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Influences of pileup on the measurement of mechanical
properties by load and depth sensing indentation techniques

A. Bolshako®) and G. M. Pharr
Department of Materials Science, Rice University, 6100 Main Street, Houston, Texas 77005-1892

(Received 8 May 1997; accepted 16 October 1997)

Finite element simulation of conical indentation of a wide variety of elastic-plastic
materials has been used to investigate the influences of pileup on the accuracy with
which hardness and elastic modulus can be measured by load and depth-sensing
indentation techniques. The key parameter in the investigation is the contact area,
which can be determined from the finite element results either by applying standard
analysis procedures to the simulated indentation load-displacement data, as would be
done in an experiment, or more directly, by examination of the contact profiles in the
finite element mesh. Depending on the pileup behavior of the material, these two areas
may be very different. When pileup is large, the areas deduced from analyses of the
load-displacement curves underestimate the true contact areas by as much as 60%. This,
in turn, leads to overestimations of the hardness and elastic modulus. The conditions
under which the errors are significant are identified, and it is shown how parameters
measured from the indentation load-displacement data can be used to identify when
pileup is an important factor.

I. INTRODUCTION whereP is the indentation loady is the displacement,

Numerous methods have been developed in receft @ndm are empirically determined fitting parameters,

years for measuring the mechanical properties of ma@md hy is the final displacement after complete unload-

terials by means of load and depth sensing indentatiolf'd, (8lso determined by curve fitting). The unloading
testing!3 One of the great advantages of these method§tifness, S that is, the slope of the unloading curve
is that it is not necessary to measure the area of thgurmg the |n|t|§1l stages of unloading, |s_then established
hardness impression by imaging; rather, the contacty differentiating Eq. (1) at the maximum depth of

area and the material properties which can be deriveBENetration/1 = hinx, giving

from it are determined from analyses of indentation AP

load-displacement data. The methods form the basis S = — (h = hpa) = mB(hpax — hf)"H. (2)
for nanoindentation testing, in which mechanical prop- dh

erties can be measured from very small indentationsype depth along which contact is made between the
sometimes only a few nanometers dé€pAmong the jnqenter and the specimen,, can also be estimated

properties that can be measured in this way are thgqmy, the load-displacement data using:
hardnessH, and the elastic modulug.

One of the more commonly used methods for ana- Pk
lyzing nanoindentation load-displacement data is that of he = hmax — € s ()
Oliver and Phar?, which expands on ideas developed
by Loubetet al! and Doerner and Nix, but is not where P,,, is the peak indentation load and is a
constrained by the assumption of a flat punch indenteconstant which depends on the geometry of the indenter.
geometry. In the Oliver—Pharr method, hardness andlvVith these basic measurements, the projected contact
elastic modulus are determined from indentation datarea of the hardness impressidy,is derived by evalu-
obtained during one complete cycle of loading andating an empirically determined indenter shape function
unloading. The analysis begins by fitting the unloadingat the contact depthi,; that is,A = f(h.). The shape

curve to the power-law relation functionA = f(d) relates the cross-sectional area of the
indenter to the distance back from its tig, Finally,
P =B(h — hy)", (1) the hardness, and effective elastic modulug,;, are
derived from
dCurrent address: Baker Hughes Integ, P.O. Box 670968, Houston, H = Pnax (4)
Texas 77267-0968. A
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and and (5) leads to important errors in the hardness and
J7 S modulus. The conditions under which the errors are
Eet = BN (5)  significant are identified, and it is shown how important

clues about the significance of pileup on measurement
An effective modulus is used in the analysis to accountccuracy can be obtained from parameters measurable
for the fact that elastic deformation occurs in both thefrom the indentation load-displacement data.
specimen and the indenter. The effective modulus is
related to the specimen modulus through

L _1=-» 1-» 6) !l SIMULATION AND ANALYSIS PROCEDURES

Eetr E Ei Elastic/plastic indentation was simulated using the

whereE andv» are Young’s modulus and Poisson’s ratio axisymmetric capabilities of thesaqus finite element
for the specimen, and; andv; are the same quantities code. The indenter was modeled as a rigid cone with
for the indentef. a semi-vertical angleb = 70.3°, which gives the same

