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Influences of pileup on the measurement of mechanical
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Finite element simulation of conical indentation of a wide variety of elastic-plastic
materials has been used to investigate the influences of pileup on the accuracy wi
which hardness and elastic modulus can be measured by load and depth-sensing
indentation techniques. The key parameter in the investigation is the contact area,
which can be determined from the finite element results either by applying standar
analysis procedures to the simulated indentation load-displacement data, as would
done in an experiment, or more directly, by examination of the contact profiles in t
finite element mesh. Depending on the pileup behavior of the material, these two a
may be very different. When pileup is large, the areas deduced from analyses of th
load-displacement curves underestimate the true contact areas by as much as 60%
in turn, leads to overestimations of the hardness and elastic modulus. The conditio
under which the errors are significant are identified, and it is shown how paramete
measured from the indentation load-displacement data can be used to identify whe
pileup is an important factor.
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I. INTRODUCTION

Numerous methods have been developed in rec
years for measuring the mechanical properties of m
terials by means of load and depth sensing indentat
testing.1–3 One of the great advantages of these metho
is that it is not necessary to measure the area of
hardness impression by imaging; rather, the cont
area and the material properties which can be deriv
from it are determined from analyses of indentatio
load-displacement data. The methods form the ba
for nanoindentation testing, in which mechanical pro
erties can be measured from very small indentatio
sometimes only a few nanometers deep.4,5 Among the
properties that can be measured in this way are
hardness,H, and the elastic modulus,E.

One of the more commonly used methods for an
lyzing nanoindentation load-displacement data is that
Oliver and Pharr,3 which expands on ideas develope
by Loubet et al.1 and Doerner and Nix,2 but is not
constrained by the assumption of a flat punch inden
geometry. In the Oliver–Pharr method, hardness a
elastic modulus are determined from indentation da
obtained during one complete cycle of loading an
unloading. The analysis begins by fitting the unloadin
curve to the power-law relation

P ­ B
°
h 2 hf

¢m
, (1)

a)Current address: Baker Hughes Inteq, P.O. Box 670968, Hous
Texas 77267-0968.
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whereP is the indentation load,h is the displacement,
B and m are empirically determined fitting parameters
and hf is the final displacement after complete unload
ing (also determined by curve fitting). The unloading
stiffness, S, that is, the slope of the unloading curve
during the initial stages of unloading, is then establishe
by differentiating Eq. (1) at the maximum depth o
penetration,h ­ hmax, giving

S ­
dP
dh

sh ­ hmaxd ­ mB
°
hmax 2 hf

¢m21
. (2)

The depth along which contact is made between th
indenter and the specimen,hc, can also be estimated
from the load-displacement data using:

hc ­ hmax 2 e
Pmax

S
, (3)

where Pmax is the peak indentation load ande is a
constant which depends on the geometry of the indent
With these basic measurements, the projected cont
area of the hardness impression,A, is derived by evalu-
ating an empirically determined indenter shape functio
at the contact depth,hc; that is, A ­ fshcd. The shape
functionA ­ fsdd relates the cross-sectional area of th
indenter to the distance back from its tip,d. Finally,
the hardness,H, and effective elastic modulus,Eeff, are
derived from

H ­
Pmax

A
(4)
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Eeff ­

p
p

2
S

p
A

. (5)

An effective modulus is used in the analysis to acco
for the fact that elastic deformation occurs in both t
specimen and the indenter. The effective modulus
related to the specimen modulus through

1
Eeff

­
1 2 n2

E
1

1 2 n2
i

Ei
, (6)

whereE andn are Young’s modulus and Poisson’s rat
for the specimen, andEi andni are the same quantitie
for the indenter.3

The attractiveness of this approach is that dir
observation and measurement of the contact area is
needed for the evaluation ofH and E, thus facilitating
property measurement from very small indentatio
Clearly, however, the accuracy with whichH andE can
be measured depends on how well Eqs. (2)–(5) desc
the indentation deformation behavior. In this context
is important to note these equations were derived fr
a purely elastic contact solution derived by Sneddo6

and how well they work for elastic/plastic indentatio
is not entirely clear. One important way in which th
elastic solution fails to properly describe elastic/plas
behavior concerns the pileup or sink-in of mater
around the indenter. In the purely elastic contact soluti
material always sinks in, while for elastic/plastic conta
material may either sink in or pile up. Since this h
important effects on the indentation contact area, it
not entirely surprising that the Oliver–Pharr meth
has been found to work well for hard ceramics,
which sink-in predominates,3 but significant errors can
be encountered when the method is applied to soft me
that exhibit extensive pileup (see, for example, Refs
and 8).

