones with half-included angles of 42.28±, 60±, 70.32±,
and 80±. The first angle gives the same area-to-de
ratio as a cube-corner indenter, the third is that of
Berkovich and Vickers indenters, and the other tw
angles fill out the range of practical interest.

All calculations were carried out using the ax
symmetric specimen shown in Fig. 3(a) modeled as
cylinder 103,000 nm in both length radius consisti
of 2595 quadrilateral elements and 2676 nodes.
accurately simulate deformation processes in the reg
of contact, the mesh was refined in three stages.
illustrated in Fig. 3(b), the finest portion of the mes
was located in the region of contact near the tip of t
indenter and consisted of square elements 5 nm on a s
Using an isotropic, linear-elastic, constitutive behav
characterized by Young’s modulus,E, and Poisson ratio,
n, simulations proceeded in 1 nm increments of inden
displacement to a final contact depth of 50 nm usi
an iterative process which accounts for finite stra
and rotations. A sensitivity study showed that the me
adequately models the behavior of a semi-infinite so

For each indenter angle, the displacements of
nodes and the total load on the indenter were compu
as a function of indenter penetration for two differe
sets of boundary conditions. First, to simulate exactly
problem modeled by Sneddon, the boundary conditio
defined in Eqs. (3)–(5) were employed. To impleme
this, z-displacements consistent with the geometry of t
cone were imposed on the surface nodes according

z ­ 2h 1
r0

tan f
, (12)

where r0 is the initial radial position of the nodes in
the undeformed surfacesz ­ 0d. However, no constraint
was imposed on the radial motion of the nodes; rath
the radial displacements were determined as outpu
the simulation for comparison to the predictions
Sneddon’s analysis [Eq. (8)]. In the second set of simu
tions, boundary conditions consistent with indentation
a truly rigid cone were applied. In this case, the geome
of the surface in the region of contact was forced
match that of the rigid cone subject to the condition
frictionless contact, i.e., no shear forces parallel to
interface. In all simulations, roller boundary condition
were imposed along thez-axis, as required by symmetry
J. Mater. Res., Vol. 1
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FIG. 3. The axisymmetric mesh used in finite element simulation
(a) overall mesh showing specimen dimensions and boundary con
tions and (b) details of the mesh in the region of contact near t
indenter tip.

and at the bottom of the specimen, where a frictionle
rigid boundary was assumed [see Fig. 3(a)].

B. Results

Figure 4 compares the deformed surface profil
for the two different sets of boundary conditions for
4, No. 6, Jun 1999 2299
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FIG. 4. Surface profiles predicted by finite element simulation f
each of the two sets of boundary conditions.

material with E ­ 90.85 GPa andn ­ 0.0 indented
by a 70.32± cone. For the purposes of illustration
a small value of Poisson’s ratio is chosen since
produces the greatest difference in profile for the tw
sets of boundary conditions. For the rigid cone bounda
conditions, the deformed surface is straight within t
region of contact, coinciding perfectly with the geomet
of the 70.32± cone, as it must. However, for Sneddon
boundary conditions, the surface is distinctly curve
and displaced inward, thus confirming the suspec
radial displacements. For comparison, the surface pro
predicted by Sneddon’s analytical expression for t
radial displacements, Eq. (11), is also shown. With
the expected accuracy of the numerical results,
finite element and analytical predictions are essentia
indistinguishable. These results thus confirm that t
problem modeled by Sneddon is indeed different fro
that of deformation by a truly rigid cone.