The attractiveness of this approach is that direcarea-to-depth ratio as the Berkovich three-sided pyra-
observation and measurement of the contact area is naiid used frequently in nanoindentation experiments and
needed for the evaluation ¢f and E, thus facilitating the Vickers four-sided pyramid used in microhardness
property measurement from very small indentationstesting. All simulations were performed to a depth of
Clearly, however, the accuracy with whithandE can 500 nm using the finite element mesh and boundary
be measured depends on how well Egs. (2)—(5) describsonditions illustrated in Figs. 1(a) and 1(b), in which
the indentation deformation behavior. In this context, ita cylindrical coordinate system is used with radial co-
is important to note these equations were derived fronordinate,r, and axial coordinatez. The specimen was
a purely elastic contact solution derived by Snedtion,modeled as a cylinder 100,000 nm high and 100,000 nm
and how well they work for elastic/plastic indentation in radius represented by 2806 four-node axisymmetric
is not entirely clear. One important way in which the elements. These specimen dimensions were found to be
elastic solution fails to properly describe elastic/plasticlarge enough to approximate the behavior of a semi-
behavior concerns the pileup or sink-in of materialinfinite half-space, as evidenced by an insensitivity of
around the indenter. In the purely elastic contact solutiontesults to further increases in specimen size. As shown
material always sinks in, while for elastic/plastic contact,in Fig. 1(a), roller boundary conditions were applied
material may either sink in or pile up. Since this hasalong the centerline and bottom, a free surface was
important effects on the indentation contact area, it ignodeled at the outside of the cylinder, and the interface
not entirely surprising that the Oliver—Pharr methodbetween the indenter and the specimen was assumed
has been found to work well for hard ceramics, into be frictionless. Figure 1(b) is included to show the
which sink-in predominate put significant errors can region of contact, where very fine elements were used
be encountered when the method is applied to soft metate achieve the precision needed in the measurement of
that exhibit extensive pileup (see, for example, Refs. ®ontact radii and contact areas. Away from the contact,
and 8). a progressively coarser mesh was employed both at the

In this study, the finite element method has beersurface and in the interior of the specimen.
used to investigate the influences of pileup on the The constitutive behavior of the material used for the
accuracy with which hardness and elastic modulus cafinite element modeling is shown schematically in Fig. 2,
be measured by load and depth sensing indentation tecl which o is the uniaxial stress and is the uniaxial
nigues. The finite element method has been employed istrain. Young’s moduluE = 70 GPa was used in all
many previous studies to provide important insight intosimulations, but results were generalized by appropriate
material behavior during elastic/plastic indentaffolf. nondimensionalizations to account for materials with
The key parameter in this investigation is the projectedbther elastic moduli. While the majority of the simu-
contact area of the indentatioA, which can be deter- lations were conducted using Poisson’s ratie= 0.25,
mined from the finite element results either by applyinga limited number of simulations were performed using
the Oliver—Pharr analysis procedure to the simulated = 0.00 and » = 0.45 to examine the sensitivity of
indentation load-displacement data, or more directly, byresults to Poisson ratio effects. Linear elasticity was
examination of the contact profiles in the finite elementassumed at all strains, and no pressure sensitivity was
mesh. Depending on the pileup behavior of the materialincluded in the constitutive modeling. Giannakopoulas
these two areas may be very different. It will be shownand Larsson have recently performed three-dimensional
that when pileup is significant, the areas deduced fronfinite element simulations of Vickers and Berkovich in-
the Oliver—Pharr analysis can underestimate the trudentation which provide valuable insight into the effects
contact area by as much as 60%, which through Egs. (4)f pressure sensitivity on indentation behavfor.
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FIG. 2. A schematic representation of the constitutive behavior used
in the finite element modeling.

considered. In one, elastic perfectly-plastic behavior was
assumed § = 0), and in the other, a moderate rate of
work hardening was used which increases the flow stress
A by a factor of 2 at 10% plastic straim (= 10 o). The
yield strengths and work hardening rates examined in the
study approximate the behavior a wide range of metals
and ceramics.

The output of the finite element simulations included
indentation load-displacement curves during one cycle
of loading and unloading, the shapes of contact impres-
sions, and the geometries of plastic zones. To implement
the Oliver—Pharr data analysis procedures, the unloading
e ~ curves were fit according to Eq. (1), and the curve-
7 3,600.00 nm ! fitting parameters were used in Eg. (2) to determine the

(b) !Jnloading stiffnesses. Noting _that (1) the indenter used
FIG. 1. The finite element mesh and boundary conditions: (a) theIn th-e- study was perfectly I’IgIdE.(' = %), (2) the best
entire mesh; (b) details of the mesh in the region of contact. empirical value fore .for a sharp indenter is Q.?’:‘)_and
(3) the shape function for a perfect cone is given by
. _ . A= md*tan® ¢ where ¢ = 70.3°, Egs. (3)—(6) yield