In this study, the finite element method has be
used to investigate the influences of pileup on
accuracy with which hardness and elastic modulus
be measured by load and depth sensing indentation t
niques. The finite element method has been employe
many previous studies to provide important insight in
material behavior during elastic/plastic indentation.8–18

The key parameter in this investigation is the projec
contact area of the indentation,A, which can be deter-
mined from the finite element results either by applyi
the Oliver–Pharr analysis procedure to the simula
indentation load-displacement data, or more directly,
examination of the contact profiles in the finite eleme
mesh. Depending on the pileup behavior of the mater
these two areas may be very different. It will be show
that when pileup is significant, the areas deduced fr
the Oliver–Pharr analysis can underestimate the
contact area by as much as 60%, which through Eqs.
1050 J. Mater. Res., Vol.
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and (5) leads to important errors in the hardness a
modulus. The conditions under which the errors a
significant are identified, and it is shown how importa
clues about the significance of pileup on measurem
accuracy can be obtained from parameters measur
from the indentation load-displacement data.

II. SIMULATION AND ANALYSIS PROCEDURES

Elastic/plastic indentation was simulated using t
axisymmetric capabilities of theABAQUS finite element
code. The indenter was modeled as a rigid cone w
a semi-vertical anglef ­ 70.3±, which gives the same
area-to-depth ratio as the Berkovich three-sided py
mid used frequently in nanoindentation experiments a
the Vickers four-sided pyramid used in microhardne
testing. All simulations were performed to a depth
500 nm using the finite element mesh and bound
conditions illustrated in Figs. 1(a) and 1(b), in whic
a cylindrical coordinate system is used with radial c
ordinate,r, and axial coordinate,z. The specimen was
modeled as a cylinder 100,000 nm high and 100,000
in radius represented by 2806 four-node axisymme
elements. These specimen dimensions were found to
large enough to approximate the behavior of a sem
infinite half-space, as evidenced by an insensitivity
results to further increases in specimen size. As sho
in Fig. 1(a), roller boundary conditions were applie
along the centerline and bottom, a free surface w
modeled at the outside of the cylinder, and the interfa
between the indenter and the specimen was assu
to be frictionless. Figure 1(b) is included to show th
region of contact, where very fine elements were us
to achieve the precision needed in the measuremen
contact radii and contact areas. Away from the conta
a progressively coarser mesh was employed both at
surface and in the interior of the specimen.

The constitutive behavior of the material used for t
finite element modeling is shown schematically in Fig.
in which s is the uniaxial stress ande is the uniaxial
strain. Young’s modulusE ­ 70 GPa was used in all
simulations, but results were generalized by appropri
nondimensionalizations to account for materials w
other elastic moduli. While the majority of the simu
lations were conducted using Poisson’s ration ­ 0.25,
a limited number of simulations were performed usin
n ­ 0.00 and n ­ 0.45 to examine the sensitivity of
results to Poisson ratio effects. Linear elasticity w
assumed at all strains, and no pressure sensitivity w
included in the constitutive modeling. Giannakopoul
and Larsson have recently performed three-dimensio
finite element simulations of Vickers and Berkovich in
dentation which provide valuable insight into the effec
of pressure sensitivity on indentation behavior.18
13, No. 4, Apr 1998
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FIG. 1. The finite element mesh and boundary conditions: (a)
entire mesh; (b) details of the mesh in the region of contact.