Other important insight is gained by comparin
the contact depth,hc, and the contact radius,a, with
Sneddon’s analytical results of Eq. (6). The position
the last node in contact in the finite element simulatio
is shown along with the contact profiles in Fig. 4. Clos
inspection of the numerical results shows that forboth
sets of boundary conditions, the contact depth is rela
to the total penetration depth within about 1% of Sne
don’s analytical prediction,hc ­ 2hyp. On the other
hand, Sneddon’s prediction for the contact radius,a ­
2h tan fyp, works well only for the rigid cone; for
Sneddon’s exact boundary conditions, this relation ov
estimates the contact radius by about 9%. The ov
2300 J. Mater. Res., Vol. 1
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estimation is caused by the fact Eq. (6) is derived on t
assumption that the deformed surface within the regi
of contact has the exact profile of the rigid indenter a
thus inherently ignores the radial displacements. No
that a 9% overestimation of the contact radius implies
19% overestimation of the contact area.

Figure 5 compares the simulated load-displacem
curves for the two different sets of boundary condition
Also shown in the figure are the predictions of Eq. (7
Sneddon’s analytical expression for theP-h relationship
for a conical indenter. The analytical expression match
well with the results computed using Sneddon’s boun
ary conditions, but the loads for the rigid cone bounda
conditions are about 12% larger. This is an importa
result, as it suggests that the analytical result of Eq.
does not apply to deformation by a rigid cone, but to th
cusp-shaped indenter obtained when the surface ra
displacements are taken into account. The larger loa
also mean that the contact stiffness for indentation by
rigid cone is greater than that expected from Sneddo
analysis. Thus, the fundamental relation of Eq. (1) is al
in error, a point that will be elaborated upon later.

From a physical standpoint, the larger loads requir
to achieve a specific displacement for the rigid co
boundary conditions can be understood in terms of t
greater contact radii and greaterz-displacements needed
to further deform the curved surface of Sneddon’s ana
sis; that is, larger loads are needed to push the cur
surface outward from the cusp-shaped profile to confo
with the rigid cone geometry (see Fig. 4). From th

FIG. 5. Load-displacement curves predicted by finite element sim
lation for each of the two sets of boundary conditions.
4, No. 6, Jun 1999
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perspective, the magnitude of the increase in load ab
Sneddon’s prediction in Eq. (7) is expected to depend
the angle of the indenter,f, and Poisson’s ratio,n, since
the radial displacements depend on these parame
in the manner prescribed by Eq. (8). It is convenie
to characterize the magnitude of the relative increase
load by the ratio of the load determined in the rigi
cone finite element simulations to the load predict
by Sneddon’s analysis evaluated from Eq. (7). Th
ratio, designatedg, can then be used to correct Eq. (7
to provide a more accurate description of the loa
displacement relationship for deformation by a truly rig
cone. The corrected load-displacement relationship is

P ­ g
2
p

E
s1 2 n2d

tan fh2. (13)

Values ofg determined by finite element simulation
are plotted as a function of Poisson’s ratio in Fig.
Results for four different indenters,f ­ 42.28±, 60±,
70.32±, and 80±, are included. Inspection of the dat
shows thatg decreases with increasing indenter ang
and increasing Poisson’s ratio and tends to unity asn

approaches 0.5 and/orf approaches 90±. These obser-
vations are consistent with the notion that the rad
displacements in Sneddon’s problem vanish whenn ­
0.5 and/orf ­ 90± [see Eq. (8)].

IV. MODIFICATION OF THE SOLUTION

By making a limited number of simplifying assump
tions, it is possible to obtain closed-form analytical e
pressions forg which can be used to modify Sneddon’

FIG. 6. Dependence of the correction factorg on Poisson’s ration
and the indenter anglef as determined by finite element simulation
J. Mater. Res., Vol. 1
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solution and thereby provide a more accurate mathem
cal description of indentation by a rigid cone. Her
three separate methods for modifying the solution a
presented. Since each is only approximate, the predic
capabilities are assessed by comparison to finite elem
results.