Plasticity was modeled by assuming the materiakhg foliowing simplified expressions for the contact area,
behaves as a von Mises solid with discrete y'eld'”gnardness, and elastic modulus:
followed by linear, isotropic work hardening. The large

1,800.00 nm

b

strain capabilities ohBAQUs were used to account for . B Poax ) 2 0
finite strains and rotations. Yield stresses,, were A= 7 hmax = 0.75 tan”70.3 )
varied systematically from a 0.114 GPa to 5.324 GPa. Proax
The upper limit on the yield stress was chosen to keep H = A (8)
the elastic strains small with respect to the plastic strains, J7 S

, ) . . : — (1 — ,2)NT O
as required by the underlying elastic-plastic deformation E=(1-7v) 2 VA )

theory. Since the elastic strains are of the ordesrofE,

the upper limit on the yield stress places a limit on theThese equations were used to compute the parameters

elastic strains of about 7%. Finite element simulationof interest from the finite element load-displacement

for materials in which both elastic and plastic strains areesults. Note that the finite element simulations generate

large requires special analyséd® two separate measures of the contact area: one inferred
Two separate cases of work hardening, characterizelom the load-displacement data through Eq. (7) and the

by different work-hardening rateg = do/de, were  other a more direct measure obtained by examination of
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the contact profile in the finite element mesh. Throughouthose of aluminuni.When considered in terms of their
this work, each of these will be used in the computatiormodulus-to-hardness ratiog/H, or their effective
of H and E, with the former referred to adopr to  modulus-to-yield strength ratiosE/o,, these two
denote that it was derived from the load-displacementnaterials represent extremes in behavior. For the glass-
data using the Oliver—Pharr method, and the latterlike material [Fig. 3(a)],E/H = 12.0 and E;/oy, =
which represents the true area of contact, referred t@8.1, whereas for the aluminum-like material [Fig. 3(b)],
as Awe- Unless otherwise noted, the contact areas ar&/H = 117.5 andE.i /o, = 327. A recent compilation
those obtained with the indenter fully loaded into theof experimental data shows thAf H is rarely less than
specimen. This distinction is important because the radialO or more than 150 for a wide variety of metals,
position of last point of contact at the indenter/specimerceramics, and polymet8.Thus, the glass-like material
interface changes slightly during unloading due to elastiégs on the low end of theE/H spectrum while the
recovery. The contact area at full load is preferredaluminum-like material is near the high end.
to facilitate comparison to the area derived using the The differences in the magnitudes of the yield
Oliver—Pharr procedures, which is the area at full loadstresses and the modulus-to-yield strength ratios of the
two materials manifest themselves in the two important
ways in the indentation load-displacement behavior of
Fig. 3. First, the load needed to drive the indenter
to the same depth is much greater for the glass, as
would be expected from its much greater yield strength.
Figure 3 shows examples of typical indentationSecond, the portion of the indenter displacement
load-displacement curves generated in the finite elewhich is elastically recovered during unloading is also
ment simulations. The two curves represent importantnuch greater for the glass. As discussed in detail
extremes in material behavior; while both sets ofelsewherd®!’ the amount of elastic recovery can be
data were generated usinf = 70 GPa, » = 0.25, conveniently characterized by the ratio of the final
and n =0 (i.e., no work hardening), the materials indentation depth to the maximum indentation depth,
differ substantially in their yield stresses. The rela-i/hm.. This parameter, which is independent of
tively high yield stress for the material in Fig. 3(a), indentation depth because of the self-similar geometry
oy, = 2662 MPa, results in a material of relatively of the indenter, is easily measurable from experimental
high hardness. The hardness computed from Eq. (&8ata. The natural limits for the parameter abe<
using the true area of contact#$ = 5.82 GPa, which  h;/h,.x < 1. The lower limit corresponds to fully
in conjunction with the 70 GPa modulus makes thiselastic deformation and thus complete recovery of the
material mechanically similar to soda-lime-silicate indentation displacements during unloading. The upper
glass® On the other hand, the relatively low vyield limit is characteristic of a rigid-plastic material, for
stress of 228.5 MPa for the material in Fig. 3(b) which there is no elastic recovery. The values g .y
produces a low hardness = 0.60 GPa, and the for the materials in Fig. 3 are 0.687 for the glass and
mechanical properties of this material are more like0.951 for the aluminum.