Plasticity was modeled by assuming the mate
behaves as a von Mises solid with discrete yield
followed by linear, isotropic work hardening. The larg
strain capabilities ofABAQUS were used to account fo
finite strains and rotations. Yield stresses,sy , were
varied systematically from a 0.114 GPa to 5.324 G
The upper limit on the yield stress was chosen to ke
the elastic strains small with respect to the plastic stra
as required by the underlying elastic-plastic deformat
theory. Since the elastic strains are of the order ofsyyE,
the upper limit on the yield stress places a limit on t
elastic strains of about 7%. Finite element simulati
for materials in which both elastic and plastic strains
large requires special analyses.11,18

Two separate cases of work hardening, character
by different work-hardening ratesh ­ dsyde, were
J. Mater. Res., Vol.
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FIG. 2. A schematic representation of the constitutive behavior us
in the finite element modeling.

considered. In one, elastic perfectly-plastic behavior w
assumed (h ­ 0), and in the other, a moderate rate o
work hardening was used which increases the flow str
by a factor of 2 at 10% plastic strain (h ­ 10 sy). The
yield strengths and work hardening rates examined in
study approximate the behavior a wide range of met
and ceramics.

The output of the finite element simulations include
indentation load-displacement curves during one cy
of loading and unloading, the shapes of contact impr
sions, and the geometries of plastic zones. To implem
the Oliver–Pharr data analysis procedures, the unload
curves were fit according to Eq. (1), and the curv
fitting parameters were used in Eq. (2) to determine t
unloading stiffnesses. Noting that (1) the indenter us
in the study was perfectly rigid (Ei ­ `), (2) the best
empirical value fore for a sharp indenter is 0.75,3 and
(3) the shape function for a perfect cone is given b
A ­ pd2 tan2 f where f ­ 70.3±, Eqs. (3)–(6) yield
the following simplified expressions for the contact are
hardness, and elastic modulus:

A ­ p

µ
hmax 2 0.75

Pmax

S

∂2

tan2 70.3± (7)

H ­
Pmax

A
(8)

E ­ s1 2 n2d
p

p

2
S

p
A

. (9)

These equations were used to compute the parame
of interest from the finite element load-displaceme
results. Note that the finite element simulations gener
two separate measures of the contact area: one infe
from the load-displacement data through Eq. (7) and t
other a more direct measure obtained by examination
13, No. 4, Apr 1998 1051
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the contact profile in the finite element mesh. Through
this work, each of these will be used in the computati
of H and E, with the former referred to asAO/P to
denote that it was derived from the load-displacem
data using the Oliver–Pharr method, and the latt
which represents the true area of contact, referred
as Atrue. Unless otherwise noted, the contact areas
those obtained with the indenter fully loaded into th
specimen. This distinction is important because the ra
position of last point of contact at the indenter/specim
interface changes slightly during unloading due to elas
recovery. The contact area at full load is preferr
to facilitate comparison to the area derived using t
Oliver–Pharr procedures, which is the area at full loa

III. RESULTS AND DISCUSSION

A. Load-displacement curves

Figure 3 shows examples of typical indentatio
load-displacement curves generated in the finite e
ment simulations. The two curves represent import
extremes in material behavior; while both sets
data were generated usingE ­ 70 GPa, n ­ 0.25,
and h ­ 0 (i.e., no work hardening), the materia
differ substantially in their yield stresses. The rel
tively high yield stress for the material in Fig. 3(a
sy ­ 2662 MPa, results in a material of relativel
high hardness. The hardness computed from Eq.
using the true area of contact isH ­ 5.82 GPa, which
in conjunction with the 70 GPa modulus makes th
material mechanically similar to soda-lime-silica
glass.3 On the other hand, the relatively low yiel
stress of 228.5 MPa for the material in Fig. 3(
produces a low hardness,H ­ 0.60 GPa, and the
mechanical properties of this material are more li
1052 J. Mater. Res., Vol.
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those of aluminum.3 When considered in terms of thei
modulus-to-hardness ratios,EyH, or their effective
modulus-to-yield strength ratios,Eeffysy, these two
materials represent extremes in behavior. For the gla
like material [Fig. 3(a)],EyH ­ 12.0 and Eeffysy ­
28.1, whereas for the aluminum-like material [Fig. 3(b)
EyH ­ 117.5 andEeffysy ­ 327. A recent compilation
of experimental data shows thatEyH is rarely less than
10 or more than 150 for a wide variety of metal
ceramics, and polymers.19 Thus, the glass-like materia
is on the low end of theEyH spectrum while the
aluminum-like material is near the high end.