A. Contact radius matching

Perhaps the simplest approach to correcting Sn
don’s solution to account for the radial displacements
shown schematically in Fig. 7. The basic idea is to app
Sneddon’s results to an indenter that has a slightly lar
effective cone angle,feff, chosen so that when the radia
displacements are taken into account, the final cont
radius matches exactly that occurring by indentation w
a rigid cone of angle,f. As shown in the figure, this
approach yields the correct contact radius and area
contact, but the profile of the deformed surface is s
displaced inward from the actual desired rigid co
geometry at all points except the tip of the indenter a
the contact edge. Since a larger load would be neede
displace the curved surface outward to the perfect con
geometry, this solution would appear to provide a low
bound on the indentation load. The attractiveness of t
approach is that Sneddon’s analytical expressions
be applied directly to the analysis, and simple close
form solutions are easily obtained. The approach ta
advantage of the observation from the finite eleme
studies that the contact depth is a constant fraction of
total depth (hcyh ­ 2yp), independent of the boundar
conditions.

FIG. 7. Schematic representation of solution modification by cont
radius matching.
4, No. 6, Jun 1999 2301
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The effective cone angle,feff, is found by increasing
the contact radius,a, by the magnitude of the anticipated
radial displacement at the contact edge determined
evaluating Eq. (8) atr ­ a. This yields a contact radius
for the effective indenter,aeff, given by

aeff ­ a

∑
1 1

s1 2 2nd
4s1 2 nd tan f

∏
, (14)

(see Fig. 8). Since the effective cone angle is defined

tan feff ­
aeff

hc
, (15)

combination of Eqs. (6), (14), and (15) yields

tan feff ­

∑
1 1

s1 2 2nd
4s1 2 nd tan f

∏
tan f . (16)

Replacing tan f in Eq. (7) by the above expression
yields a modified indentation load-depth relation

P ­

∑
1 1

s1 2 2nd
4s1 2 nd tan f

∏ ∑
2
p

E
s1 2 n2d

tan fh2

∏
,

(17)

which is precisely the form of Eq. (13) if

g ­ 1 1
s1 2 2nd

4s1 2 nd tan f
. (18)

Note that forn ­ 0.5 or f ­ 90±, g ­ 1 and Sned-
don’s equations require no modification because th
are no radial displacements. However, for alln , 0.5
andf , 90±, g is greater than unity, and an increase

FIG. 8. Schematic representation of solution modification using
modified indenter shape.
2302 J. Mater. Res., Vol. 1
y
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the indentation load above Sneddon’s analytical res
is predicted.

B. Modified indenter shape

A solution that potentially provides a more accu
rate approximation ofg is achieved by considering an
indenter whose shape deviates from the perfect con
geometry in the manner shown schematically in Fig.
The modified indenter is constructed by taking the p
fect conical geometry and increasing the radius at e
point by an amount equal to the radial displaceme
computed from Eq. (8). The rationale is that since t
radial displacements in Sneddon’s solution are negat
increasing the radius of the perfect cone at all poin
along the contact interface by an amount equal to
radial displacements should, to a first approximatio
produce a deformed surface having a geometry close
the ideal conical shape. Using Eq. (8) to determine
magnitude of the radial displacements, the shape of
modified indenter is given by

r ­ z tan f 2
s1 2 2nd
4s1 2 nd

z

"
ln

sz tan fdya

1 1

q
1 2 sz tan fd2ya2

2
1 2

q
1 2 sz tan fd2ya2

sz tan fd2ya2

#
. (19)

Applying Sneddon’s procedures for analyzing inden
tion by a rigid punch of arbitrary axisymmetric profile17

leads to a load-displacement relation exactly of the fo
of Eq. (13) with

g ­ p
py4 1 0.15483073 cot f

s122nd
4s12nd≥

py2 2 0.83119312 cot f
s122nd
4s12nd

¥2 . (20)

The constants appearing in this expression result fr
the numerical evaluation of integrals and are accur
to the number of digits shown.32

Following this same general approach, a sligh
simpler expression forg is obtained by assuming the
curvature of the modified shape in Fig. 8 is small,
which case the indenter can be modeled as a cone
larger effective angle,feff. Using linear regression to
approximate the modified indenter profile of Eq. (19
methods identical to those used in the contact rad
matching solution yield

tan feff ­ g tan f , (21)

where

g ­ 1 1
s1 2 2nd

4s1 2 nd tan f

µ
3 2

p

2

∂
. (22)
4, No. 6, Jun 1999



J. C. Hay et al.: A critical examination of the fundamental relations used in the analysis of nanoindentation data

.
FIG. 9. Comparison of the correction factorg evaluated from Eqs. (18), (20), and (22) with finite element simulation results
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Note that Eq. (22) is mathematically similar to Eq. (18
differing only by the factors3 2 py2d.