Ill. RESULTS AND DISCUSSION
A. Load-displacement curves
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FIG. 3. Simulated indentation load-displacement curves for: (a) a material similar to soda-lime glags.w/ith, = 28.1; (b) a material
similar to aluminum with E.¢/ory = 327.

1052

J. Mater. Res., Vol. 13, No. 4, Apr 1998



A. Bolshakov et al.: Influences of pileup on the measurement of mechanical properties

From a purely mechanical standpoint, the fundamenB. Surface profiles and contact areas
tal material parameters controlling elastic/plastic defor-

mation during indentation are the elastic consta®nd  |o,ded indentations to illustrate important differences

v, the yield stressg,, and the work-hardening rate,. i, the pileup and sink-in behavior of materials having
Thus, perhaps the most natural way to present the finitg _ 55 The figure shows that whether the material

element results is in the way they vary with v, o, piles up or sinks in depends on boty/hu. (o,
andn. However, during the course of this inve_Stigatic_’n’aIternativer,E, v, o, and ) and the work-hardening

it was found that a simple and useful correlation exist§aracteristics of the material. Of the materials modeled
between the fundamental material parameters and thg yhis study, pileup is most significant in those that
experimentally measurable,/hy,,. The correlation is 4o ot work harden and for which /i,y is close
shown in Fig. 4, which plots the dependenceipffin 15 1. On the other hand, sink-in occurs, irrespective

on E«:/ o109, the ratio of the effective elastic modulus of the work-hardening characteristics, Whefy /e, <
to the flow stress at 10% straims,. When plotted this 0.7. The moderate amount of work ha;rdening examined
way, finite element simulation data for a wide variety;, his study promotes sink-in in preference to pileup
of materials with differentE/o, values converge 10 @ 4 gj| 4 /... Similar observations of the effects of

. e Yvork hardening on pileup and sink-in have been made
minor deviations. The use of flow stress at 10% strain, ree-dimensional finite element studies of indentation
as a normalizing parameter was inspired by Tabor's,iih vickers and Berkovich indentef41518 Figure 6 is

observations that the effects of work hardening on then1yded to show that varying Poisson’s ratio in the range
Vickers hardness of metals can often be accounted for

by replacing the yield stress with the flow stress at a

Figure 5 shows geometric cross sections of fully

characteristic strain, usually in the range 8—2%%n 200
the current study, the best correlation was achieved using hi/ hmax = 0.97
the flow stress at 10% strain. The importance of the 1001 - 0.85

correlation is that it uniquely relates the fundamental
material deformation parameteks v, o, andn to a o yormommimmmooTe

parameter which can be simply and accurately measured .1g0} | VAR ‘Y\\_ 0.68
in experiment. Sinc&, », a,, andn are not knowna & ndenter - 052
priori in a nanoindentation experiment, the variation of [j -200f

parameters derived in the finite element simulations with

hy/hmax provides a useful way to link the finite element -300r
results to experimental behavior. As a consequence, most .1 no work hardening, 1| = 0
of the important relationships derived in this work are v=025

presented as a function 6f/hm.«. Dependencies on the -500 . . . . . . .
: . 0 500 1000 1500 2000 2500 3000 3500 4000
more fundamental material parameters can be achieved

. . A r (nm
through the correlation given in Fig. 4. (nm)
(a)
200
100 k hf/ hmax = 0.95
10 ¢ —— — = 0.86
[ Elastic/Plastic Indentation ] Or S e ===
09 70.3° cone \ - A ~
[ ] —~-100 } = 0.66
[ aluminum ] c Indenter / \
0.8 [ (Fig. 3b) - < = 0.50
x [ ] N 200 b
£ : ]
£ 07 —o—v=0.25;1=0 | -300 |
=" O v=0.25;n=1 Ocy
06 I sodaime glass ¢ v=0;n=0 B -400 linear work hardening, i = 106y
. (Fig. 3a) * v=0in=10c, v =0.25
05 s v=0.45;1=0 — -500 L L ' ' L s L
. 4 v=0.45;1=10c, ] 0 500 1000 1500 2000 2500 3000 3500 4000
04 L ol ] r (nm)
10 100 1000 (b)
Eett /O10% _ . .
FIG. 5. Indentation contact profiles for: (a) non-work hardening ma-
FIG. 4. The dependence @f;/hnax ON Eett/ 07 10%- terials (7 = 0); (b) work-hardening materialsy(= 10 o).
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0 < » < 0.45 has only minor influences on the contact 1.6 —T
profiles. The profiles shown in Fig. 6 are for non-work Contact Areas
hardening materials; when the material work hardens, 1.4 - v=025
the differences are even smaller. [ —O— A, o work hardening (n=0)