The differences in the magnitudes of the yie
stresses and the modulus-to-yield strength ratios of
two materials manifest themselves in the two importa
ways in the indentation load-displacement behavior
Fig. 3. First, the load needed to drive the indent
to the same depth is much greater for the glass,
would be expected from its much greater yield streng
Second, the portion of the indenter displaceme
which is elastically recovered during unloading is al
much greater for the glass. As discussed in de
elsewhere,16,17 the amount of elastic recovery can b
conveniently characterized by the ratio of the fin
indentation depth to the maximum indentation dep
hfyhmax. This parameter, which is independent
indentation depth because of the self-similar geome
of the indenter, is easily measurable from experimen
data. The natural limits for the parameter are0 <

hfyhmax < 1. The lower limit corresponds to fully
elastic deformation and thus complete recovery of t
indentation displacements during unloading. The upp
limit is characteristic of a rigid-plastic material, fo
which there is no elastic recovery. The values ofhfyhmax

for the materials in Fig. 3 are 0.687 for the glass a
0.951 for the aluminum.
FIG. 3. Simulated indentation load-displacement curves for: (a) a material similar to soda-lime glass withEeffysy ­ 28.1; (b) a material
similar to aluminum withEeffysy ­ 327.
13, No. 4, Apr 1998
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From a purely mechanical standpoint, the fundam
tal material parameters controlling elastic/plastic def
mation during indentation are the elastic constants,E and
n, the yield stress,sy , and the work-hardening rate,h.
Thus, perhaps the most natural way to present the fi
element results is in the way they vary withE, n, sy ,
andh. However, during the course of this investigatio
it was found that a simple and useful correlation exi
between the fundamental material parameters and
experimentally measurablehfyhmax. The correlation is
shown in Fig. 4, which plots the dependence ofhfyhmax

on Eeffys10%, the ratio of the effective elastic modulu
to the flow stress at 10% strain,s10%. When plotted this
way, finite element simulation data for a wide varie
of materials with differentEysy values converge to a
single master curve, with Poisson effects producing o
minor deviations. The use of flow stress at 10% str
as a normalizing parameter was inspired by Tabo
observations that the effects of work hardening on
Vickers hardness of metals can often be accounted
by replacing the yield stress with the flow stress a
characteristic strain, usually in the range 8–20%.20 In
the current study, the best correlation was achieved us
the flow stress at 10% strain. The importance of t
correlation is that it uniquely relates the fundamen
material deformation parametersE, n, sy, and h to a
parameter which can be simply and accurately measu
in experiment. SinceE, n, sy, andh are not knowna
priori in a nanoindentation experiment, the variation
parameters derived in the finite element simulations w
hfyhmax provides a useful way to link the finite elemen
results to experimental behavior. As a consequence, m
of the important relationships derived in this work a
presented as a function ofhfyhmax. Dependencies on the
more fundamental material parameters can be achie
through the correlation given in Fig. 4.

FIG. 4. The dependence ofhfyhmax on Eeffys10%.
J. Mater. Res., Vol. 1
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B. Surface profiles and contact areas

Figure 5 shows geometric cross sections of fu
loaded indentations to illustrate important differenc
in the pileup and sink-in behavior of materials havi
n ­ 0.25. The figure shows that whether the mater
piles up or sinks in depends on bothhfyhmax (or,
alternatively,E, n, sy , andh) and the work-hardening
characteristics of the material. Of the materials mode
in this study, pileup is most significant in those th
do not work harden and for whichhfyhmax is close
to 1. On the other hand, sink-in occurs, irrespect
of the work-hardening characteristics, whenhfyhmax ,

0.7. The moderate amount of work hardening examin
in this study promotes sink-in in preference to pile
at all hfyhmax. Similar observations of the effects o
work hardening on pileup and sink-in have been ma
in three-dimensional finite element studies of indentat
with Vickers and Berkovich indenters.14,15,18 Figure 6 is
included to show that varying Poisson’s ratio in the ran

(a)

(b)

FIG. 5. Indentation contact profiles for: (a) non-work hardening m
terials (h ­ 0); (b) work-hardening materials (h ­ 10 sy).
3, No. 4, Apr 1998 1053
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0 < n < 0.45 has only minor influences on the conta
profiles. The profiles shown in Fig. 6 are for non-wo
hardening materials; when the material work harde
the differences are even smaller.