C. Comparison to finite element simulations

To assess the predictive capabilities of the vario
analytical approximations, the dependencies ofg on n

and f given by Eqs. (18), (20), and (22) are present
in Fig. 9 for comparison to the finite element result
The finite element results are shown as discrete d
points at n ­ 0, 0.2, and 0.4. Although the genera
trends in the data are captured by all three equatio
the expression that most accurately predicts the mag
tude of g depends on the cone angle. For the larg
angle,f ­ 80±, Eq. (22) provides the best description
while for f ­ 70.32± it is Eq. (20), and forf ­ 60±,
Eq. (18). For the smallest cone angle,f ­ 42.48±, all
three expressions overestimateg, but Eq. (18) provides a
reasonably close approximation. Why a given express
works well in a specific range off is not clear, but in
light of these observations, it is recommended that
best approximation forg for the two sharp indenters
used most often in nanoindentation experiments,
Berkovich (equivalent cone angle­ 70.32±) and cube
corner (equivalent cone angle­ 42.28±), are given by
Eqs. (20) and (18), respectively.
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V. IMPLICATIONS FOR NANOINDENTATION
DATA ANALYSIS

The fact that loads larger than those predicted
Sneddon’s solution are needed to describe indenta
by a truly rigid cone has important implications for th
analysis of nanoindentation data and the measurem
of hardness and elastic modulus by nanoindentat
methods. The implications are most readily seen by c
sidering the influence of the correction factorg on the
contact stiffness,S. Since S ­ dPydh, differentiation
of Eq. (13) with respect toh in combination with the
observation thathcyh ­ 2yp leads to

S ­ g
2

p
p

E
s1 2 n2d

p
A . (23)

Comparison with Eq. (1) shows that the stiffness, like t
load, is larger than predicted by Sneddon’s analysis
a factor ofg. In light of this, Eq. (23) is expected to be
a more accurate representation of the contact stiffn
for elastic deformation by geometrically similar sha
indenters like the cone.

Exactly how this impacts nanoindentation measu
ments depends on the way in which the stiffness equa
is used in analysis procedures. The most obvious is
the measurement of elastic modulus from experimenta
4, No. 6, Jun 1999 2303
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determined contact stiffnesses and contact areas. S
measurements frequently are made using Eq. (23)
the form

E ­
1
g

p
p

2
S

p
A

s1 2 n2d , (24)

with g ­ 1. However, sinceg . 1, failure to include
the correction factor in the analysis leads to an ov
estimation ofE, the extent of which depends on the co
angle of the indenter and Poisson’s ratio of the specim
in the manner approximated by Eqs. (18), (20), and (2

It is instructive to consider how large the overestim
tions of elastic modulus may be in typical experimen
situations. Using Eq. (20) to provide a value ofg for
use with a Berkovich indenter (equivalent cone angle­
70.32±), the elastic modulus of a material with Poisson
ratio n ­ 0.25 is overestimated by about 8% ifg is
taken to be unity. This is the origin of the 5–15% di
crepancy between moduli input into finite element sim
lations and those derived from the load-displacem
output.22,23 Note that the modulus overestimation
even larger for smaller indenter angles; for the cu
corner indenter (equivalent cone angle­ 42.28±), for
which Eq. (18) gives the best description ofg, the
overestimation ofE is about 18% when it is assume
that g ­ 1.