The contact profiles in Fig. 5 take on special sig- 12 [~ 7 Aqi no work hardening (n=0)
nificance when considered in the ways they affect thes® [ e e :::3::::3 E:jgzv;_
projected contact areas, as shown in Fig. 7. This fig= o Sy
ure includes both the contact areas determined directly o B
from the finite element mesM..., and the contact |
areas derived from the load-displacement data using 44 L
the Oliver—Pharr analysis procedurgg,r [computed i
from Eq. (7)]. To generalize the results, each area has g4 P I I R R S
been normalized with respect to the area given by the 04 05 06 07 08 09 1
indenter shape functiom,;, evaluated at the maximum hy /hma
indentation d_epthkn?ax. Smce_Asf !S the area that would FIG. 7. The dependence of the contact areas derived from the finite
be observed if no pileup or sink-in occurred at all, valueselement simulations of /.. The contact area, are normalized
of Awe/Ass greater than 1 indicate a tendency for thewith respect oAy, the area given by the indenter shape function
material to pile up while values less than 1 suggest thagvaluated at the contact depth.
the material sinks in.

Focusing first in Fig. 7 on the true contact areas,

A, @ number of points are noteworthy. First, at smallconsistent with the trends in the finite element data.
values ofh;/hma, the limit of purely elastic contact is On the other hand, for work-hardening materials, the
approached, and the data appear to be in reasonaliendency for material to pileup is not nearly as strong.
agreement with limiting valued,,./A; = 0.405 pre- In fact, close examination of Fig. 7 shows that all of the
dicted by Sneddon’s analysis for the indentation of am../As; values for work-hardening materials are less
elastic half-space by a rigid cofig=or large values of than 1.0. Another noteworthy point is that the deviation
hy/hmax, Awe depends strongly on the work-hardeningin contact areas for the work-hardening and non-work
characteristics of the material. With no work harden-hardening materials occurs at/hn. =~ 0.7; below
ing, there is a large amount of pileup, as evidencedhis value, the work-hardening characteristics do not
by increases it ./As With hs/hmax to values greater appreciably influence the observed contact areas.

than 1.5. This means that more than 50% of the contact A comparison of the true contact areas in Fig. 7 with
area in non-work hardening materials can result fronthose derived from the Oliver—Pharr analysis procedure
pileup. Lockett’s slip line field analysis for deformation can now be used to gain an appreciation of the conditions
of a rigid/plastic material by a conical indenter showsunder which pileup leads to significant errors in contact
the limiting value ofA../Ay to be 1.7¢! which is areas derived by the Oliver—Pharr method. It should be
recalled that since the Oliver—Pharr method is based on
a strictly elastic analysis which can account for sink-in
only, the method may fail to adequately predict contact

pile-up

sink-in

X

200

——v=0.00, h{/hnme=0.9721

areas for materials in which pileup occurs. The results of
Fig. 7 demonstrate that this is indeed the case and help to

150f w0y 20.25, Ny / Ny = 0.97346
== v=045,N/hp=0.9756 identify those materials in which pileup is an important
100k INdenter ~o—v =000, hy/hpe= 0.714 factor. Specifically, a significant deviation ... and
@ v=025, h/ P = 0.6821 Ao occurs for non-work hardening materials when
£ 501 "o v=045hi/hn=0672 hs/hm > 0.7. For these materials, the Oliver—Pharr
£ o method underestimates the contact area by as much
=~ of

no work hardening, n =0

-150
1000

1500

2000

2500
r(nm)

3000 3500 4000

as 60%. On the other hand, wheén/h,., < 0.7, the
Oliver—Pharr method provides a reasonable estimate
of the contact area, irrespective of the work-hardening
behavior. Note that from an experimental point of view,

it is not possible to predict if a material work hardens
based solely on the indentation load-displacement data.
Therefore, in measuring mechanical properties by load
and depth sensing methods, care must be exercised when

FIG. 6. Indentation contact profiles for non-work hardening materials// Aimax > 0.7, S?nce use of t!’\e Oliver—Pharr method
showing the influences of Poisson’s ratio on the contact geometry. can lead to significant errors in the contact area.
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C. Hardness materials, specifically those for whichy /Ay, is near