The contact profiles in Fig. 5 take on special s
nificance when considered in the ways they affect
projected contact areas, as shown in Fig. 7. This
ure includes both the contact areas determined dire
from the finite element mesh,Atrue, and the contact
areas derived from the load-displacement data us
the Oliver–Pharr analysis procedure,AO/P [computed
from Eq. (7)]. To generalize the results, each area
been normalized with respect to the area given by
indenter shape function,Asf, evaluated at the maximum
indentation depth,hmax. SinceAsf is the area that would
be observed if no pileup or sink-in occurred at all, valu
of AtrueyAsf greater than 1 indicate a tendency for t
material to pile up while values less than 1 suggest t
the material sinks in.

Focusing first in Fig. 7 on the true contact are
Atrue, a number of points are noteworthy. First, at sm
values ofhfyhmax, the limit of purely elastic contact is
approached, and the data appear to be in reason
agreement with limiting valueAtrueyAsf ­ 0.405 pre-
dicted by Sneddon’s analysis for the indentation of
elastic half-space by a rigid cone.6 For large values of
hfyhmax, Atrue depends strongly on the work-hardenin
characteristics of the material. With no work harde
ing, there is a large amount of pileup, as evidenc
by increases inAtrueyAsf with hfyhmax to values greater
than 1.5. This means that more than 50% of the con
area in non-work hardening materials can result fr
pileup. Lockett’s slip line field analysis for deformatio
of a rigid/plastic material by a conical indenter show
the limiting value of AtrueyAsf to be 1.70,21 which is

FIG. 6. Indentation contact profiles for non-work hardening mater
showing the influences of Poisson’s ratio on the contact geometr
1054 J. Mater. Res., Vol.
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FIG. 7. The dependence of the contact areas derived from the fi
element simulations onhfyhmax. The contact areas,A, are normalized
with respect toAsf, the area given by the indenter shape functio
evaluated at the contact depth.

consistent with the trends in the finite element da
On the other hand, for work-hardening materials, t
tendency for material to pileup is not nearly as stron
In fact, close examination of Fig. 7 shows that all of th
AtrueyAsf values for work-hardening materials are les
than 1.0. Another noteworthy point is that the deviatio
in contact areas for the work-hardening and non-wo
hardening materials occurs athfyhmax ø 0.7; below
this value, the work-hardening characteristics do n
appreciably influence the observed contact areas.

A comparison of the true contact areas in Fig. 7 wi
those derived from the Oliver–Pharr analysis procedu
can now be used to gain an appreciation of the conditio
under which pileup leads to significant errors in conta
areas derived by the Oliver–Pharr method. It should
recalled that since the Oliver–Pharr method is based
a strictly elastic analysis which can account for sink-
only, the method may fail to adequately predict conta
areas for materials in which pileup occurs. The results
Fig. 7 demonstrate that this is indeed the case and hel
identify those materials in which pileup is an importan
factor. Specifically, a significant deviation inAtrue and
AO/P occurs for non-work hardening materials whe
hfyhmax . 0.7. For these materials, the Oliver–Pha
method underestimates the contact area by as m
as 60%. On the other hand, whenhfyhmax , 0.7, the
Oliver–Pharr method provides a reasonable estim
of the contact area, irrespective of the work-hardeni
behavior. Note that from an experimental point of view
it is not possible to predict if a material work harden
based solely on the indentation load-displacement da
Therefore, in measuring mechanical properties by lo
and depth sensing methods, care must be exercised w
hfyhmax . 0.7, since use of the Oliver–Pharr metho
can lead to significant errors in the contact area.
13, No. 4, Apr 1998
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C. Hardness