A less obvious but equally important impact co
cerns the determination of indenter shape functions
area functions).9 In one common procedure, shape fun
tions are determined using Eq. (23) rewritten as:

A ­
1

g2

p

4

∑
Ss1 2 n2d

E

∏ 2

. (25)

By performing experiments in a calibration materi
of known modulus (fused quartz is frequently use
Eq. (25) can be used in conjunction with experimen
measurements of the contact stiffness to deduce
contact area as a function of depth, from which the sh
function is derived. Note, however, that if the correctio
factor g is ignored, i.e.,g ­ 1 as in Eq. (1), the areas
deduced from this procedure are too large by a fac
of g2. Using Eqs. (20) and (18) to estimateg for in-
dentation in fused quartz (n ­ 0.17), failure to account
for the factor1yg2 in Eq. (25) leads to an overestimatio
of the shape function area by 20% for the Berkovi
indenter and 49% for the cube corner indenter. Since
hardness depends inversely on the area deduced
the shape function throughH ­ PyA, the shape function
error will result in an error of similar magnitude in th
hardness. Curiously, however, the modulus measu
using the incorrect shape is not necessarily subjec
the same error. This is because when areas too la
by a factor ofg2 are used to compute the modulus b
means of Eq. (1), the net effect is to reduce the calcula
modulus by a factor of1yg, exactly as prescribed in
2304 J. Mater. Res., Vol. 1
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Eq. (24). Errors will occur in the modulus measureme
only if Poisson’s ratio for the material differs from tha
used in the shape function calibration material. If t
two Poisson’s ratios are the same, the measurem
procedure gives the correct value for the modulus, e
though the shape function is wrong.

Lastly, two words of caution are in order wit
respect to the application of these observations to na
indentation measurements. The first caution stems f
the fact that the relations derived in this work forma
apply only to indentation of anelastic half-space. For
the more realistic case ofelastic-plasticdeformation,
the situation is considerably more complex and diffic
to analyze. In this regard, it is noteworthy that fini
element simulations of conical indentation of elast
plastic materials have shown that problems similar
those identified here are also observed in elastic-pla
materials.22 In fact, the finite element results show th
for very plastic materials, as characterized by la
values of the modulus-to-yield strength ratio,Eysy , even
larger values ofg may be needed to obtain accura
measurements ofE.22 The second caution relates to th
fact that the relations derived here apply to deformat
by a rigid cone; i.e., elasticity in the indenter is no
considered. While this assumption is reasonable w
the modulus of the indenter is much greater than t
of the specimen, as is often the case when diam
indenters are employed, it is probably not so reasona
when the modulus of the indenter and the specimen
similar, as would be the case when testing diamond
diamond films. Further examination of these issues
currently underway.

VI. CONCLUSIONS

When the radial surface displacements in Sneddo
solution for penetration of an elastic half-space by
conical indenter are taken into account, the shape of
deformed surface is subtly curved in a manner that is
consistent with deformation by a rigid cone. Finite e
ment simulations show that indentation by a rigid co
requires larger loads than those predicted by Snedd
analysis. As a consequence, the fundamental rela
between contact stiffness, elastic modulus, and con
area used frequently in nanoindentation measurem
requires modification to the form

S ­ g
2

p
p

E
s1 2 n2d

p
A ,

whereg is a correction factor that depends on the ha
included angle of the indenter,f, and Poisson’s ratio,n,
of the indented material. Analytical approximations forg

derived by applying simple modifications to Sneddon
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solution yield:

g ­ p
py4 1 0.15483073 cot f

s122nd
4s12nd≥

py2 ­ 0.83119312 cot f
s122nd
4s12nd

¥2

sBerkovich indenter; f ­ 70.32±d

and

g ­ 1 1
s1 2 2nd

4s1 2 nd tan f

scube-corner indenter; f ­ 42.28±d

for the Berkovich and cube-corner indenters used f
quently in nanoindentation experiments. These values
g can be used to provide more accurate measureme
of hardness and elastic modulus from nanoindentat
load-displacement data.
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