Since hardness and contact area are related to eagh According to Fig. 4, these materials are those with
other in a simple reciprocal manner [Eq. (8)], the errordarge values o/ o105, Which occurs only in materials
in contact area caused by not accounting for piIequ\”th a relatively high modulus and low hardness, e.g.,
manifest themselves in similar errors in the hardnessSOft metals. For hard metals and most ceramics, glasses,
Figure 8 shows the dependencetfo o, the hardness and polymersEe/ o0+ is generally much smaller, and
normalized with respect to the flow stress at 10% strain? Smaller value ofC applies. For a specific material,
0N A ¢/ by Included in the plot are hardnesses computedhe results of Fig. 8 can be used to estim@térom a
using the true area of contaé,.., as well as hardnesses knowledge ofi;/hn. obtained in a load and depth sens-
computed using the area derived from the Oliver—Phari"d indentation experiment, or alternatively, by knowing
procedure,Hoe. As would be expected based on theE: ¥» oy, andn, and deducing the associated value of
contact area observations, the Oliver—Pharr method prdt//max through the correlation in Fig. 4.
dicts the hardness reasonably well for all materials
except those that do not Work.harden anq for whichy  Elastic modulus
he/hmax > 0.7. For these materials, the Oliver—Pharr ) . -
method overestimates the hardness by as much as 60%. AS in the case of hardness, pileup can also signifi-
The finite element results in Fig. 8 can also beca_ntly affect the measurement of ela_st|c _modulus by the
used to expand upon the well-known relation betweerPliver—Pharr method. To illustrate this, Fig. 9 shows the
hardness and flow stress proposed by Tabddsing dependence ofe on hy/hma, where E has been
the results of slip line field analyses for rigid/plastic calculated from Eq. (9) using the two different measures

deformation, Tabor suggested that the Vickers hardne<d the contact aréoe andAy.. The effective moduli

of a metal is approximately 2.9-3.0 times its flow SOWn in the plot are normalized with respect to the
stress at 8—10% strain; that i& = Cog_ 10 Where modulus used as input into the finite element code. As
C = 2.9-3.0. Since rigid/plastic behavior corresponds®n® Would expect based on the contact area observa-

t0 h;/hmex = 1, how well the Tabor relation compares tions in Fig. 7, for non-work hardening materials with

to the finite element simulation results can be estabZs/fmx > 0.7, the effective modulus computed using

lished by examining the values dff/co, at large Agspp is significantly overestimated; the overestimation
hy/hm. INspection of Fig. 8 shows that for the non- 'S @S great as-50% whent/hy. is close to 1 (i.e.,

work hardening material$/,../ o 0% plateaus at a value pileup is very large). Cur_iously, howgver, the figure also
shows that even when pileup is not important, i.e., when

of about 2.6, whereas for the work-hardening materialsh ) .
Hiye/ 0100 Tises continuously to about 3.0. Thus, while s/ ima < 0.7, the effective modulus determined by the

the Tabor relation appears to work reasonably well Oliver—Pharr method is still 5-10% greater than that

the finite element results suggest that the cons@nt US€d as input into the finite element code. Moreover,
for non-work hardening materials is closer to 2.6 thanthe overestimation occurs even when the true contact

it is to 3.0. The results in Fig. 8 also show how the3'€2 is used for the modulus computations. The origin

constantC is close to 3.0 only for a limited range of ©f this behavior is addressed separatélyhere it is
shown that a correction to Eq. (9) is needed to properly

apply Sneddon’s elastic solution to data obtained with
a conical indenter. The magnitude of the correction
Normalized Hardness' ] depends on Poissqn’s ratio of the specimenand the
v=025 ] cone angle of the indentety. For » = 0.25 and ¢ =
70.3°, the correction reduces the computed effective
modulus by about 7%, which is close to what is needed
to correct the moduli measured in the current work
to their expected values. Thus, whén/hy., < 0.7,
there is an explanation for the overestimation of moduli
: deduced from Eq. (9).
o The same is not true, however, whén/hm. >
1 0.7. In this range, use of the true contact area to
| | | | | ] computeE. by means of Eq. (9) results in an effective
1.0 : : - : . . modulus which is overestimated by as much as 16%.
0.4 0.5 06 h (/)57 08 0.9 1" This value is too large to be accounted for by the
f max 7% correction. This means that whén/hu,,, > 0.7,
FIG. 8. The dependence &f/c 105, ON hy/hma for non-work hard-  Plastic deformation during indentation affects the load-
ening materialsff = 0) and work-hardening materialg (= 10 o). displacement behavior in such a way that an accurate