Since hardness and contact area are related to e
other in a simple reciprocal manner [Eq. (8)], the erro
in contact area caused by not accounting for pile
manifest themselves in similar errors in the hardne
Figure 8 shows the dependence ofHys10%, the hardness
normalized with respect to the flow stress at 10% stra
onhfyhmax. Included in the plot are hardnesses comput
using the true area of contact,Htrue, as well as hardnesse
computed using the area derived from the Oliver–Ph
procedure,HO/P . As would be expected based on th
contact area observations, the Oliver–Pharr method p
dicts the hardness reasonably well for all materia
except those that do not work harden and for whi
hfyhmax . 0.7. For these materials, the Oliver–Pha
method overestimates the hardness by as much as 6

The finite element results in Fig. 8 can also b
used to expand upon the well-known relation betwe
hardness and flow stress proposed by Tabor.20 Using
the results of slip line field analyses for rigid/plasti
deformation, Tabor suggested that the Vickers hardn
of a metal is approximately 2.9–3.0 times its flow
stress at 8–10% strain; that is,H > Cs8210% where
C ­ 2.9–3.0. Since rigid/plastic behavior correspond
to hfyhmax ­ 1, how well the Tabor relation compare
to the finite element simulation results can be esta
lished by examining the values ofHys10% at large
hfyhmax. Inspection of Fig. 8 shows that for the non
work hardening materials,Htrueys10% plateaus at a value
of about 2.6, whereas for the work-hardening materia
Htrueys10% rises continuously to about 3.0. Thus, whil
the Tabor relation appears to work reasonably we
the finite element results suggest that the constanC
for non-work hardening materials is closer to 2.6 tha
it is to 3.0. The results in Fig. 8 also show how th
constantC is close to 3.0 only for a limited range o

FIG. 8. The dependence ofHys10% on hfyhmax for non-work hard-
ening materials (h ­ 0) and work-hardening materials (h ­ 10 sy ).
J. Mater. Res., Vol. 1
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materials, specifically those for whichhfyhmax is near
1. According to Fig. 4, these materials are those w
large values ofEeffys10%, which occurs only in materials
with a relatively high modulus and low hardness, e.
soft metals. For hard metals and most ceramics, glas
and polymers,Eeffys10% is generally much smaller, and
a smaller value ofC applies. For a specific material
the results of Fig. 8 can be used to estimateC from a
knowledge ofhfyhmax obtained in a load and depth sen
ing indentation experiment, or alternatively, by knowin
E, n, sy , andh, and deducing the associated value
hfyhmax through the correlation in Fig. 4.

D. Elastic modulus

As in the case of hardness, pileup can also sign
cantly affect the measurement of elastic modulus by
Oliver–Pharr method. To illustrate this, Fig. 9 shows t
dependence ofEeff on hfyhmax, where Eeff has been
calculated from Eq. (9) using the two different measur
of the contact area,AO/P andAtrue. The effective moduli
shown in the plot are normalized with respect to t
modulus used as input into the finite element code.
one would expect based on the contact area obse
tions in Fig. 7, for non-work hardening materials wit
hfyhmax . 0.7, the effective modulus computed usin
AO/P is significantly overestimated; the overestimatio
is as great as,50% when hfyhmax is close to 1 (i.e.,
pileup is very large). Curiously, however, the figure al
shows that even when pileup is not important, i.e., wh
hfyhmax , 0.7, the effective modulus determined by th
Oliver–Pharr method is still 5–10% greater than th
used as input into the finite element code. Moreov
the overestimation occurs even when the true cont
area is used for the modulus computations. The ori
of this behavior is addressed separately,22 where it is
shown that a correction to Eq. (9) is needed to prope
apply Sneddon’s elastic solution to data obtained w
a conical indenter. The magnitude of the correcti
depends on Poisson’s ratio of the specimen,n, and the
cone angle of the indenter,f. For n ­ 0.25 and f ­
70.3±, the correction reduces the computed effecti
modulus by about 7%, which is close to what is need
to correct the moduli measured in the current wo
to their expected values. Thus, whenhfyhmax , 0.7,
there is an explanation for the overestimation of mod
deduced from Eq. (9).

The same is not true, however, whenhfyhmax .

0.7. In this range, use of the true contact area
computeEeff by means of Eq. (9) results in an effectiv
modulus which is overestimated by as much as 16
This value is too large to be accounted for by th
7% correction. This means that whenhfyhmax . 0.7,
plastic deformation during indentation affects the loa
displacement behavior in such a way that an accur
3, No. 4, Apr 1998 1055
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FIG. 9. The dependence of the effective elastic moduli derived fr
the finite element results onhfyhmax. The calculated effective modul
are normalized with respect to the effective elastic modulus input i
the finite element code.

analysis can no longer be achieved by means of ela
solutions only. Thus, some error is to be expected in
measured modulus. The finite element results in Fig
can be used to provide a first-order correction for th
problem.

E. Plastic zones

Important physical insights into the finite eleme
results can be gained by examining the behavior
the plastic zones at the indentation contacts. Figure
shows the plastic zones for materials with four differe
values ofEeffysy (n ­ 0.25 in all cases). The progres
sion from left to right across the figure corresponds
decreasingEeffysy, which was accomplished in the finit
element simulations by increasing the yield stress wh
holding the modulus constant. Note that thex and y
axes are scaled in the same way in order to prov
an undistorted picture of the proportions and shapes
the zones. The two arrows pointing to the surface
each figure mark the contact perimeters for the ca
h ­ 0 (arrow on the right) andh ­ 10 sy (arrow on
the left). The values ofhfyhmax shown in the figure are
for materials with no work hardening (h ­ 0).

The plastic zones for non-work hardening materia
(h ­ 0) are shown as solid lines in Fig. 10. Starting
the left with the largestEeffysy ­ 326, corresponding
to the smallest yield stress and the largesthfyhmax ­
0.95, it is seen that the plastic zone extends well b
yond the circle of contact. As discussed previous
it is in materials such as this that extensive pile
leads to significant errors in the measurement ofA,
H, and E by the Oliver–Pharr method. AsEeffysy

decreases, corresponding to increases in the yield s
and decreases inhfyhmax, the size of the plastic zone
1056 J. Mater. Res., Vol.
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decreases until, at some point, the plastic zone bound
in the surface coincides with the contact perimet
Interestingly, the value ofhfyhmax at which this occurs
is between 0.68 and 0.73, that is, at the transiti
from pileup to sink-in behavior (see Figs. 5 and 7
For very small values ofEeffysy , e.g.,Eeffysy ­ 14.3
[Fig. 10(d)], the plastic zone boundary lies inside th
contact perimeter. It thus appears, at least for non-w
hardening materials, that whether a material piles up
sinks in during indentation has an interesting correlati
to the size of the plastic zone. Specifically, when t
plastic zone extends beyond the circle of contact, pile
is large, but when the plastic zone lies inside the cont
perimeter, deformation outside the contact is pure
elastic and sink-in occurs.

The behavior for work-hardening materials is di
ferent. As noted by Johnson,23 a large capacity for
work hardening drives the plastic zone into the mater
to greater depths and decreases the amount of pil
adjacent to the indenter. This is corroborated in Fig. 1
where the broken lines show the plastic zones for wo
hardening materials (h ­ 10 sy) with the sameEeffysy

ratios as the non-work hardening materials. The plas
zones for the work-hardening materials are clearly driv
in to greater depths, but an equally important effect
that work hardening tends to reduce the radius of
plastic zone in the surface. This is particularly appare
in Fig. 10(b). Furthermore, as in the case of non-wo
hardening materials, when the radius of the plastic zo
approaches the radius of contact, pileup is minimal a
the vertical displacement of the edge of the contact
determined by elastic deformation outside the plas
zone. Of the materials examined in Fig. 10, only f
the conditions in Fig. 10(a) is there any evidence
plastic flow outside the contact perimeter, and even
this case, the amount pileup is small. It is because
this that the Oliver–Pharr analysis procedure provide
good estimate of the contact area over a wider range
hfyhmax for work-hardening materials.