5.0

4.0 | —0— H"ue; no work hardening (n=0)
[ ——Hi no work hardening (n=0)
| —— H"ue; linear work hardening (11=100'y)
[ — HO/P; linear work hardening (1]:100'y)

3.0

H/cs1 0%

20 —
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15— decreases until, at some point, the plastic zone boundary
« | Elastic Modulus Calculations in the surface coincides with the contact perimeter.
w’ 441 v =025 | Interestingly, the value ok /Ay, at which this occurs
‘g‘_ . _N\=s = s is betvyeen 0.68_ an_d 0.73, 'that is, at_ the transition
c 13l ot = | 2 T har | 2 \ A | from pileup to sink-in behavior (see Figs. 5 and 7).
~ - N 5 qu very small values' o/ oy, e.g.,Eeff/'ay = 1.4.3
w® T s N - [Fig. 10(d)], the plastic zone boundary lies inside the
3 1.2 (17199 1 contact perimeter. It thus appears, at least for non-work
® : hardening materials, that whether a material piles up or
3 1.1} - sinks in during indentation has an interesting correlation
(_fg I ] to the size of the plastic zone. Specifically, when the
1.0 L plastic zone extends beyond the circle of contact, pileup
0.4 0.5 0.6 0.7 0.8 0.9 1 is large, but when the plastic zone lies inside the contact

h/h_, perimeter, deformation outside the contact is purely

_ ) o elastic and sink-in occurs.

FIG._9_. The dependence of the effective elastic moduli _derlved fr_om The behavior for work-hardening materials is dif-

the finite element results oy /hma,. The calculated effective moduli t A ted by Johnsdd | ity f

are normalized with respect to the effective elastic modulus input intoferen - AS n_o e . y Johns '_a arge. Capacity or_

the finite element code. work hardening drives the plastic zone into the material
to greater depths and decreases the amount of pileup
adjacent to the indenter. This is corroborated in Fig. 10,

. . where the broken lines show the plastic zones for work-
analysis can no longer be achieved by means of elas“ﬁardening materialsi{ = 10 o) with the sameEe/,

solutions only. Thus, some error Is to be expect(_ed n th atios as the non-work hardening materials. The plastic
measured modulus. The finite element results in Fig.

can be used to brovide a first-order correction for thic°nES for the work-hardening materials are clearly driven
problem P in to greater depths, but an equally important effect is

that work hardening tends to reduce the radius of the
plastic zone in the surface. This is particularly apparent
in Fig. 10(b). Furthermore, as in the case of non-work
Important physical insights into the finite element hardening materials, when the radius of the plastic zone
results can be gained by examining the behavior ofpproaches the radius of contact, pileup is minimal and
the plastic zones at the indentation contacts. Figure 1the vertical displacement of the edge of the contact is
shows the plastic zones for materials with four differentdetermined by elastic deformation outside the plastic
values ofEs/o, (v = 0.25 in all cases). The progres- zone. Of the materials examined in Fig. 10, only for
sion from left to right across the figure corresponds tathe conditions in Fig. 10(a) is there any evidence of
decreasind./ o, which was accomplished in the finite plastic flow outside the contact perimeter, and even in
element simulations by increasing the yield stress whilghis case, the amount pileup is small. It is because of
holding the modulus constant. Note that thkeandy this that the Oliver—Pharr analysis procedure provides a
axes are scaled in the same way in order to providgood estimate of the contact area over a wider range of
an undistorted picture of the proportions and shapes 0f;/hy. for work-hardening materials.
the zones. The two arrows pointing to the surface in
each figure mark the contact perimeters for the cases
n = 0 (arrow on the right) andy = 10 o, (arrow on - Power law exponents
the left). The values ofi;/ . shown in the figure are To conclude, one last observation is presented
for materials with no work hardeningy(= 0). which, while not directly related to the subject of pileup,
The plastic zones for non-work hardening materialsoffers important insights into the nature of unloading
(n = 0) are shown as solid lines in Fig. 10. Starting atcurves obtained in load and depth sensing indentation
the left with the largesE.;/o, = 326, corresponding experiments. In particular, it is well documented that
to the smallest yield stress and the largegth,.. =  the unloading curves of a wide variety of metals and
0.95, it is seen that the plastic zone extends well be-ceramics tested with geometrically similar indenters like
yond the circle of contact. As discussed previouslythe Berkovich are well described by the power-law
it is in materials such as this that extensive pileuprelation of Eq. (1) with power law exponents, in the
leads to significant errors in the measurementApf range 1.2 to 1.5.Figure 11 shows how the exponents
H, and E by the Oliver—Pharr method. A&/o, determined from power law fits of the unloading curves
decreases, corresponding to increases in the yield stregenerated in the finite element simulations vary with
and decreases if;/hy.x, the size of the plastic zone hy/hy.y. FOrhs/hyay in the range 0.5 to 1, which covers

X

E. Plastic zones
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FIG. 10. Plastic zones developed during indentation for various valuégfo,. Non-work hardening materialsy(= 0) are represented
by solid lines and work-hardening materialg & 10 o,) by broken lines.

the experimental behavior of most metals and ceramicgy. CONCLUSIONS
the exponents predicted by the finite element simulations 1o results of a finite element study of conical

are quite similar to those observed in experiment (1.3, 4entation of elastic-plastic materials have shown that

< m < 1.5). The finite element results thus suggest thalje can have important influences on the measurement
it is not necessary to appeal to indenter tip roundingpt contact area, hardness, and elastic modulus by load
as has been done in the pasp explain Why POWET " and depth-sensing indentation methods. The parameter
law exponents are less than® 2he theoretical limit h;/hwex, Which can be measured experimentally and

for indentation of an elastic half space by a céne. cbrrelat’es with the material parametds », o-,, and

Rather, the lower exponents are a consequence of the \\hich control indentation deformation. can be used
complex elastic-plastic deformation processes occurrings an indication of when pileup is an important factor.

during indentation and are expected even for a sharpp”eup is significant only whem, /e > 0.7 and the

. . - ; Nhaterial does not appreciably work harden. For such
three-dimensional finite element studies of Vickersyaieriais, failure to account for the pileup can lead to
indentation also bear this otft,although the unloading 5, nderestimation of the contact area deduced from
curves in these studies were not found to be weljyjentation load-displacement data by as much as 60%.

represented by power laws over the entire range Ofpjs i turn, results in an overestimation of the hardness
displacement, in contrast to the current finite element, ., clastic modulus. Wheh,/hmx < 0.7, or in all

results and actual experimental behavidihe results in _materials that moderately work harden, pileup is not

Fig. 11 also suggest that some variability is expected in, gjgnificant factor, and the Oliver—Pharr data analysis
the power law exponent depending on the elastic anfl;,cequre can be expected to give reasonable results.
plastic properties of the material. The finite element results also provide further in-
sights into the relation between hardness and flow stress
proposed by TaboH = Coy-14.2° For materials with

20 1T 71 T '
| Unloading Curve Data Analysis Iarge_ E.s/ 0109 ratios, such as soft metals, the_ Tabor
£ 18| . | relation works reasonably well, although the finite ele-
= I Ny ?‘:‘}OUY | ment results suggest that the consténfor materials
e ., L o v=0.00;n=0 _|  that do not work harden may be closer to 2.6 than it is
§ L linear work hardening (n=10c,) o v=0.00; n=10c, ] to 2.9-3.0 as suggested by Tabor. On the other hand,
w L m v=0.451=0 | for materials with smallE./ 009 ratios, such as hard
1.5 O v=0.45;n=10c ¢
% I y l metals and most ceramics, glasses, and polymers, the
- 13 — finite element simulations show that a smaller value of
o - C applies, the value of which can be estimated from
g / * Of/hmax in @ load and depth i
£ 12 r no work hardening - & measurement _f/ max 1N @ load and depth-sensing
- | | | | | 1 indentation experiment.
1.0 . . - : : : [ ini -
0.4 0.5 0.6 07 0.8 0.9 1 Flnally, the finite elgment result; show t_hat .the un
h /h loading curves of materials tested with a conical indenter
f max should be well described by a power-law relationship

FIG. 11. The dependence of the power law expon@non / s/ fmay .- with power law exponentsm, in the range 1.2 to
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1.5, in accordance with experimental studies of a wide 8.
variety of metals and ceramics tested with geometrically
similar indenters like the Berkovich. The fact that power *-
law exponents are less than 2, the value expected fqp,
conical indentation of an elastic half-space, is a natural
consequence of the complex elastic/plastic deformatiomz.
occurring at the indentation. It is thus not necessary?:
to invoke indenter tip-rounding effects to explain the
origin of exponents less than 2, as has been proposed in
previous work® 13,
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