F. Power law exponents

To conclude, one last observation is present
which, while not directly related to the subject of pileu
offers important insights into the nature of unloadin
curves obtained in load and depth sensing indentat
experiments. In particular, it is well documented th
the unloading curves of a wide variety of metals a
ceramics tested with geometrically similar indenters li
the Berkovich are well described by the power-la
relation of Eq. (1) with power law exponents,m, in the
range 1.2 to 1.5.3 Figure 11 shows how the exponen
determined from power law fits of the unloading curv
generated in the finite element simulations vary w
hfyhmax. Forhfyhmax in the range 0.5 to 1, which cover
13, No. 4, Apr 1998
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FIG. 10. Plastic zones developed during indentation for various values ofEeffysy . Non-work hardening materials (h ­ 0) are represented
by solid lines and work-hardening materials (h ­ 10 sy ) by broken lines.
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the experimental behavior of most metals and ceram
the exponents predicted by the finite element simulatio
are quite similar to those observed in experiment (
, m , 1.5). The finite element results thus suggest t
it is not necessary to appeal to indenter tip roundin
as has been done in the past,3 to explain why power
law exponents are less than 2,3 the theoretical limit
for indentation of an elastic half space by a con6

Rather, the lower exponents are a consequence of
complex elastic-plastic deformation processes occurr
during indentation and are expected even for a sha
geometrically similar indenter such as a cone. Rec
three-dimensional finite element studies of Vicke
indentation also bear this out,18 although the unloading
curves in these studies were not found to be w
represented by power laws over the entire range
displacement, in contrast to the current finite elem
results and actual experimental behavior.3 The results in
Fig. 11 also suggest that some variability is expected
the power law exponent depending on the elastic a
plastic properties of the material.

FIG. 11. The dependence of the power law exponent,m, on hfyhmax.
J. Mater. Res., Vol. 1
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IV. CONCLUSIONS

The results of a finite element study of conic
indentation of elastic-plastic materials have shown t
pileup can have important influences on the measurem
of contact area, hardness, and elastic modulus by
and depth-sensing indentation methods. The param
hfyhmax, which can be measured experimentally a
correlates with the material parametersE, n, sy , and
h which control indentation deformation, can be us
as an indication of when pileup is an important fact
Pileup is significant only whenhfyhmax . 0.7 and the
material does not appreciably work harden. For s
materials, failure to account for the pileup can lead
an underestimation of the contact area deduced f
indentation load-displacement data by as much as 6
This, in turn, results in an overestimation of the hardn
and elastic modulus. Whenhfyhmax , 0.7, or in all
materials that moderately work harden, pileup is
a significant factor, and the Oliver–Pharr data analy
procedure can be expected to give reasonable resul

The finite element results also provide further
sights into the relation between hardness and flow st
proposed by Tabor,H > Cs8-10%.20 For materials with
large Eeffys10% ratios, such as soft metals, the Tab
relation works reasonably well, although the finite e
ment results suggest that the constantC for materials
that do not work harden may be closer to 2.6 than i
to 2.9–3.0 as suggested by Tabor. On the other h
for materials with smallEeffys10% ratios, such as har
metals and most ceramics, glasses, and polymers
finite element simulations show that a smaller value
C applies, the value of which can be estimated fr
a measurement ofhfyhmax in a load and depth-sensin
indentation experiment.

Finally, the finite element results show that the u
loading curves of materials tested with a conical inden
should be well described by a power-law relations
with power law exponents,m, in the range 1.2 to
3, No. 4, Apr 1998 1057
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1.5, in accordance with experimental studies of a wi
variety of metals and ceramics tested with geometrica
similar indenters like the Berkovich. The fact that pow
law exponents are less than 2, the value expected
conical indentation of an elastic half-space, is a natu
consequence of the complex elastic/plastic deformat
occurring at the indentation. It is thus not necessa
to invoke indenter tip-rounding effects to explain th
origin of exponents less than 2, as has been propose
previous work.3
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